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Abstract: The transmembrane transport of weak acid and base metabolites depends on the local pH
conditions that affect the protonation status of the substrates and the availability of co-substrates,
typically protons. Different protein designs ensure the attraction of substrates and co-substrates to
the transporter entry sites. These include electrostatic surface charges on the transport proteins and
complexation with seemingly transport-unrelated proteins that provide substrate and/or proton
antenna, or enzymatically generate substrates in place. Such protein assemblies affect transport rates
and directionality. The lipid membrane surface also collects and transfers protons. The complexity in
the various systems enables adjustability and regulation in a given physiological or pathophysiologi-
cal situation. This review describes experimentally shown principles in the attraction and facilitation
of weak acid and base transport substrates, including monocarboxylates, ammonium, bicarbonate,
and arsenite, plus protons as a co-substrate.

Keywords: metabolite; transport; proton; proton wire; aquaporin; formate-nitrite transporter; ammo-
nium transporter; monocarboxylate transporter; basigin; carbonic anhydrase; interaction; fusion

1. Introduction

Transport of weak acid and base metabolites across the cell membrane is critical
for numerous vital processes, including energy metabolism and pH regulation. Acidic
metabolites, e.g., lactic, acetic, or pyruvic acid, exhibit pKa values around 4, rendering them
>99% deprotonated to their anionic form, i.e., lactate, acetate, and pyruvate, at neutral pH.
Basic metabolites, e.g., ammonia, in turn, with pKa values around 9, accept a proton under
physiological pH conditions, giving rise to positively charged ammonium. As charged
entities, the passage of such metabolites across cell membranes is strongly hampered.

Transport proteins facilitate the transfer of metabolite ions across the membrane by
dealing properly with the accompanying protons. Contrary to primary active transporters
that use the release of chemical energy from hydrolysis of ATP to transport even against
existing transmembrane gradients, secondary active transporters, e.g., for lactate/H+, use
the ionic force derived from the transmembrane gradient of one substrate to transport
another. Their activity depends on the complex regulation of substrate and proton gradients
around their transport sites.

Calculations indicate that the high cytosolic concentration in the millimolar range
of household metabolites, such as lactate, pyruvate, and also ATP, make it impossible
for the relatively slow transporters to deplete the concentration around their transport
site before being regenerated by the Brownian diffusion [1]. For these high-concentration
metabolites, the cytosol is comparable to a well-mixed compartment of homogenous
concentration. However, the same is not true for the co-transported protons. Their much
lower concentration in the nanomolar range seems at odds with the observed turnover
rate of some transporters (85 s−1 for human monocarboxylate transporter 1 (MCT1)) [2].
The transporter activity should have depleted the substrate concentration around the entry
sites, even taking into account that protons move five–seven times faster by the Grotthuss
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mechanism than diffusing ions. This suggests that weak acid metabolite transporters
replenish the local concentration of their substrate and protons faster than simple diffusion
would allow for [3]. In fact, micro-domains have been shown to exist at the transporting
proteins themselves or at accessory proteins that locally increase substrate ion and/or
proton concentrations for steeper transmembrane gradients. This occurs by attracting
substrate molecules to the transporter entry sites, or by generating them in place by linked
enzyme moieties.

This review describes processes by which metabolite transporters involved in the facilita-
tion of low-concentration substrates maintain their transport functionality by local substrate
enrichment. Specific examples of transporter proteins are used to illustrate these principles.

2. Electrostatic Attraction and Neutralization of Substrate Ions by the Transport Protein

One mechanism used by transmembrane facilitator proteins to attract substrate ions is
exposing oppositely charged amino acids in electrostatic surface patches.

2.1. Substrate Attraction by Lactic Acid-Facilitating Aquaporins

Aquaporins (AQP) are a large, ancient family of homotetrameric channel proteins for
water and neutral-solute transmembrane facilitation [4,5]. Two constrictions in the channels
are highly conserved across the AQPs. One, termed the selectivity filter, is located close
to the extracellular or periplasmic side of each AQP protomer and is typically composed
of aromatic amino acids around a positively charged arginine (ar/R). The other lies in
the center of the protomer and is named after its Asn-Pro-Ala signature motifs, i.e., NPA
region [6]. Two NPA motifs cap two short helices at their positive ends. These positively
charged constrictions act concertedly to strictly exclude protons and other cations [7,8]. In
addition to vital functions in the human water and salt homeostasis, or glycerol metabolism,
additional roles, e.g., in the modulation of the immune system, have been identified,
rendering them attractive drug targets even though inhibitor development is hampered by
the tight space in the substrate transduction path [9].

Certain AQPs, e.g., from lactic acid bacteria [10] or human AQP9 [11], facilitate trans-
membrane diffusion at physiological pH conditions of lactic acid, as well as the typical
AQP substrate spectrum [12]. The diffusion of lactic acid via such AQPs exceeds the
buffer substrate concentration derived from the lactate/lactic acid protonation equilibrium
(pKa 3.86). Poisson–Boltzmann calculations of the electrostatic surface potential of respec-
tive AQPs revealed a strongly positively charged protein surface. To this end, the AQP9
tetramer, for instance, carries a cluster of eight arginine residues (4 × Arg51/Arg53). It was
hypothesized that the positive surface charge attracts the predominant lactate anion form
that indirectly enhances the local concentration of the neutral lactic acid substrate due to
the protonation equilibrium (Figure 1, left) [11]. This view was supported by mutational
replacement of the positive arginines by negatively charged glutamic acid residues. Indeed,
the inversion of the AQP9 surface charge significantly decreased the passage of lactic acid.

The exclusive facilitation of neutral lactic acid via AQPs, and the subsequent dissociation
into lactate/H+, can lead to a massive accumulation of lactate in the compartment at the less
acidic side of the membrane, i.e., an ion trap [13]. In this compartment, protons are buffered,
leaving the lactate ion that is excluded by the AQP and, thus, remaining trapped when there
are no alternative transmembrane transporters with lactate-transport capability present.

2.2. The Next Step in Evolution: Channel-like Formate-Nitrite Transporters

Homopentameric formate-nitrite transporters (FNT) are expressed exclusively in mi-
croorganisms, mainly bacteria [14], but also in single-celled eucaryotes, such as malaria
parasites [15]. Structure-wise, they almost perfectly mimic the fold of the AQP channel
protomer, despite the absence of sequence similarity [16]. In terms of functionality, however,
FNTs act like secondary-active transporters, using the transmembrane proton gradient as
a driving force for the bi-directional transport of small, weak monoacids. As such, they
are key elements in bacterial mixed acid fermentation [14], nitrogen fixation [17], and
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hydrosulfide detoxification [18]. The lactate/H+-transporting FNT from malaria parasites
represents a novel, valid drug target [19,20] for which recently potent small-molecule in-
hibitors with high antimalarial potency have been discovered [21–23]. Similar to the AQPs,
the substrate path through the FNT protein structure holds a central region that is flanked
by two lipophilic constrictions and excludes the passage of charged compounds [17,24].
Nevertheless, weak acid substrate-transport is highly efficient even in the neutral pH range,
indicating that the FNTs accept the anionic species as a substrate and make use of protons
as a co-substrate [25]. How is this achieved?
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Figure 1. Schematic representation of models on the substrate binding, neutralization, and transduc-
tion of lactic acid-facilitating aquaporins, AQP (left; structure model), formate-nitrite transporters,
FNT (center; PDB# 6vqq), and ammonium transporter/methylammonium permease/mammalian
Rhesus proteins, AMT/MEP/Rh (right; PDB# 1u7g). Key amino acid residues are shown as spheres
in the cartoons (backbone: sand; carbon: gray; nitrogen: blue).

The responsible feature in the FNT structure is the placement of a positively charged
lysine each, deep inside two vestibule regions that lead to the lipophilic constrictions
from either side of the membrane. Other than lactic acid-facilitating AQPs with a positive
amino-acid cluster on the external protein surface, the FNTs steer the weak acid anion by
charge attraction into an increasingly lipophilic protein environment. As a consequence, at
a certain point along the pathway, the decreasing permittivity of the dielectric environment
decreases the acidity of the substrate, leading to substrate protonation from the bulk and
allowing the neutralized weak acid to cross the constrictions (Figure 1, center) [26]. We
termed this mechanism the “dielectric slide” [27].

As non-flexible membrane proteins with an internal rigid and narrow substrate path-
way, the FNTs are clearly channel-like. Furthermore, the entry sites on both sides of the
membrane are permanently accessible to substrates. Such properties contradict the classical
definition of transport proteins, according to which a substrate is bound only at one open
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side, the cis side, followed by a large conformational change of the protein that opens up
the trans side for substrate release (secondary-active transporters are discussed in Section 3
and depicted in Figure 2). However, the FNT transport activity is equally efficient as that of
classical secondary-active monocarboxylate transporters, showing that the FNT class of
proteins represents a linking intermediate between channels and transporters.
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Figure 2. Contribution of the extracellular basigin (Bsg) Ig-domain to secondary-active MCT
lactate/H+ transport (structure PDB# 6lz0). Two oppositely charged domains of the IgI domain act
as a bivalent antenna for monocarboxylate substrate anions and co-substrate protons, increasing
inward transport velocity and capacity (left schematic). Cleavage of the extracellular basigin domain
by a protease promotes lactate/H+ export via MCT4 (right). Key amino acid residues are shown as
spheres in the cartoon (Bsg: pink; MCT1: sand; carbon: gray; nitrogen: blue; oxygen: red).

2.3. Weak Base Transport: Opposite Prerequisites and Requirements

Weak bases, such as ammonia (NH3) accept a proton at physiological pH, giving
rise to positively charged ammonium (NH4

+) which represents the predominant species.
Transmembrane facilitators for ammonium are present and conserved across all domains of
life, named the ammonium transporter/methylammonium permease/mammalian Rhesus
protein family (AMT/MEP/Rh) [28]. The proteins assemble as homotrimers at the level
of the cell membranes, with each protomer carrying a pore capable of passing neutral
ammonia; however, the protonation status of the substrate still appears to be debated.
The situation in terms of protein structures and substrate charge neutralization is highly
reminiscent of that discussed above for the AQPs and FNTs. However, contrary to weak
acid anions, in order to convert a cationic weak-base substrate into a neutral molecule, it
needs to release a proton rather than accept one.

A well-accepted model states that NH4
+ recruitment and deprotonation is achieved by

AMT/MEP/Rh proteins via a triad of aromatic amino acids, e.g., Phe107, Trp148, Phe215
in bacterial AmtB, in the periplasmatic vestibule (Figure 1, right) [29]. The electron-rich
aromatic environment facilitates NH4

+ binding by cation–pi interactions, and, at the same,
the lipophilicity of the residues promotes deprotonation of ammonium to form neutral
NH3. The neutral NH3 is compatible with the hydrophobic interior of the transduction
path. After release into the cytosol, ammonia will be immediately re-protonated (Figure 1).
Experimental studies on ammonia/ammonium transport are hampered by technical chal-
lenges related to the small size, background membrane diffusion, and the interconvertibility
of the substrate protonation species, depending on the pH situation on either side of the
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membrane. Therefore, conflicting reports are present in the literature, showing, for instance,
that proposed key residues—including the Phe107/Trp214/Phe215 triad [30] and two
conserved histidines in the center of the transport path [31]—could be mutated without a
loss of transport functionality, arguing that these amino acids are not essential. Details of
such debates are summarized in another review [32].

3. Chaperones of Transport Proteins Act as Local Attractors for Substrates

Chaperone proteins appear to be involved in additional processes besides their classi-
cal functions in the control of protein quality and folding, or the intracellular trafficking of
proteins to their proper cellular location. In this sense, the chaperone basigin of secondary-
active mammalian monocarboxylate transporters (MCT) has been identified to provide an
extracellular bivalent-collecting antenna for the substrate (mainly lactate) and the proton
co-substrate, shifting the directionality of transport inwards.

The MCT class of membrane proteins belongs to the solute carrier SLC16A family. It
shuttles lactate, pyruvate, and acidic ketone bodies across the cell membrane [33]. The
MCT1 and MCT4 isoforms are at the center of the mutually beneficial lactate transport
between the hypoxic, i.e., glycolytic, and the oxidative, i.e., lactate-consuming, cancer
cells (Warburg and reverse-Warburg effects) [34], as well as in the lactate shuttle between
glycolytic astrocytes and oxidative neurons in the brain [35]. Consequently, MCT inhibitors
are in clinical development for the treatment of certain types of cancer [36]. The trafficking
of MCT1 and MCT4 from the Golgi compartments to the cell membranes depends on
the presence of the chaperone protein, basigin (CD147) [37,38]. Basigin, and a second,
MCT2-associated chaperone, embigin [39], harbor a single transmembrane domain as a
membrane anchor and interaction site with the MCT [36]. The intracellular C-terminus of
basigin is short, whereas the extracellular part is composed of repeated immunoglobulin-
like (Ig) domains. The ubiquitously expressed splice-variant 2 of basigin harbors two
Ig-like domains named Ig-I and Ig-C2 [40]. The retina-specific variant 1 carries a third Ig-0
domain [41], and two shorter variants, 3 and 4, exist with only the membrane-proximal Ig-I
domain present.

A recently generated cryo-electron microscopy structure of the MCT1-basigin com-
plex shows that the Ig domains form a slightly open lid-like structure, forming a micro-
compartment above the extracellular transporter entry site (Figure 2, left) [36]. MCT1
protein structures were obtained in the presence of small-molecule MCT inhibitors that
locked the transporter either in the outward-open (inhibitors AZD3965 and BAY-80029)
or the inward-open conformation (7ACC2) [36]. By expression of basigin-MCT1 fusion
proteins, we could show that the presence of the basigin Ig-I domain increased the achiev-
able concentration of intracellular lactate, i.e., the transport capacity, by a factor of 4–5 [40].
We were able to assign this effect to two amino acid patches of opposite charge in the Ig-I
domain, i.e., a negative patch consisting of Glu114, Glu118, Glu120, Glu168, and Glu172
next to a positive patch with Lys108, Lys111, Lys127, Arg201, and Arg208. Replacing the
charged amino acid residues of either patch with neutral ones resulted in decreased trans-
port [40]. In conclusion, the Ig-I domain of basigin appears to act as a bivalent antenna for
lactate anions (positive surface patch) and for protons (negative patch). The resulting rise in
the local concentrations of substrate and co-substrate close to the MCT1 entry site enables
higher transport rates and increased transport capacity due to steeper transmembrane
gradients then present in the bulk.

The contribution of the basigin Ig-I domain to MCT-facilitated lactate/H+ transport is
of (patho-)physiological relevance, as shown by a study that identified a transmembrane
protease that is expressed in human lung squamous cell carcinomas and cleaves off the
extracellular domain of basigin (Figure 2, right) [42]. The authors found that removal of the
basigin Ig domains shifts the directionality of MCT4-associated lactate transport by a factor
of 4, increasing the malignancy of the tumor cells.
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4. Carbonic Anhydrases Contribute Non-Catalytically to Proton-Driven Transport

Members of the carbonic anhydrase family (CA), especially the isomers CAII, CAIV,
and CAIX, have been found to associate with a variety of transporters, including the MCTs.
Due to their enzymatic function, i.e., reversible hydration of CO2 into bicarbonate and
protons, CAs have physiological roles in the acid/base equilibrium of the cells, which is
also of relevance in the context of cancer. Unexpectedly, unrelated to their catalytic enzyme
properties, CAs were found to be involved in metabolite transport [43].

4.1. Extracellular CAIV

The extracellular isoform CAIV is fixed to the surface of the cells by a GPI anchor
at its C-terminus (Figure 3) [44]. Additionally, it forms an electrostatic interaction via a
positively charged histidine to a glutamate in the Ig-C2 domain of basigin [45], or to an
aspartate/arginine ion pair of embigin [39,45]. The association of CAIV via embigin to
MCT2 has been shown to increase the lactate transport. Neither application of the CA
inhibitor 2-benzothiazolsulfonamid, EZA, nor impairment of the catalytic activity of CAIV
by point mutation, diminished the positive effect on the MCT2 transport [39]. The authors
concluded from the data that the CAIV contribution is non-catalytical but related to a
proton antenna function. Related studies on CAIV in connection with MCT1 and MCT4 via
basigin were in line with the CAIV-embigin-MCT2 system [46,47].
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Figure 3. MCT transport supported by CA proton antennae. The extracellular isoforms CAIV or
CAIX, and the intracellular CAII, contribute non-catalytically to MCT transport by channeling protons
to and from the MCT entry sites according to a “push and pull principle”.

4.2. Extracellular CAIX

The extracellular isoform CAIX is mainly expressed in the stomach and intestine.
Structural studies showed that the CAIX protein structure comprises a globular catalytic
domain and a membrane-anchoring helix at the C-terminus. CAIX further assembles into
homodimers (Figure 3). In the same way as CAIV, CAIX can form a complex with the
chaperone basigin via interaction of a histidine and the before-mentioned glutamate in
the Ig-C2 domain [48]. The effect of CAIX on associated basigin/MCT was measured on
the cellular level by knockdown of CAIX expression in cancer cell lines, which decreased
lactate transport. Again, the involvement of CAIX in MCT transport was shown to be
non-catalytical, supporting the hypothesis of a proton-collecting antenna function [48,49].
Since the transcription of the CAIX gene is upregulated in hypoxic tumor cells by the
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hypoxia-induced transcription factor HIF-1α, CAIX may act as a malignancy factor by
enhancing the release of lactate [50].

4.3. Intracellular CAII

The intracellular isoform CAII interacts directly with MCTs. It binds via a histidine to
clusters of glutamate residues in the intracellular C-terminal region of the MCT1 [51] and
MCT4 (Figure 3) [52]. However, it does not appear to interact with MCT2 [39]. As shown
for the extracellular CAs, abolishment of the catalytic activity of CAII by inhibitors or point
mutation maintained the positive effect on MCT-facilitated lactate transport [53,54]. Com-
putational models [55] and confirming experiments using respective CAII point mutants
established that two specific negatively charged amino acid residues, Glu69 and Asp72, are
responsible for the supply of protons to the MCT or removal, respectively, depending on
the current export or import directionality [53].

4.4. “Push and Pull Principle” of Fully CA-Decorated MCT

When both an extracellular and an intracellular CA concurrently interact with an
MCT, the complex may act according to a “push and pull principle” [46]. The CA on the
membrane side with the higher proton concentration “pushes” the collected protons from
the bulk or membrane surface towards the transporter entry site, while the oppositely
positioned CA will expedite the transport process by “pulling” from the other side (Figure 3).
Such a setup would result in higher proton-driven lactate transport velocities than a
system that solely depends on the diffusional provision of its substrates. Ordered pathway
structures may further help in the dissipation of protons away from the transporter exit,
providing connections with the membrane surface (see Section 6) or other proton acceptors
for dispersion [56,57].

5. Transporter-Associated Enzymes Provide Substrates in Place, Enhancing Transport

The directionality of the chemical equilibrium reaction catalyzed by CAs depends on
the substrate availability. This means CA activity can either generate or use bicarbonate
and protons:

CO2 + H2O � HCO3
− + H+ (1)

Transporters that use bicarbonate or protons as substrates or co-substrates can, thus,
be affected in their transport activity if a CA enzyme in the proximity creates a local
enrichment of the respective molecules.

5.1. CA Activity Increases Activity of Proton-Driven Lactate Transport by Locally Generating Protons

Physiological studies suggested that not only the proton antenna function but also
the enzymatic activity of CA contributes to MCT-facilitated lactate transport, e.g., in as-
trocytes [58] and skeletal muscles [59]. In these cases, the cytosolic acidification derived
from lactate/H+ influx could be blocked by the inhibition of the extracellular CA activity,
presumably extracellular CAIV, by more or less specific small-molecule inhibitors. Such
data show the complexity of a system in which protons are generated, shuttled, and used as
co-substrates by the various involved protein components, because direct proton transfers,
and indirect pH effects or buffering by the bulk, intertwine and need to be resolved for
specific assignment.

5.2. CA Activity Increases Activity of the Na+/H+ Exchanger by Locally Generating Protons

The intracellular CAII has further been shown to interact with the C-terminus of the
ubiquitous Na+/H+ exchanger, NHE [60,61], i.e., a transporter required for intracellular pH
homeostasis. The interaction appears to increase the activity of the NHE, requiring catalytic
activity of CAII in order to provide protons to the exchanger (Figure 4, left). Another report
states that the NHE activity was also affected by the activities of extracellular CAIV [62]
and CAIX [63]. The role of the extracellular CAs in the process was attributed to the swift
dissipation of the protons at the exit site of the exchanger.
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5.3. CA Activity Increases HCO3
− Transport by Locally Generating Bicarbonate

CA catalytic activity is also involved in the transmembrane transport of bicarbon-
ate [64–66]. Specifically, the Na+/HCO3

− co-transporter, NCB, interacts with extracellular
CAIV, which generates bicarbonate close to the transporter entry site (Figure 4, center). The
provision of substrate increases transport [67]. A supportive role has been assigned to CAII
located at the opposite, intracellular side of the membrane due to its enzymatic activity in
the dissipation of bicarbonate at the exit site of the transporter [68,69].

In a similar fashion, the Cl−/HCO3
− exchangers, AE, were stated to benefit from the

activity of CAIX by removing bicarbonate exported out of the cell from the antiporter exit
site [70]. The intracellular CAII isoform possibly binds to AEs providing bicarbonate to the
entry site [71–73]. However, several groups challenge the notion that CAII interacts directly
with NCB or AE [74–77] or contributes to transport via NCB by generating bicarbonate [77].
Details of the matter are discussed elsewhere [64,65,78].

5.4. Channel-Enzyme Fusion Proteins Generate and Compartmentalize Substrates as a Single Entity

Fusions on the genetic level between transmembrane facilitators and catalytically
active enzymes that generate the substrate in place are rare [79]. However, in situations
where the swift release of a compound, e.g., a toxin, is beneficial or even vital for a cell, this
concept enables confinement of the compound and extrusion in an energy-saving fashion
by generating a steep local transmembrane gradient. In this sense, AQP channels of the
aquaglyceroporin type from soil and marine bacteria, e.g., Mycobacterium tuberculosis or
Salinispora tropica, that carry C-terminally fused small arsenate-reductase domains (Figure 4,
right) have been identified and studied [80]. The bacteria cannot prevent the uptake from
the environment of toxic arsenate ions, AsO4

−, via phosphate transporters. For detoxifi-
cation, arsenate will be reduced by arsenate reductase enzymes, forming arsenite, which
is the anion of arsenous acid. Its very weak acidity (pKa 9.2) leads to immediate protona-
tion, generating neutral As(OH)3 under physiological pH conditions. As(OH)3, in turn, is
structurally similar to glycerol and can pass the aquaglyceroporin-type channel domains
of the fusion proteins. The simplicity of the substrate generation/extrusion mechanism
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by channel–enzyme fusions is striking. However, evolution apparently preferred more
complex systems consisting of several interacting proteins, as previously described in this
review, probably due to the higher degree of potential adjustability and regulation.

6. Lipids of the Cell Membranes Facilitate Proton-Coupled Transport

Transmembrane transport proteins are embedded in the lipidic environment of the
cell membranes, and transport properties in terms of kinetics and selectivity of several
membrane proteins have been shown to be modulated by the lipid composition. In the
scope of this review, the polar membrane surfaces have been found to facilitate the col-
lection and swift transfer of protons to associated membrane proteins (see Figure 3) [56].
Specifically, the more proximal lipids within a 30–60 nm2 area around proton-accepting
proteins increase protonation events [81]. However, long-range proton transfers of about
100 nm were also measured, when proton gradients were generated along the membrane
by transmembrane transporters acting as a sink [56].

Different proton-diffusion models were proposed to describe the experimental out-
come [82,83]. Accordingly, the protons may bind directly to the polar lipid head groups
and hop along [84], or they may diffuse in the layer of water molecules interfacing the bulk
with the membrane lipids [85].

Together, the proton-collecting function of the two-dimensional membrane surface
from the three-dimensional aqueous bulk and delivery to transport proteins further facili-
tates transmembrane proton transport and proton-coupled transport.

7. Conclusions

The transmembrane transport of weak acid and base metabolites depends on several
interconnected factors, i.e., the availability of the actual substrate, the pH conditions that
determine the charge of the substrate by protonation, the lipid environment, and the pres-
ence or enzymatic activity of associated proteins that directly shuttle protons or indirectly
feedback on each level. This unfolding degree of intricacy is the product of evolving adapta-
tions to the various situations a cell has to deal with in its individual physiological context.
Such complexity should be appreciated and considered when studying the physiological
implications of weak acid and base transport functionality. From a therapeutic point of
view, these strong interdependences may further create more angles of attacks in the pursuit
of target proteins for modulating transport activity.
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