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Abstract: Residual dipolar couplings (RDCs) are increasingly used for high-throughput NMR-based
structural studies and to provide long-range angular constraints to validate and refine structures of
various molecules determined by X-ray crystallography and NMR spectroscopy. RDCs of a given
molecule can be measured in an anisotropic environment that aligns in an external magnetic field.
Here, we demonstrate the first application of polymer-based nanodiscs for the measurement of
RDCs from nucleic acids. Polymer-based nanodiscs prepared using negatively charged SMA-EA
polymer and zwitterionic DMPC lipids were characterized by size-exclusion chromatography, 1H
NMR, dynamic light-scattering, and 2H NMR. The magnetically aligned polymer-nanodiscs were
used as an alignment medium to measure RDCs from a 13C/15N-labeled fluoride riboswitch aptamer
using 2D ARTSY-HSQC NMR experiments. The results showed that the alignment of nanodiscs is
stable for nucleic acids and nanodisc-induced RDCs fit well with the previously determined solution
structure of the riboswitch. These results demonstrate that SMA-EA-based lipid-nanodiscs can be
used as a stable alignment medium for high-resolution structural and dynamical studies of nucleic
acids, and they can also be applicable to study various other biomolecules and small molecules
in general.

Keywords: nanodiscs; NMR; magnetic alignment; RNA; residual dipolar couplings

1. Introduction

Residual dipolar couplings (RDCs), providing long-range angular information within
a molecule, are increasingly used to measure atomic-resolution structural and dynamic
features for a variety of molecules [1–4]. They are also useful in validating and refining
biomolecular structures determined by X-ray crystallography and nuclear magnetic res-
onance (NMR) spectroscopy [5]. RDCs are through-space interactions; however, unlike
NOEs (1–5 Å) and PREs (10–30 Å), they report on structural information irrespective of
distance since RDCs arise from orientations between two magnetically active nuclei with re-
spect to a strong, uniform magnetic field present throughout the sample [6]. However, when
molecules tumble isotropically in solution conditions, dipolar couplings are averaged to
zero and render such structural information inaccessible. Therefore, a special medium that
can partially restrict a molecule’s isotropic tumbling and induce weak alignment in an exter-
nal magnetic field is needed to capture residuals of dipolar couplings [7]. Various alignment
media, including bicelles [8–11], Pf1 phage [6,12–16], flagella [17], constrained gels (poly-
acrylonitrile) [18], graphene oxide grafted with polymer brushes [19], and most recently,
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polymer-based lipid-nanodiscs (polymer-nanodiscs) [20,21], have been used to measure
RDCs for various biomolecules [1,2,22,23]. Although bicelles are commonly used as an
alignment medium in NMR studies [24–29], they can be unstable due to detergents [22]. In
contrast, polymer-nanodiscs, similar to protein/peptide-based nanodiscs [30–39], comprise
a planar lipid bilayer surrounded by a polymer belt and can be stable due to a detergent-free
environment [40,41]. The ability to use aligned and 90◦-flipped polymer-based nanodiscs is
another unique advantage [21]. In addition, polymer-nanodiscs are stable against a broad
range of pH conditions and resistant to aggregation by divalent metal ions [42–44].

Previous studies have demonstrated that a transition from the gel (isotropic) to liquid–
crystalline (anisotropic) phase, when the temperature is raised above the phase transition
temperature (Tm) of lipids, renders magnetic alignment of nanodiscs such that the bilayer
normal is oriented perpendicular to the external magnetic field [38,42,45–50]; in addition,
a recent solid-state NMR study demonstrated the magnetic alignment of peptoid-based
nanodiscs [51]. When water-soluble molecules are placed in liquid-crystalline nanodiscs,
their motion is partially restricted due to the anisotropic environment induced by the
aligned nanodiscs [21]. Hence, the polymer-nanodiscs can be used to measure RDCs for
various molecules, including small molecules, proteins, and nucleic acids. We have previ-
ously reported the use of polymer-nanodiscs for RDCs measurement from water-soluble
proteins [20,21]. Here, we report the first demonstration of the application of styrene-maleic
acid-ethylamine (SMA-EA)-based 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)-
nanodiscs for RDC measurement from the Bacillus cereus fluoride riboswitch aptamer, a
non-coding RNA that detects cellular fluoride and activates gene expression involved in
fluoride toxicity response [52,53]. The measured RDCs are in excellent agreement with the
previously determined solution structure of the riboswitch [54], indicating the suitability of
polymer-nanodiscs for high-resolution structural studies of nucleic acids.

2. Materials and Methods
2.1. Preparation of DMPC Liposomes

A total of 120 mg of DMPC (Avanti Polar Lipids; AL, USA) was taken in a 15 mL
centrifuge tube and dissolved in a solvent mixture containing 1:1 v/v CH3OH:CHCl3
(600 µL each) (Sigma-Aldrich; St. Louis, MO, USA). The organic solvents were evaporated
by applying a low-pressure N2 gas (20 min) onto the lipid–solvents mixture. (Caution: N2
gas at high pressure can spill the sample out of the centrifuge tube). The lipid mixture was
then subjected to a vacuum for 1 h to remove all the residual solvents. Finally, the liposome
solution was prepared by resuspending the solvent-free lipid mixture in a 10 mM potassium
phosphate buffer (pH 7.4) containing 50 mM NaCl, and by subjecting it to the freeze–thaw
cycle three times (using liquid N2 and hot water (~70 ◦C)) and vortexing for 5 s.

2.2. SMA-EA Polymer

The SMA-EA polymer was synthesized, purified, and characterized using the pub-
lished protocol [42].

2.3. Preparation of Polymer-Nanodiscs

The SMA-EA stock solution was prepared by dissolving the lyophilized polymer in
a 10 mM potassium phosphate buffer (pH 7.4) containing 50 mM NaCl at 100 mg/mL
concentration. The pH of the solution was checked and adjusted to ~7.4 by adding HCl
before using it in nanodisc preparation.

The liposome solution was mixed with SMA-EA solution at a 1:1 (w/w) lipid: polymer
ratio and incubated at 30 ◦C overnight. Then, the nanodiscs solution was purified by
size-exclusion chromatography (SEC) using fast protein liquid chromatography (FPLC;
GE Healthcare, Chicago, IL, USA) and 10 × 300 Superdex 200 column (GE Healthcare).
The fractions (detected at 254 nm) containing polymer-nanodiscs were combined and
concentrated to 100 mg DMPC/mL using a 100 kDa cut-off Amicon Centricon membrane
filter (Burlington, MA, USA). The polymer-nanodiscs were stored under −20 ◦C. When
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needed, the nanodiscs sample was warmed up to room temperature before the addition of
RNA and used for NMR measurements.

2.4. Characterization of SMA-EA Nanodiscs

2.4.1. 1H NMR

The 1D 1H and 2D 1H/1H NOESY NMR spectra were recorded on a Bruker 500 MHz
NMR spectrometer at 298 K. NMR spectra of SEC-purified polymer-nanodiscs (before
concentrating the sample for RDC measurements) were recorded in a 10 mM potassium
phosphate buffer (pH 7.4) containing 50 mM NaCl, and processed using Topspin (ver-
sion 3.6.2, Bruker, Billerica, MA, USA) and calibrated to water proton peak.

2.4.2. Dynamic Light Scattering (DLS)

DLS experiments were performed at 25 ◦C using Wyatt Technology®, DynaPro®,
NanoStar®, and a 1 µL quartz MicroCuvette. The DLS data were collected on the SEC
purified polymer-nanodiscs.

2.5. NMR Sample Preparation

Uniformly 13C- and 15N-labeled fluoride riboswitch aptamer samples were prepared
as described previously [54]. Briefly, samples were transcribed in vitro using T7 polymerase
based on DNA purchased from Integrated DNA Technologies (IDT), Inc., (Coralville, IA,
USA). The transcribed samples were ethanol precipitated and gel-purified under denaturing
conditions, eluted using the Elutrap system (Whatman), and subsequently purified using
a Hi-Trap Q column (GE Healthcare). The purified samples were exchanged to 10 mM
sodium phosphate (pH 6.4) (containing 50 mM KCl, 2 mM MgCl2, 10 mM NaF, and 50 µM
EDTA) and concentrated to ~0.5–1.0 mM using Amicon filtration systems (Millipore). For
preparing samples for residual dipolar coupling (RDC) measurements, the lyophilized
powder of 13C- and 15N-isotope-labeled RNA was first dissolved in 100 µL of a 10 mM
potassium phosphate buffer (pH 7.4, containing 50 mM NaCl) and followed by the addition
of 180 µL of polymer-nanodiscs solution (100 mg/mL of lipids). A total of 10% of 2H2O
was included in all NMR samples.

2.6. RDC NMR Measurements

The NMR experiments for RDC measurements were carried out on a Varian VNMRS
600 MHz (1H) spectrometer equipped with a H/C/N cryogenically cooled probe. The NMR
experiments were recorded in isotropic (288 K) and anisotropic (308 K) conditions. RDCs
were extracted using 2D ARTSY-HSQC experiments with the reference and attenuated
spectra were recorded in an interleaved fashion [55]. The amplitude-encoding ARTSY
delay was optimized empirically for each experiment and is reported in Table S1, along
with acquisition parameters. After recording the spectra in the isotropic condition with the
sample at 288 K, the probe temperature was increased to 308 K to allow the alignment of
nanodiscs in the magnetic field. In addition, 1D deuterium NMR spectra were recorded
using the same sample before and after acquiring the 2D ARTSY-HSQC data.

RDCs for the H1-N1 and H3-N3 imino groups were recorded using an ARTSY BEST-
HSQC pulse program that uses band-selective 1H pulses and leaves the water magneti-
zation unperturbed [55]. RDCs for H6-C6, H8-C8, H2-C2 aromatic groups, and H5-C5
and H1′-C1′ groups were recorded using two separate ARTSY-HSQC experiments that
employ band-selective 13C pulses to allow for the removal of homonuclear 13C-13C cou-
plings in the 13C-dimension. RDCs for the remaining ribose groups were obtained using an
ARTSY-HSQC experiment with constant-time 13C-evolution to remove homonuclear 13C-
13C couplings, with the constant-time delay set to 28.6 ms. NMR spectra were processed
using NMRPipe [56].
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2.7. Measuring Nanodisc-Induced RDCs in Holo Fluoride Riboswitch

Two-dimensional NMR spectra were viewed and analyzed using NMRFAM-Sparky
v3.190 [57]. Assigned peak intensities for isotropic reference (IIR), isotropic attenuated (IIA),
anisotropic reference (IAR), and anisotropic attenuated (IAA) spectra per chemical group set
(C2H2/C6H6/C8H8, C1′C1′/C5H5, N1H1/N3H3) were extracted. Intensity values were
used to calculate RDC values (D) according to the following Equation (1):

D = ± 2
πT

(
cos−1 IAA/IAR

2
− cos−1 IIA/IIR

2

)
(1)

where the mixing time, T, was 5.0 ms for C2H2/C6H6/C8H8, 6.0 ms for C1′H1′/C5H5,
and 11.5 ms for N1H1/N3H3. Values from severely overlapped peaks were omitted from
further analysis, resulting in a total of 84 nanodisc-induced measured RDCs. A subset of
total RDC values (N = 73), omitting the values from the flexible region J1/2 (residues A17,
U18, A19, A20, A21, C22), was fit to the lowest energy structure (PDB structure 5KH8)
using the program RAMAH [58] to generate the alignment tensor, back-calculate RDCs,
and quality (Q) factors [59]. Back-calculated RDCs per alignment medium set were plotted
against measured RDCs for both nanodisc- and phage-induced sets. Errors for nanodisc
and phage RDCs were estimated from RAMAH, scaling approximately to the range of each
RDC set (4 Hz for nanodisc, 2 Hz for phage).

3. Results and Discussion

Since RNA is a polyanion, negatively charged SMA-EA-based DMPC-nanodiscs were
used to avoid non-specific coulombic interactions between RNA and the polymer belt
of the nanodisc [60,61]. The polymer-nanodiscs were prepared using SMA-EA polymer
and DMPC at a 1:1 (w/w) ratio. The turbid DMPC liposome solution turned transparent
after mixing and incubating with SMA-EA overnight at ~30 ◦C, suggesting the forma-
tion of aqueous soluble polymer-nanodiscs (Figure 1A). The polymer-nanodiscs sample
was then purified by SEC. The SEC chromatogram showed two major peaks: the peak
between 9–13.5 mL corresponds to polymer-nanodiscs, and the peak between 14–20.5 mL
corresponds to excess-free SMA-EA polymer (Figure 1B). The single symmetric elution
peak observed in SEC is an indication of size homogeneity for the nanodiscs. Nanodiscs
with such size homogeneity are suitable for high-resolution structural studies of membrane
proteins by cryo-EM and NMR spectroscopy. Polymer-nanodiscs were then characterized
by 1H NMR under isotropic conditions (~15 mg/mL). The 1H NMR spectrum showed
peaks from acyl-chain protons (0.3–0.7 ppm), characteristic quaternary ammonium protons
(3.22 ppm) from DMPC lipids, and a broad peak from the aromatic styrene-ring of SMA-
EA (6.4–7.6 ppm), indicating the presence of SMA-EA polymer and the DMPC lipids in
the SEC-purified sample (Figure 1C). A 2D NOESY spectrum showed internuclear NOEs
between the SMA-EA aromatic group and DMPC acyl-chains (Figure S1), confirming the
formation of SMA-EA-DMPC assemblies. The size of polymer-nanodiscs was estimated
by dynamic light scattering (DLS) at a DMPC concentration of 3 mg/mL, reporting a
hydrodynamic radius of ~10.5 ± 1 nm (Figures 1C and S2). The excess-free polymer in
the sample (14–20.5 mL of SEC chromatogram (Figure 1B)) was confirmed by 1H NMR
(Figure S1).

The lyophilized powder of fluoride-bound 13C/15N-labeled fluoride riboswitch ap-
tamer was dissolved in a 10 mM potassium phosphate buffer (pH 7.4), 50 mM NaCl, and
added to the SEC-purified SMA-EA nanodiscs sample. The magnetic alignment of nan-
odiscs was confirmed by deuterium NMR (Figure 2A). At 288 K (below the Tm of DMPC
(~24 ◦C)), the deuterium NMR spectrum showed a single peak, indicating the isotropic
nature of nanodiscs (Figure 2A (bottom) and Figure 2B). In contrast, at 308 K (above Tm), a
doublet with a residual quadrupolar coupling (RQC) value of ~8 Hz was observed, indi-
cating the magnetic alignment of polymer-nanodiscs in a strong external magnetic field
(Figure 2A (top) and Figure 2C).
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chromatogram of the purification of polymer-nanodiscs prepared using a 1:1 (w/w) polymer: lipid 
ratio. The elution peaks highlighted in blue (9–13.5 mL) and gray boxes (14–20.5 mL) are from pol-
ymer-nanodiscs and free polymer, respectively. The fractions covered within each box were com-
bined before characterization. ‘*’ indicates the uncharacterized peaks. (C) 1H NMR spectrum show-
ing the characteristic peaks from DMPC and polymer labeled with assignments. The spectrum was 
recorded at 298 K with a DMPC concentration of ~15 mg/mL. (D) DLS profile of polymer-nanodiscs 
showing a hydrodynamic radius of ~10.5 ± 1 nm recorded at 32 °C using a ~3 mg/mL concentration 
of polymer-nanodiscs. 
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Figure 1. (A) An image of DMPC liposome solution without (left-side; turbid solution) and with
(right-side; transparent solution) SMA-EA polymer; SMA-EA chemical structure is shown. (B) SEC
chromatogram of the purification of polymer-nanodiscs prepared using a 1:1 (w/w) polymer: lipid
ratio. The elution peaks highlighted in blue (9–13.5 mL) and gray boxes (14–20.5 mL) are from
polymer-nanodiscs and free polymer, respectively. The fractions covered within each box were
combined before characterization. ‘*’ indicates the uncharacterized peaks. (C) 1H NMR spectrum
showing the characteristic peaks from DMPC and polymer labeled with assignments. The spectrum
was recorded at 298 K with a DMPC concentration of ~15 mg/mL. (D) DLS profile of polymer-
nanodiscs showing a hydrodynamic radius of ~10.5 ± 1 nm recorded at 32 ◦C using a ~3 mg/mL
concentration of polymer-nanodiscs.

To determine one-bond RDCs for different 13C-1H and 15N-1H pairs of nucleotides
in fluoride riboswitch aptamer (Figure 3A,B), a series of 2D ARTSY-HSQC NMR experi-
ments [55] (listed in Table S1) were recorded at 288 K (isotropic) and 308 K (anisotropic).
Each ARTSY spectrum was acquired twice in an interleaved manner, yielding two separate
spectra after processing, where the first one corresponds to the reference spectrum and the
second corresponds to the attenuated spectrum. In the attenuated spectrum, the intensity
of peaks is modulated by the strength of the coupling (scalar, J, and dipolar, D). After
data processing, J or J + D values were obtained by taking the ratio of reference spectra
intensities over the attenuated spectra. Finally, the RDCs were obtained by subtracting the
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couplings measured under isotropic conditions from the anisotropic conditions. Previously
reported NMR assignments for the fluoride-bound state [54] were used to assign the cross-
peaks in ARTSY spectra (Figures 3C–E, S3 and S4). The RDC values for adenine (C2-H2,
C8-H8), guanine (N1-H1, C8-H8), uridine (N3-H3, C5-H5, C6-H6), cytosine (C5-H5, C6-H6),
and ribose (C1′-H1′) were extracted using an RD tool in NMRFAM-SPARKY software
(Figure 3C–E). In addition, the alignment of polymer-nanodiscs was found to be stable as
the 2H NMR spectrum recorded 5 days after the sample preparation showed no change in
the RQC value (~8.0 Hz) (Figure 2D). Therefore, the polymer-nanodiscs were stable during
the acquisition of all 2D ARTSY-HSQC NMR experiments for the RDC measurements.
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Figure 2. Magnetic alignment of polymer-nanodiscs in an external magnetic field. (A) Schematic of
the temperature-dependent isotropic (bottom) and magnetic alignment (top) of polymer-nanodiscs.
(B–D) Deuterium NMR spectra of the polymer-nanodiscs at 288 K under isotropic condition (B), and at
308 K under aligned (day 1 (C) and day 5 (D)) conditions. The polymer-nanodisc sample was prepared
using ~64 mg/mL DMPC concentration in 10 mM potassium phosphate buffer (pH 7.4) containing
50 mM NaCl, and the spectra were recorded using a Varian VNMRS 600 MHz NMR spectrometer.
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Figure 3. (A) Secondary structure of the fluoride riboswitch aptamer from B. cereus, color-coded by
region. (B) Chemical structures of RNA nucleotide moieties. RDCs were measured for the highlighted
(green) atom pairs. (C–E): Reference (left-side column) and attenuated (right column) 2D ARTSY-
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All NMR spectra were recorded in the presence of the magnetically aligned polymer-nanodiscs
medium. The sample was made up of ~64 mg/mL DMPC in 10 mM potassium phosphate buffer
(pH 7.4) and 50 mM NaCl. The NMR data were collected on a Varian VNMRS 600 MHz NMR
spectrometer operated with the probe temperature of 308 K.
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A total of 84 RDCs were measured for the fluoride-bound fluoride riboswitch aptamer
in polymer-nanodiscs, where severely overlapped peaks were omitted (Figure 4A,B). It
was previously shown that the fluoride riboswitch aptamer adopts identical solution struc-
tures in the presence and absence of fluoride, where an excellent correlation was observed
between RDCs measured in apo and holo riboswitches with Pf1 phage as the alignment
medium [54]. To evaluate the quality of the nanodisc-induced RDCs, we employed the pro-
gram RAMAH [58] and carried out order tensor analysis using the apo- fluoride riboswitch
aptamer structure (PDB: 5KH8) [54]. Here, a subtotal of 73 nanodisc-induced RDCs was
used, where RDCs from the flexible region J12 (Figure 4A; residues A17, U18, A19, A20, A21,
C22) were excluded. An excellent agreement between the measured and back-calculated
RDCs was observed with a quality (Q) [59] factor = 14.98% (Figure 4C), which is consistent
with a similar RAMAH analysis of previously measured Pf1-phage-induced RDCs of the
holo state [54] with Q factor = 14.79% (Figure 4D). A direct comparison between shared
RDCs measured from polymer-nanodiscs and those from Pf1 phage (N = 73; including J12)
revealed an anti-correlation with a correlation coefficient R2 of 0.97 (Figure 4E). Indeed, or-
der tensor analyses of these two sets of RDCs showed that the nanodiscs-induced alignment
is parallel to the magnetic field (Szz = +1.25± 0.01× 10−3), whereas the Pf1-phage-induced
alignment is perpendicular to the magnetic field (Szz = −0.77 ± 0.01 × 10−3). Overall,
the measured RDCs from polymer-nanodiscs are in excellent agreement with the RDCs
back-calculated from the structure and with similar accuracy to those measured from the
Pf1 phage medium. This finding successfully demonstrates the suitability of polymer-
nanodiscs as an alignment medium for structural studies on RNA and the reproducibility
of these measurements across different media [54]. The results also suggest that it is very
unlikely that the negatively charged RNA interacts with either negatively charged SMA-EA
or zwitterionic DMPC lipids.
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study (PDB: 5KH8) [54]. (B) Experimentally measured RDCs from polymer-nanodiscs alignment
medium. (C,D) Correlation of experimentally measured and calculated RDCs for polymer-nanodiscs
(C) and Pf1 phage (D) media. (E) Correlation of RDCs measured using polymer-nanodiscs and Pf1
phage alignment media.
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It is important to note that the charge of the polymer belt should be the same as the net
charge of the molecule to be studied at a given pH to avoid any non-specific electrostatic
interactions [20,21,60]. Therefore, nanodiscs prepared using a charged polymer cannot
be used to study protein–protein and protein–nucleic acid complexes that are stabilized
by electrostatic interactions [62]. On the other hand, non-ionic polymer-nanodiscs can
be suitable for studying such complexes constituting differently charged molecules, as
demonstrated for the membrane-bound redox complex composed of cationic cytochrome
P450 (CYP450) and anionic CYP450 reductase [63]. Another advantage is that the non-ionic
polymers do not absorb light in the UV region; therefore, they do not interfere with the
UV-based characterization of biomolecules unlike the SMA-based polymers [64]. We also
note that zwitterionic polymers may be another alternative to characterize biomolecules
with different net charges [65]. Previous studies have shown that magnetically aligned
polymer-nanodiscs are excellent tools for high-resolution NMR-based structural studies
of membrane proteins and cytosolic proteins [20,21,66]. Together, the results indicate the
power of polymer-nanodiscs to extract RDCs for high-resolution structure determination
of a wide range of biomolecules and to validate the reported biomolecular structures
determined by X-ray crystallography and NOE-based NMR studies.

4. Conclusions

In conclusion, this study demonstrated the application of polymer-nanodiscs as a new
weak-alignment medium to measure RDCs for nucleic acids using NMR experiments. It
has been shown recently that RNA can adopt alternative conformations upon protonation
to direct biological outcomes [67]. The stability of polymer-nanodiscs at low pHs [42–44]
would enable measuring RDCs as high-resolution structural constraints for pronated RNAs
that would be difficult to obtain using other widely used alignment media for nucleic
acids, such as Pf1 phage [68]. With their long-term stability, as indicated by deuterium
NMR, the polymer-nanodiscs can be used to record multi-dimensional biomolecular NMR
experiments that require longer-acquisition times. Furthermore, due to lipid-solubilizing
properties, SMA-EA can be used to directly isolate membrane proteins along with native
lipids [61,69], and its compatibility with divalent metal ions makes it suitable for studying
metalloproteins and metal-bound nucleic acids. Thus, the polymer-nanodiscs are excellent
tools for studying the conformation of membrane proteins, soluble proteins, and nucleic
acids (current study) and can even extend to characterize natural products and small-
molecule drug candidates in drug-development studies [70–73].

5. Patents

The authors declare that the SMA-EA polymer is US patented.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/biom12111628/s1, Figure S1: NMR characterization of polymer nanodiscs;
Figure S2: DLS analysis of polymer nanodiscs; Figure S3: 2D ARTSY NMR spectra of fluoride
riboswitch aptamer in magnetically aligned SMA-EA DMPC-nanodiscs; Figure S4: Different regions
of 2D ARTSY spectra of the fluoride riboswitch aptamer in magnetically-aligned SMA-EA DMPC
nanodiscs showing 1D slices for the assigned cross-peaks [54]; Table S1: List of 2D ARTSY-HSQC
NMR experiments performed on RNA in magnetically-aligned polymer-nanodiscs.
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