Enteric Neuromyopathies: Highlights on Genetic Mechanisms Underlying Chronic Intestinal Pseudo-Obstruction
Abstract
:1. Introduction
2. General Features of Gut Dysmotility in CIPO
3. CIPO with an Underlying Predominant Neuropathy
4. Genes Associated with Neuropathic Forms of CIPO: RAD21 and SGO1
5. CIPO with an Underlying Predominant Myopathy
6. Mitochondrial Disorders in Gut Dysfunction Related to CIPO
7. A New Mitochondrial Recessive Disorder Associated with CIPO: Mutations in LIG3
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Giorgio, R.; Sarnelli, G.; Corinaldesi, R.; Stanghellini, V. Advances in our understanding of the pathology of chronic intestinal pseudo-obstruction. Gut 2004, 53, 1549–1552. [Google Scholar] [CrossRef] [PubMed]
- Lindberg, G. Pseudo-obstruction, enteric dysmotility and irritable bowel syndrome. Best Pract. Res. Clin. Gastroenterol. 2019, 40–41, 101635. [Google Scholar] [CrossRef]
- Zenzeri, L.; Tambucci, R.; Quitadamo, P.; Giorgio, V.; De Giorgio, R.; Di Nardo, G. Update on chronic intestinal pseudo-obstruction. Curr. Opin. Gastroenterol. 2020, 36, 230–237. [Google Scholar] [CrossRef]
- Cogliandro, R.F.; Antonucci, A.; De Giorgio, R.; Barbara, G.; Cremon, C.; Cogliandro, R.F.; Frisoni, C.; Pezzilli, R.; Morselli-Labate, A.R.; Corinaldesi, R.; et al. Patient-reported outcomes and gut dysmotility in functional gastrointestinal disorders. Neurogastroenterol. Motil. 2011, 23, 1084–1091. [Google Scholar] [CrossRef] [PubMed]
- Stanghellini, V.; Cogliandro, R.F.; De Giorgio, R.; Barbara, G.; Salvioli, B.; Corinaldesi, R. Chronic intestinal pseudo-obstruction: Manifestations, natural history and management. Neurogastroenterol. Motil. 2007, 19, 440–452. [Google Scholar] [CrossRef] [PubMed]
- Di Nardo, G.; Di Lorenzo, C.; Lauro, A.; Stanghellini, V.; Thapar, N.; Karunaratne, T.B.; Volta, U.; De Giorgio, R. Chronic intestinal pseudo-obstruction in children and adults: Diagnosis and therapeutic options. Neurogastroenterol. Motil. 2017, 29, e12945. [Google Scholar] [CrossRef]
- Thapar, N.; Saliakellis, E.; Benninga, M.A.; Borrelli, O.; Curry, J.; Faure, C.; De Giorgio, R.; Gupte, G.; Knowles, C.H.; Staiano, A.; et al. Paediatric Intestinal Pseudo-obstruction: Evidence and Consensus-based Recommendations From an ESPGHAN-Led Expert Group. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 991–1019. [Google Scholar] [CrossRef]
- Nham, S.; Nguyen, A.T.M.; Holland, A.J.A. Paediatric intestinal pseudo-obstruction: A scoping review. Eur. J. Pediatr. 2022, 181, 2619–2632. [Google Scholar] [CrossRef]
- Ahmadzai, M.M.; McClain, J.L.; Dharshika, C.; Seguella, L.; Giancola, F.; De Giorgio, R.; Gulbransen, B.D. LPAR1 regulates enteric nervous system function through glial signaling and contributes to chronic intestinal pseudo-obstruction. J. Clin. Investig. 2022, 132, e149464. [Google Scholar] [CrossRef]
- Workman, M.J.; Mahe, M.M.; Trisno, S.; Poling, H.M.; Watson, C.L.; Sundaram, N.; Chang, C.F.; Schiesser, J.; Aubert, P.; Stanley, E.G.; et al. Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. Nat. Med. 2017, 23, 49–59. [Google Scholar] [CrossRef]
- Memic, F.; Knoflach, V.; Morarach, K.; Sadler, R.; Laranjeira, C.; Hjerling-Leffler, J.; Sundström, E.; Pachnis, V.; Marklund, U. Transcription and Signaling Regulators in Developing Neuronal Subtypes of Mouse and Human Enteric Nervous System. Gastroenterology 2018, 154, 624–636. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Obata, Y.; Castaño, Á.; Fallesen, T.L.; Bon-Frauches, A.C.; Boeing, S.; Huseynova, A.; McCallum, S.; Lasrado, R.; Heanue, T.A.; Pachnis, V. Molecular profiling of enteric nervous system cell lineages. Nat. Protoc. 2022, 17, 1789–1817. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.; Copeland, W.C. POLG-related disorders and their neurological manifestations. Nat. Rev. Neurol. 2019, 15, 40–52. [Google Scholar] [CrossRef]
- De Giorgio, R.; Cogliandro, R.F.; Barbara, G.; Corinaldesi, R.; Stanghellini, V. Chronic intestinal pseudo-obstruction: Clinical features, diagnosis, and therapy. Gastroenterol. Clin. N. Am. 2011, 40, 787–807. [Google Scholar] [CrossRef] [PubMed]
- Moreno, C.A.; Metze, K.; Lomazi, E.A.; Bertola, D.R.; Barbosa, R.H.A.; Cosentino, V.; Sobreira, N.; Cavalcanti, D.P. Visceral myopathy: Clinical and molecular survey of a cohort of seven new patients and state of the art of overlapping phenotypes. Am. J. Med. Genet. Part A 2016, 170, 2965–2974. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Batzir, N.A.; Bhagwat, P.K.; Larson, A.; Akdemir, Z.C.; Bagłaj, M.; Bofferding, L.; Bosanko, K.B.; Bouassida, S.; Callewaert, B.; Cannon, A.; et al. Recurrent arginine substitutions in the ACTG2 gene are the primary driver of disease burden and severity in visceral myopathy. Hum. Mutat. 2020, 41, 641–654. [Google Scholar] [CrossRef]
- Takaki, M. Gut pacemaker cells: The interstitial cells of Cajal (ICC). J. Smooth Muscle Res. 2003, 39, 137–161. [Google Scholar] [CrossRef][Green Version]
- Antonucci, A.; Fronzoni, L.; Cogliandro, L.; Cogliandro, R.F.; Caputo, C.; De Giorgio, R.; Pallotti, F.; Barbara, G.; Corinaldesi, R.; Stanghellini, V. Chronic intestinal pseudo-obstruction. World J. Gastroenterol. 2008, 14, 2953–2961. [Google Scholar] [CrossRef]
- Milewicz, D.M.; Østergaard, J.R.; Ala-Kokko, L.M.; Khan, N.; Grange, D.K.; Mendoza-Londono, R.; Bradley, T.J.; Olney, A.H.; Adès, L.; Maher, J.F.; et al. De novo ACTA2 mutation causes a novel syndrome of multisystemic smooth muscle dysfunction. Am. J. Med. Genet. Part A 2010, 152A, 2437–2443. [Google Scholar] [CrossRef][Green Version]
- Lehtonen, H.J.; Sipponen, T.; Tojkander, S.; Karikoski, R.; Järvinen, H.; Laing, N.G.; Lappalainen, P.; Aaltonen, L.A.; Tuupanen, S. Segregation of a missense variant in enteric smooth muscle actin γ-2 with autosomal dominant familial visceral myopathy. Gastroenterology 2012, 143, 1482–1491.e3. [Google Scholar] [CrossRef]
- Le, T.L.; Galmiche, L.; Levy, J.; Suwannarat, P.; Hellebrekers, D.M.E.I.; Morarach, K.; Boismoreau, F.; Theunissen, T.E.J.; Lefebvre, M.; Pelet, A.; et al. Dysregulation of the NRG1/ERBB pathway causes a developmental disorder with gastrointestinal dysmotility in humans. J. Clin. Investig. 2021, 131, e145837. [Google Scholar] [CrossRef] [PubMed]
- Gargiulo, A.; Auricchio, R.; Barone, M.V.; Cotugno, G.; Reardon, W.; Milla, P.J.; Ballabio, A.; Ciccodicola, A.; Auricchio, A. Filamin A is mutated in X-linked chronic idiopathic intestinal pseudo-obstruction with central nervous system involvement. Am. J. Hum. Genet. 2007, 80, 751–758. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Van der Werf, C.S.; Sribudiani, Y.; Verheij, J.B.; Carroll, M.; O’Loughlin, E.; Chen, C.H.; Brooks, A.S.; Liszewski, M.K.; Atkinson, J.P.; Hofstra, R.M. Congenital short bowel syndrome as the presenting symptom in male patients with FLNA mutations. Genet. Med. 2013, 15, 310–313. [Google Scholar] [CrossRef]
- Bonora, E.; Chakrabarty, S.; Kellaris, G.; Tsutsumi, M.; Bianco, F.; Bergamini, C.; Ullah, F.; Isidori, F.; Liparulo, I.; Diquigiovanni, C.; et al. Biallelic variants in LIG3 cause a novel mitochondrial neurogastrointestinal encephalomyopathy. Brain 2021, 144, 1451–1466. [Google Scholar] [CrossRef] [PubMed]
- Halim, D.; Wilson, M.P.; Oliver, D.; Brosens, E.; Verheij, J.B.; Han, Y.; Nanda, V.; Lyu, Q.; Doukas, M.; Stoop, H.; et al. Loss of LMOD1 impairs smooth muscle cytocontractility and causes megacystis microcolon intestinal hypoperistalsis syndrome in humans and mice. Proc. Natl. Acad. Sci. USA 2017, 114, E2739–E2747. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gauthier, J.; Amar Bencheikh, B.O.; Hamdan, F.F.; Harrison, S.M.; Baker, L.A.; Couture, F.; Thiffault, F.; Ouazzani, R.; Samuels, M.E.; Mitchell, G.A.; et al. A homozygous loss-of-function variant in MYH11 in a case with megacystis-microcolon-intestinal hypoperistalsis syndrome. Eur. J. Hum. Genet. 2015, 23, 1266–1268. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kandler, J.L.; Sklirou, E.; Woerner, A.; Walsh, L.; Cox, E.; Xue, Y. Compound heterozygous loss of function variants in MYL9 in a child with megacystis-microcolon-intestinal hypoperistalsis syndrome. Mol. Genet. Genom. Med. 2020, 8, e1516. [Google Scholar] [CrossRef]
- Halim, D.; Brosens, E.; Muller, F.; Wangler, M.F.; Beaudet, A.L.; Lupski, J.R.; Akdemir, Z.H.C.; Doukas, M.; Stoop, H.J.; de Graaf, B.M.; et al. Loss-of-function variants in MYLK cause recessive megacystis microcolon intestinal hy-poperistalsis syndrome. Am. J. Hum. Genet. 2017, 101, 123–129. [Google Scholar] [CrossRef][Green Version]
- Van Goethem, G.; Schwartz, M.; Löfgren, A.; Dermaut, B.; Van Broeckhoven, C.; Vissing, J. Novel POLG mutations in progressive external ophthalmoplegia mimicking mitochondrial neurogastrointestinal encephalomyopathy. Eur. J. Hum. Genet. 2003, 11, 547–549. [Google Scholar] [CrossRef]
- Bonora, E.; Bianco, F.; Cordeddu, L.; Bamshad, M.; Francescatto, L.; Dowless, D.; Stanghellini, V.; Cogliandro, R.F.; Lindberg, G.; Mungan, Z.; et al. Mutations in RAD21 disrupt regulation of APOB in patients with chronic intestinal pseudo-obstruction. Gastroenterology 2015, 148, 771–782. [Google Scholar] [CrossRef]
- Shaibani, A.; Shchelochkov, O.A.; Zhang, S.; Katsonis, P.; Lichtarge, O.; Wong, L.J.; Shinawi, M. Mitochondrial neurogastrointestinal encephalopathy due to mutations in RRM2B. Arch. Neurol. 2009, 66, 1028–1032. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Chetaille, P.; Preuss, C.; Burkhard, S.; Côté, J.M.; Houde, C.; Castilloux, J.; Piché, J.; Gosset, N.; Leclerc, S.; Wün-nemann, F.; et al. Mutations in SGO1 cause a novel cohesinopathy affecting heart and gut rhythm. Nat. Genet. 2014, 46, 1245–1249. [Google Scholar] [CrossRef] [PubMed]
- Nishino, I.; Spinazzola, A.; Hirano, M. Thymidine phosphorylase gene mutations in MNGIE, a human mitochondrial disorder. Science 1999, 283, 689–692. [Google Scholar] [CrossRef] [PubMed]
- Boschetti, E.; Malagelada, C.; Accarino, A.; Malagelada, J.R.; Cogliandro, R.F.; Gori, A.; Bonora, E.; Giancola, F.; Bianco, F.; Tugnoli, V.; et al. Enteric neuron density correlates with clinical features of severe gut dysmotility. Am. J. Physiol. Gastrointest. Liver Physiol. 2019, 317, G793–G801. [Google Scholar] [CrossRef] [PubMed]
- Roth, B.; Schiro, D.B.; Ohlsson, B. Diseases which cause generalized peripheral neuropathy: A systematic review. Scand. J. Gastroenterol. 2021, 9, 1000–1010. [Google Scholar] [CrossRef] [PubMed]
- Warnecke, T.; Schäfer, K.H.; Claus, I.; Del Tredici, K.; Jost, W.H. Gastrointestinal involvement in Parkinson’s disease: Pathophysiology, diagnosis, and management. NPJ Park. Dis. 2022, 8, 31. [Google Scholar] [CrossRef]
- Piché, J.; Van Vliet, P.P.; Pucéat, M.; Andelfinger, G. The expanding phenotypes of cohesinopathies: One ring to rule them all! Cell Cycle 2019, 18, 2828–2848. [Google Scholar] [CrossRef]
- Piché, J.; Gosset, N.; Legault, L.M.; Pacis, A.; Oneglia, A.; Caron, M.; Chetaille, P.; Barreiro, L.; Liu, D.; Qi, X.; et al. Molecular Signature of CAID Syndrome. Noncanonical Roles of SGO1 in Regulation of TGF-β Signaling and Epigenomics. Cell. Mol. Gastroenterol. Hepatol. 2019, 7, 411–431. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Horsfield, J.A.; Print, C.G.; Mönnich, M. Diverse Developmental Disorders from The One Ring: Distinct Molecular Pathways Underlie the Cohesinopathies. Front. Genet. 2012, 3, 171. [Google Scholar] [CrossRef][Green Version]
- Bauerschmidt, C.; Arrichiello, C.; Burdak-Rothkamm, S.; Woodcock, M.; Hill, M.A.; Stevens, D.L.; Rothkamm, K. Cohesin promotes the repair of ionizing radiation-induced DNA double-strand breaks in replicated chromatin. Nucleic Acids Res. 2010, 38, 477–487. [Google Scholar] [CrossRef]
- Cheng, H.; Zhang, N.; Pati, D. Cohesin subunit RAD21: From biology to disease. Gene 2020, 758, 144966. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Fagnant, P.M.; Krementsova, E.B.; Trybus, K.M. Severe molecular defects exhibited by the R179H mutation in human vascular smooth muscle a-actin. J. Biol. Chem. 2016, 291, 21729–21739. [Google Scholar] [CrossRef][Green Version]
- Hashmi, S.K.; Ceron, R.H.; Heuckeroth, R.O. Visceral myopathy: Clinical syndromes, genetics, pathophysiology, and fall of the cytoskeleton. Am. J. Physiol. Gastrointest. Liver Physiol. 2021, 320, G919–G935. [Google Scholar] [CrossRef] [PubMed]
- Yetman, A.T.; Starr, L.J. Newly described recessive MYH11 disorder with clinical overlap of Multisystemic smooth muscle dysfunction and Megacystis microcolon hypoperistalsis syndromes. Am. J. Med. Genet. Part A 2018, 176, 1011–1014. [Google Scholar] [CrossRef] [PubMed]
- Moreno, C.A.; Sobreira, N.; Pugh, E.; Zhang, P.; Steel, G.; Torres, F.R.; Cavalcanti, D.P. Homozygous deletion in MYL9 expands the molecular basis of megacystis-microcolon-intestinal hypoperistalsis syndrome. Eur. J. Hum. Genet. 2018, 26, 669–675. [Google Scholar] [CrossRef][Green Version]
- Kapur, R.P.; Robertson, S.P.; Hannibal, M.C.; Finn, L.S.; Morgan, T.; van Kogelenberg, M.; Loren, D.J. Diffuse abnormal layering of small intestinal smooth muscle is present in patients with FLNA mutations and x-linked intestinal pseudo-obstruction. Am. J. Surg. Pathol. 2010, 34, 1528–1543. [Google Scholar] [CrossRef]
- Matera, I.; Bordo, D.; Di Duca, M.; Lerone, M.; Santamaria, G.; Pongiglione, M.; Lezo, A.; Diamanti, A.; Spagnuolo, M.I.; Pini Prato, A.; et al. Novel ACTG2 variants disclose allelic heterogeneity and bi-allelic inheritance in pediatric chronic intestinal pseudo-obstruction. Clin. Genet. 2021, 99, 430–436. [Google Scholar] [CrossRef]
- Fournier, N.; Fabre, A. Smooth muscle motility disorder phenotypes: A systematic review of cases associated with seven pathogenic genes (ACTG2, MYH11, FLNA, MYLK, RAD21, MYL9 and LMOD1). Intractable Rare Dis. Res. 2022, 11, 113–119. [Google Scholar] [CrossRef]
- Hashmi, S.K.; Barka, V.; Yang, C.; Schneider, S.; Svitkina, T.M.; Heuckeroth, R.O. Pseudo-obstruction-inducing ACTG2R257C alters actin organization and function. JCI Insight 2020, 5, e140604. [Google Scholar] [CrossRef]
- Jenkins, Z.A.; Macharg, A.; Chang, C.Y.; van Kogelenberg, M.; Morgan, T.; Frentz, S.; Wei, W.; Pilch, J.; Hannibal, M.; Foulds, N.; et al. Differential regulation of two FLNA transcripts explains some of the phenotypic heterogeneity in the loss-of-function filaminopathies. Hum. Mutat. 2018, 39, 103–113. [Google Scholar] [CrossRef]
- Bird, T.D. Myotonic Dystrophy Type 1. Synonym: Steinert’s Disease. In GeneReviews; University of Washington: Seattle, WA, USA, 2021. [Google Scholar]
- Giordano, C.; Sebastiani, M.; De Giorgio, R.; Travaglini, C.; Tancredi, A.; Valentino, M.L.; Bellan, M.; Cossarizza, A.; Michio Hirano, M.; d’Amati, G.; et al. Gastrointestinal Dysmotility in Mitochondrial Neurogastrointestinal Encephalomyopathy is Caused by Mitochondrial DNA Depletion. Am. J. Pathol. 2008, 173, 1120–1128. [Google Scholar] [CrossRef][Green Version]
- Filosto, M.; Cotti Piccinelli, S.; Caria, F.; Gallo Cassarino, S.; Baldelli, E.; Galvagni, A.; Volonghi, I.; Scarpelli, M.; Padovani, A. Mitochondrial Neurogastrointestinal Encephalomyopathy (MNGIE-MTDPS1). J. Clin. Med. 2018, 7, 389. [Google Scholar] [CrossRef][Green Version]
- Hirano, M.; Carelli, V.; Giorgio, R.; Pironi, L.; Accarino, A.; Cenacchi, G.; Alessandro, R.D.; Filosto, M.; Martí, R.; Nonino, F.; et al. Mitochondrial Neurogastrointestinal Encephalomyopathy (MNGIE): Position Paper on Diagnosis, Prognosis and Treatment by the MNGIE International Network. J. Inherit. Metab. Dis. 2020, 44, 10–1002. [Google Scholar] [CrossRef] [PubMed]
- Filosto, M.; Scarpelli, M.; Tonin, P.; Testi, S.; Cotelli, M.S.; Rossi, M.; Salvi, A.; Grottolo, A.; Vielmi, V.; Todeschini, A.; et al. Pitfalls in diagnosing mitochondrial neurogastrointestinal encephalomyopathy. J. Inherit. Metab. Dis. 2011, 34, 1199–1203. [Google Scholar] [CrossRef] [PubMed]
- Granero Castro, P.; Fernández Arias, S.; Moreno Gijón, M.; Alvarez Martínez, P.; Granero Trancón, J.; Álvarez Pérez, J.A.; Lamamie Clairac, E.; González González, J.J. Emergency surgery in chronic intestinal pseudo-obstruction due to mitochondrial neurogastrointestinal encephalomyopathy: Case reports. Int. Arch. Med. 2010, 3, 35. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Yadak, R.; Breur, M.; Bugiani, M. Gastrointestinal Dysmotility in MNGIE: From thymidine phosphorylase enzyme deficiency to altered interstitial cells of Cajal. Orphanet J. Rare Dis. 2019, 14, 33. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Boschetti, E.; D’Alessandro, R.; Bianco, F.; Carelli, V.; Cenacchi, G.; Pinna, A.D.; Del Gaudio, M.; Rinaldi, R.; Stanghellini, V.; Pironi, L.; et al. Liver as a Source for Thymidine Phosphorylase Replacement in Mitochondrial Neurogastrointestinal Encephalomyopathy. PLoS ONE 2014, 9, 96692–96698. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Martí, R.; López, L.C.; Hirano, M. Assessment of thymidine phosphorylase function: Measurement of plasma thymidine (and deoxyuridine) and thymidine phosphorylase activity. Methods Mol. Biol. 2012, 837, 121–133. [Google Scholar] [PubMed][Green Version]
- Bianco, F.; Lattanzio, G.; Lorenzini, L.; Diquigiovanni, C.; Mazzoni, M.; Clavenzani, P.; Calza, L.; Giardino, L.; Sternini, C.; Bonora, E.; et al. Novel understanding on genetic mechanisms of enteric neuropathies leading to severe gut dysmotility. Eur. J. Histochem. 2021, 65, 3289–3296. [Google Scholar] [CrossRef]
Form of CIPO | Gene | Gene Name | Map Position | Key Features | References |
---|---|---|---|---|---|
Myopathic | ACTA2 | Smooth muscle aortic alpha-actin 2 | 10q23.31 | Multisystemic smooth muscle dysfunction syndrome | [19] |
Myopathic | ACTG2 | Enteric smooth muscle actin | 2p13.1 | Visceral myopathy 1, megacystis-microcolon-intestinal hypoperistalsis syndrome 5 | [20] |
Neuropathic | ERBB2 | Erb-B2 Receptor Tyrosine Kinase 2 | 17q12 | Visceral neuropathy, familial, 2, autosomal recessive | [21] |
Neuropathic | ERBB3 | Erb-B3 Receptor Tyrosine Kinase 3 | 12q13.2 | Visceral neuropathy, familial, 1, autosomal recessive | [21] |
Myopathic | FLNA | Filamin A | Xq28 | Intestinal pseudo-obstruction, X-linked, congenital short-bowel syndrome | [22] [23] |
Mitochondrial | LIG3 | DNA Ligase III | 17q12 | Mitochondrial neurogastrointestinal encephalomyopathy | [24] |
Myopathic | LMOD1 | Leiomodin 1 | 1q32.1 | Megacystis-microcolon-intestinal hypoperistalsis syndrome 3 | [25] |
Myopathic | MYH11 | Myosin Heavy Chain 11 | 16p13.11 | Megacystis-microcolon-intestinal hypoperistalsis syndrome 2 (AR), Visceral myopathy 2 (AD) | [26] |
Myopathic | MYL9 | Myosin Light Chain 9, regulatory | 20q11.23 | Megacystis-microcolon-intestinal hypoperistalsis syndrome 4 | [27] |
Myopathic | MYLK | Myosin Light Chain Kinase | 3q21.1 | Megacystis-microcolon-intestinal hypoperistalsis syndrome 1 | [28] |
Mitochondrial | POLG | DNA Polymerase Gamma, Catalytic Subunit | 15q26.1 | Mitochondrial DNA depletion syndrome 4B (MNGIE type) | [29] |
Neuropathic | RAD21 | RAD21 Cohesin Complex Component | 8q24.11 | Mungan syndrome (AR) | [30] |
Mitochondrial | RRM2B | Ribonucleotide Reductase Regulatory TP53 Inducible Subunit M2B | 8q22.3 | Mitochondrial DNA depletion syndrome 8B (MNGIE type) | [31] |
Neuropathic | SGO1 | Shugoshin-1 | 3p24.3 | Chronic atrial and intestinal dysrhythmia | [32] |
Mitochondrial | TYMP | Thymidine Phosphorylase | 22q13.33 | Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE); mitochondrial DNA depletion syndrome 1 | [33] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianco, F.; Lattanzio, G.; Lorenzini, L.; Mazzoni, M.; Clavenzani, P.; Calzà, L.; Giardino, L.; Sternini, C.; Costanzini, A.; Bonora, E.; et al. Enteric Neuromyopathies: Highlights on Genetic Mechanisms Underlying Chronic Intestinal Pseudo-Obstruction. Biomolecules 2022, 12, 1849. https://doi.org/10.3390/biom12121849
Bianco F, Lattanzio G, Lorenzini L, Mazzoni M, Clavenzani P, Calzà L, Giardino L, Sternini C, Costanzini A, Bonora E, et al. Enteric Neuromyopathies: Highlights on Genetic Mechanisms Underlying Chronic Intestinal Pseudo-Obstruction. Biomolecules. 2022; 12(12):1849. https://doi.org/10.3390/biom12121849
Chicago/Turabian StyleBianco, Francesca, Giulia Lattanzio, Luca Lorenzini, Maurizio Mazzoni, Paolo Clavenzani, Laura Calzà, Luciana Giardino, Catia Sternini, Anna Costanzini, Elena Bonora, and et al. 2022. "Enteric Neuromyopathies: Highlights on Genetic Mechanisms Underlying Chronic Intestinal Pseudo-Obstruction" Biomolecules 12, no. 12: 1849. https://doi.org/10.3390/biom12121849