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Abstract: This paper presents HBcompare, a method that classifies protein structures according to
ligand binding preference categories by analyzing hydrogen bond topology. HBcompare excludes
other characteristics of protein structure so that, in the event of accurate classification, it can implicate
the involvement of hydrogen bonds in selective binding. This approach contrasts from methods
that represent many aspects of protein structure because holistic representations cannot associate
classification with just one characteristic. To our knowledge, HBcompare is the first technique with
this capability. On five datasets of proteins that catalyze similar reactions with different preferred
ligands, HBcompare correctly categorized proteins with similar ligand binding preferences 89.5% of
the time. Using only hydrogen bond topology, classification accuracy with HBcompare surpassed
standard structure-based comparison algorithms that use atomic coordinates. As a tool for implicating
the role of hydrogen bonds in protein function categories, HBcompare represents a first step towards
the automatic explanation of biochemical mechanisms.

Keywords: structural bioinformatics; function annotation; specificity annotation

1. Introduction

Exploring the space of protein structures with algorithms that compare molecular
shape can reveal structural similarities that point to shared evolutionary origins and bio-
logical functions. The nature of these observations is influenced strongly by the way in
which molecular structure is represented. Algorithms that represent protein structure as
a geometric arrangement of secondary structure elements [1,2] or as a collection of alpha
carbon coordinates [3,4] can reveal relationships between families of protein folds [5,6].
Comparisons of binding sites, represented as collections of atomic coordinates [7,8], molecu-
lar surface patches [9,10] or volumetric constructs [11], can identify proteins with similar
catalytic functions and different overall folds [12]. Representing binding site geometry or
electrostatic isopotentials as geometric solids can reveal differences in binding site geometry
and charge that identify mechanisms that alter binding specificity [13–16].

Existing representations integrate many aspects of protein structure, but none to our
knowledge focus exclusively on the topology of hydrogen bonds. Yet hydrogen bonds play
a central role in organizing tertiary structure and in governing the specificity of molecular
recognition. For this reason, we hypothesize that the topology of hydrogen bonds, alone, can
distinguish proteins with different binding preferences, even if they have the same overall
fold. To evaluate this hypothesis, we developed HBcompare, a deep learning algorithm for
comparing the topology of hydrogen bonds in protein structures.

The specific problem studied here begins with a superfamily of proteins that perform
the same catalytic function, which have been classified into subfamilies with different
binding preferences. The goal is to classify a new protein into one of these subfamilies
based on similarities in hydrogen bond topology. In such cases, the superfamily exhibits
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the same overall fold, so the topology of their hydrogen bonds is largely conserved. At the
same time, critical variations in hydrogen bonding patterns could lead to differences in
binding specificity that differentiate subfamilies in terms of preferred binding partners.
Correctly classifying a protein into one of the subfamilies requires a look beyond the shared
similarities of the superfamily to focus on differences that betray subfamily membership.

HBcompare describes the topology of hydrogen bonds in a protein structure using a
molecular graph, which we define in detail below. As a representation of protein structures,
graphs have been used frequently to describe spatial relationships between atoms, amino
acids and secondary structure elements (e.g., [17]) or protein structure prediction (e.g., [18]).
Rather than represent more aspects of protein structure, HBcompare is first to use graphs
that exclusively represent the topology of hydrogen bonds.

This exclusivity enables a novel capability: Since HBcompare atomistically considers
only hydrogen bond topology, the classification of a protein into a subfamily with specific
binding preferences is also predicting a role for hydrogen bond topology in the specificity
mechanism. That is, since only hydrogen bond topology is considered, it must be at least
related to the difference between categories. We call this feature "mechanism prediction",
and it cannot be performed with holistic methods. In the holistic case, multiple biophysical
mechanisms, such as atomic coordinates and electrostatic potentials, are used together in
a weighted fashion to distinguish between specificity categories. In such cases, a single
mechanism cannot be said to explain the distinction between categories.

The atomistic approach has useful applications. By suggesting a role for hydrogen
bonding, HBcompare generates explanations that a non-computational user can adapt into
experimental design. For example, if similarities in hydrogen bond topology justify the
classification of a protein structure into a category with well defined binding preferences,
then it is logical that experiments that mutate hydrogen bond donors and acceptors may
reveal the bonds that play an important role in recognition. Without that observation,
a much larger space of experimental redesigns must be considered.

Naturally, HBcompare is only a first step in creating possibilities for automatically
explaining binding mechanisms. Furthermore, a complete explanation may not always
possible, because some biophysical phenomena will co-occur with hydrogen bonds. For ex-
ample, a protein that lacks one side of a salt bridge differs from one with a complete salt
bridge because it might lack a hydrogen bond donor or because it might lack a charged
amino acid. We see HBcompare as one tool in an Analytic Ensemble that would eventually
be complemented by other methods—both holistic and atomistic—that focus on other
mechanisms, such as electrostatic isopotentials [16]. Together, these tools might assemble
explanations for mechanisms that achieve specific binding.

HBcompare classifies patterns of hydrogen bonds using graph convolutional networks
(GCNs), which make use of the symmetrically normalized graph Laplacian to compute
vertex embeddings and to evaluate vertex similarity [19]. Recent works [20,21] have shown
that GCNs are useful for automating feature learning from graph-structured data compared
to traditional methods, such as convolutional neural networks (CNN). HBcompare adapts
existing GCN approaches by constructing a molecular graph for each protein to aggregate
neighborhood information. As a result, HBcompare performs accurate graph classification
and avoids sensitivity to the input order of graph vertices, which can be a challenge for
existing methods.

In this paper, we evaluated the effectiveness of HBcompare for classifying protein
binding preferences on several protein superfamilies. Each superfamily was selected be-
cause it contained well defined subfamilies with different binding preferences, where
differences in specificity hinge on differences in hydrogen bonding patterns. These super-
families include groups of subfamilies from the tRNA-synthetases, the alpha-amylases,
and the serine proteases. Our computational results explore how accurately HBcompare
performed classifications consistent with experimentally established binding preferences.
We also examine how HBcompare would perform in a more holistic setting, integrated with
atomic coordinates, and compare its performance to existing methods on the same kinds of
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features. These results point to the importance of considering the distinct applications of
both holistic and atomistic techniques.

2. Methods
2.1. Constructing Molecular Graphs with HBondFinder

HBcompare represents hydrogen bond topologies using molecular graphs. We define a
molecular graph as an undirected graph G = (V, E, A). The nodes or vertices V = {vi}N

i=1
are atoms that are hydrogen bond donors and/or acceptors. The edges E are hydrogen bonds,
identified between one donor and one acceptor atom. Since donors and acceptors may be
positioned to participate in one of several possible hydrogen bonds, the resulting graph may
be more than a collection of disconnected donor-acceptor pairs. Finally, a weighted adjacency
matrix A describes the weights Aij of edges between nodes i and j.

To generate molecular graphs from protein structures, we developed HBondFinder,
which uses geometric criteria to determine the set of all possible hydrogen bonds. Beginning
with a standard chain from the Protein Data Bank [22], we prepare the data by first removing
all ligands, ions, hydrogens and water molecules. Hydrogens specifically are removed
because their positions are not always solved in an experimental crystal structure, leaving
some amino acids with incomplete protonation. Thus, for uniformity, we model the
positions of all hydrogens using the reduce tool from MolProbity [23], assuming biological
pH. We then use the element of each atom, its position within an amino acid and residue
names, which define the type of amino acid, to identify all atoms that are hydrogen bond
donors, donor hydrogens, hydrogen bond acceptors, and acceptor antecedants. These four
atoms appear in pairs on each end of the hydrogen bond. The nodes of the molecular graph
are defined by any atom that is a donor, acceptor, or both.

HBondFinder defines the edges of the graph by finding all donor-acceptor pairs that
satisfy our hydrogen bond criteria, which are inspired by the HBPlus program [24]. This
process is accelerated with a lattice-based geometric data structure [25] that allows us to
rapidly search for all atoms of a specific identity that are within a radius of a given point.
This search allows us to find all combinations of the four critical atoms of a hydrogen
bond: "D", the hydrogen bond donor, "H", the donor hydrogen, "A", the acceptor, and "AA",
the acceptor antecedent. From these combinations, we enforce our criteria: First, the D-A
distance must be within 3.9 Å, and the H-A distance must be within 2.5 Å. In addition,
the angles D-H-A, H-A-AA, D-A-AA, where the middle member is the node of the angle,
must all exceed 90 degrees. If these four atoms satisfy the constraints, then a hydrogen
bond could exist and we add an edge to the graph, and a weight of 1.0 to the adjacency
matrix, between donor and acceptor. All weights on the adjacency matrix are otherwise
zero. We refer to graphs with these binary weights as coordinate-free molecular graphs.

To compare the predictive value of coordinate-free molecular graphs to a maximally
similar representation that incorporates atomic coordinates, we also created a second kind
of molecular graph called a coordinate-based molecular graph. These graphs are identical
except that the edges recorded in the adjacency matrix, between donors and acceptors that
can form a hydrogen bond, are weighted by the Euclidean distance in angstroms.

2.2. HBcompare

Overview. We hypothesize that molecular graphs with similar topology and class
labels will describe proteins with similar binding preferences. These proteins are expected
to exhibit different numbers of atoms, different amino acids, different numbers of hydrogen
bond donors and acceptors, and also some variation in edge topology. The classification
task performed by HBcompare begins with a set of molecular graphs {G1, · · · , GM}, each
assigned a subfamily class label {yi}M

i=1. HBcompare performs whole-graph analysis on an
input graph Gi to learn an embedding eGi and predict its subfamily label yi (Figure 1).
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Figure 1. The HBcompare model. As input, HBondFinder takes protein structures and constructs the
feature matrix and graph representation. Next, these data are analyzed using GCN layers and their
results are concatenated to generate the output feature matrix, which is vectorized via graph pooling
and fed to a logistic regression (LR) classifier.

Consider the general multi-layer GCN model with the following propagation rule for
graph-structured data [19]:

X(l) = σ(ÂX(l−1)W(l)), (1)

where Â ∈ RN×N is the normalized adjacency matrix of the graph G with added self-
connections, i.e., Â = D−

1
2 (A + IN)D−

1
2 , D is the degree matrix, W(l) ∈ RD(l−1)×D(l)

is the
layer-specific weight matrix with trainable parameters, and σ(·) is a nonlinear activation
function. X(l−1) ∈ RN×D(l−1)

is the input of the l-th layer, and X(l) ∈ RN×D(l)
is the output

of the l-th layer. Naturally, X(0) is the initial node feature matrix.
In the following, we show how the propagation rule of GCN in Equation (1) can be

extended to multiplex models, thereby enabling HBcompare to learn graph representations
across multiple graphs with different orders and sizes of nodes.

Node feature construction. Unfortunately, the initial node features are not available.
To solve this issue, we notice that every node of a molecular graph is labelled a hydrogen
bond donor, acceptor, or both, we adopted the one-hot encoding strategy on node labels [26]
to construct the input node feature matrix X(0) ∈ RN×3.

Multi-GCN model. After the initial node representations are obtained, each molecular
graph can be represented by G = (V, E, A, X(0)). To explain how the multi-GCN model
works, we first analyze the propagation Equation (1) and factorize it into feature aggregation
(FA) and feature transformation (FT) following [27].

Feature aggregation. To learn the node representation X(l) of the l-th layer, in the first
step GCN follows the neighborhood aggregation strategy to smooth nodes’ representations
over a graph by

X̂(l) = ÂX(l−1), (2)

This means that the role of Â in GCN is to aggregate the neighborhood information of
a node for updating its embedding. This design of GCN is suitable for hydrogen bond data
analysis. First, the learning process and the ultimate classification of graphs with similar
topologies is performed independent of the order in which the nodes are described. Second,
the GCN approach is unaffected by graphs with sparse edges, where classification is more
difficult. Finally, noise in hydrogen positions, which may affect whether a hydrogen bond
is considered to exist near its length and angle limits, is also unlikely to affect classification.

Feature transformation. After FA, in the second step GCN conducts FT in the l-th layer,
which consists of linear and nonlinear transformations:

X(l) = σ(X̂(l)W(l)) (3)
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The weight matrix W(l) can adjust the output features, which is equivalent to feature
selection and combination. Intuitively, if the same weight matrix is used for different
graphs, then we can project them into the common feature space with the same dimension
to perform group analysis.

Based on the above analysis, we generalize the propagation rule in Equation (1) to the
following form for multi-graph embedding.

X(l)
i = σ(ÂiX

(l−1)
i W(l)), ∀i ∈ {1, 2, · · · , M} (4)

where Âi is the normalized adjacency matrix of the i-th graph Gi, X(l−1)
i and X(l)

i are its
corresponding input and output embeddings of nodes in the l-th layer, and W(l) is the
trainable weight matrix shared by all graphs.

To obtain the vector representation eGi of the entire graph Gi, a general and straight-
forward practice [28,29] is to aggregate the embedded node features of the last GCN layer.
However, the extracted information from each layer could also be useful to supplement the
graph structure—especially for the molecular graphs that are sparse and the initial informa-
tion of nodes is not rich. Thus, we adopt the concatenation strategy [30] to exploit features
from all layers at multiple scales to contribute to the characterization of the graph, and let
the classifier decide which of the features are useful. More specifically, we concatenate the
node features X(l)

i from all layers to get the final node representation matrix

Xall
i = [X(1)

i , X(2)
i , · · · , X(L)

i ], (5)

where Xall
i ∈ RNi×∑L

l=1 D(l)
, with each row corresponding to a node and each column

corresponding to a feature, and Ni = |Vi| is the number of nodes for the i-th graph Gi.
Whole-graph training. Based on the node representations, we are able to design

different task-specific loss functions to train the overall multi-GCN model in the same way
as of training GCN. Since for the protein family identification problem, we have access
to all nodes from the entire datasets and the node labels are available, we can adopt the
learning method in [20,31] to make full use of the node-level information and also capture
the substructures within each graph to improve classification accuracies. Specifically, given
the node label set Y for all nodes, the training process for multi-GCN is then formulated as:

min
W(1),··· ,W(L),Θ

Loss({Xall
1 , · · · , Xall

M }, Θ, Y), (6)

where Θ ∈ R∑L
l=1 D(l)×C is the linear classification matrix, C is the number of classes

in the classification problem, and Loss(·) is the cross-entropy loss function for multi-
class classification.

Graph embedding and classification. There are several ways to get the graph-level
outputs using node features, such as concatenation, mean pooling, and max pooling
operators [29]. In our task, graphs are not aligned across different subjects and each graph
may have an arbitrary number of nodes. Thus, the average pooling technique is used [30]
here to obtain the embedding eGi of the entire graph Gi, which allows us to eliminate
the dependence on the node order and size. Mathematically, for each graph Gi, we can
formalize the mean pooling of node features as

eGi =
1
Ni

∑
v∈Vi

[x(1)iv , x(2)iv , · · · , x(L)
iv ], ∀i ∈ {1, 2, · · · , M} (7)

Finally, we apply the logistic regression (LR) classifier based on the above whole-graph
embedding vectors {eGi}

M
i=1 and associated protein subfamily class labels {yi}M

i=1 as input
for prediction.
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2.3. Datasets Used in This Study

To evaluate HBcompare as a classifier, we constructed datasets based on protein
superfamilies with three criteria. First, we selected superfamilies that contained subfamilies
with distinct ligand binding preferences. Second, we selected only superfamilies and
subfamilies where differences in binding preferences are experimentally established to rely
on variations in hydrogen bonding patterns. Finally, proteins in each superfamily were
selected with the same overall fold.

These criteria enable our datasets to test the overall hypothesis. The first two criteria
are required for evaluating HBcompare as a classifier of hydrogen bonding topologies.
The third ensures that the classification task is not trivial, because subfamilies with differ-
ent folds have very different hydrogen bond topologies that can be easily distinguished.
The general properties of the constructed protein datasets are summarized in Table 1 and
details are described as below.

Table 1. Primary and Auxiliary data sets used in this study.

Dataset Superfamily
E.C. Class

Pivot
Structure Subfamily E.C.

Class
Number of
Structures

Primary-1
(P1)

Glycosidases
3.2.1.* 1aqm Alpha Amylase

Beta Amylase
3.2.1.1
3.2.1.2

30
30

Primary-2
(P2)

Serine Proteases
3.4.21.* 1ghz

Chymotrypsin
Trypsin
Elastase

Thrombin
Coagulation

factor Xa

3.4.21.1
3.4.21.4
3.4.21.36
3.4.21.5

3.4.21.6

40
40
40
37

39

Primary-3
(P3)

Aminoacyl-tRNA
Synthetases

6.1.1.*
6rlt

Ser-tRNA
Synthetase
Thr-tRNA
Synthetase

6.1.1.11

6.1.1.3

24

23

Auxiliary-1
(A1)

Serine Proteases
(subset) 1ggd Chymotrypsin

Trypsin
3.4.21.1
3.4.21.4

40
40

Auxiliary-2
(A2)

Glycosidases,
Serine Proteases

(A1 + P1)
2xfy

Alpha Amylase
Beta Amylase
Chymotrypsin

Trypsin

3.2.1.1
3.2.1.2

3.4.21.1
3.4.21.4

40
40
30
30

Primary protein datasets. Our criteria identified the glycosidases, the serine proteases,
the aminoacyl-tRNA synthetases, and several subfamilies of each (Table 1). We used the
Enzyme Commission Classification index [32] of each subfamily to identify the protein data
bank (PDB) [33] structure of every constituent protein. To avoid the overrepresentation
of well studied proteins with many available structures, we removed one member of any
pair of proteins with greater than 95% sequence identity. We also removed any structures
labeled as mutants to avoid misclassifying proteins with deactivating mutations (Table 2).
After this filtration, molecular graphs were generated on the remaining structures using
the method in Section 2.1.

There are 303 structures across all primary datasets. 298 structures were derived from
X-ray crystallography, and five were produced by nuclear magnetic resonance spectroscopy.
Xray structure resolutions ranged from 0.81 Å to 3.5 Å, with an average of 2.05 Å, a median
of 2.0 Å, and a standard deviation 0.443 Å. 291 out of 303 structures have resolution less
than or equal to 3.0 A, and 261 out of 303 structures have resolution less than or equal to
2.5 A. The number of proteins observed in each subfamily of each dataset was generally
similar, requiring no additional treatment to to balance the datasets.

In Primary-1 (P1), the glycosidase superfamily proteins conserve an alpha/beta barrel
fold where they hydrolyze the glycosidic bonds of polysaccharide chains. The alpha and
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beta amylase subfamilies hydrolyze the intermediate and the terminal bonds, respectively,
of these chains, and recognize them in part through differences in hydrogen bonding [34,35].

In Primary-2 (P2), the PA clan of the serine protease superfamily exhibit a chymotrypsin-
like fold and catalyze the cleavage of peptide bonds. They share a catalytic triad at the
center of an extensive hydrogen bonding network that also plays a crucial role in stabilizing
substrate backbones for efficient substrate hydrolysis [36].

In Primary-3 (P3), the aminoacyl-tRNA synthetases catalyze the attachment of a
transfer RNA and an amino acid in preparation for protein translation. The seryl- and
threonyl-tRNA Synthetase share an anti-parallel beta-sheet fold [37] but coordinate their
amino acid substrates through different patterns in hydrogen bonding [38,39].

Auxiliary datasets. We also developed two variations on our original datasets to
evaluate the performance of HBcompare. Noting that the serine protease dataset has five
subfamilies, we developed a two-subfamily variation, using only the chymotrypsin and
trypsin subfamilies. This variation allowed us to evaluate how HBcompare performed
on a classification problems with different numbers of categories. We created a second
dataset to evaluate the scenario where some subfamilies have different folds, and thus
radically different hydrogen bond topologies. We combined the glycosidases and the serine
proteases into a single artificial superfamily. Using two subfamilies of each of the joined
superfamilies, we assess if the substantial differences between the superfamilies obscure
the subtler differences between subfamilies.

Table 2. Average properties of proteins in all datasets.

Dataset # Proteins # Subfamilies Avg. # Nodes Avg. # Edges

P1 60 2 826 578
P2 196 5 402 241
P3 47 2 901 573
A1 80 2 372 201
A2 140 4 568 363

2.4. Comparison with Existing Methods

Directly comparing HBcompare against existing methods is difficult, because HBcom-
pare uses only the topology of hydrogen bonds while existing methods for comparing
protein structures generally require atomic coordinates and other data. For this reason, we
performed two separate comparisons. First, to demonstrate the fitness of HBcompare as a
tool for coordinate-free graph classification, we compare the performance of HBcompare
against several modern graph classification techniques that also use only graph topology.
Second, to understand how classification by hydrogen bond topology performs relative
to classification by atomic coordinates, we modified all methods, including HBcompare,
to incorporate coordinate-based molecular graphs (see Section 2.1).

Our first comparison study includes a convolutional neural network (CNN), a graph
kernel-based comparison method (GK), and principal component analysis based methods
(PCA, 2DPCA, and PCA-NF). These methods use hydrogen bond topology alone via an
analysis of node adjacency matrices, but they have never been applied for the coordinate-
free comparison of hydrogen bond topologies. As such, they require modifications for
direct comparison. The need for small modifications demonstrates, qualitatively, a degree
of unsuitability for the problem of topological comparison relative to HBcompare, which
does not require such modification.

First, CNN, PCA and 2DPCA are sensitive to variations in input order, while GCNs
are not. To minimize this sensitivity, dataset proteins were structurally aligned to an
arbitrarily selected pivot structure to produce a 1-to-1 mapping between most amino acids,
ensuring that all proteins could be indexed in the same order. Structural alignments were
performed with ska [1], which is designed for identifying distantly related proteins with
subtle similarities in their folds. In this application, where we are considering datasets of
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closely related proteins with nearly identical folds, ska easily generated 1-to-1 mappings
appropriate for our comparison.

Second, CNN, PCA and 2DPCA also require input data to have the same number of
nodes, because the features they consider cannot have varying dimensionality. To resolve
this issue, we trimmed all molecular graphs to contain exactly 600 nodes, a quantity
chosen because the largest connected component of all graphs in our dataset would not be
altered. This trimming was possible without disrupting the topology of the graph because
all structures contain a large number of donors and acceptors that are uninvolved in a
hydrogen bond. In the molecular graph they are singleton nodes, and they contribute no
distinguishing information to the topological character of the graph overall. By removing
some of these nodes as necessary, we were able to trim larger graphs to exactly 600 nodes.
Graphs that had fewer than 600 nodes, such as those in P2, had singleton nodes added to
arrive at exactly 600 nodes.

Our second comparison study adds the protein structure comparison algorithm Ska
and the sequence comparison algorithm Clustalw [40]. These classic methods benchmark
the performance of HBcompare against existing comparison techniques in structural bioin-
formatics. GK, CNN, PCA and 2DPCA remain, but they are provided coordinate-based
rather than coordinate-free molecular graphs as input.

The CNN model [41] utilizes shared weights for common feature extraction, and also
local reception fields to take advantage of the local structure of input data. In our case, we
trained an end-to-end CNN model with fully connected network (FCN) classifier that takes
adjacency matrices A as input and outputs the corresponding graph classes.

The GK method [42] applies the Weisfeiler Lehman (WL) kernel to calculate similarities
between graphs [43,44]. Each vertex is labelled with its original vertex label and the label
of its neighbors, resulting in a representation of graphical neighborhoods of each vertex.
The WL kernel goes through n iterations until WL kernels are unchanged for successive
iterations. This kernel is then fed into a support vector machine (SVM) to measure the
graph classification performance.

The PCA method [45] for comparing graphs learns a common projection matrix via
singular value decomposition (SVD) by vectorizing the submatrices to perform feature
extraction. Similar to our HBCompare model, the extracted graph feature vectors are passed
to the LR classifier. Furthermore, to investigate the effectiveness of using one-hot encoding
labels as the node feature input for GCN, we also concatenate the features extracted by
PCA and the GCN node features. This variation, PCA-NF, adds the donor/acceptor status
of each graph node to the topology being classified.

The 2DPCA method [46] avoids vectorization of input submatrices by learning pair-
wise projection matrices for feature extraction and dimensionality reduction. The extracted
feature matrices are then vectorized and fed to the LR classifier for prediction.

The ska [1] algorithm finds corresponding secondary structure elements between two
proteins to build detailed correspondences between backbone atom coordinates, which
are required. The atomic correspondences are used to compute least root mean square
difference (RMSD) between backbone atoms. As a measure of geometric similarity, RMSD
is lower between proteins that are more similar. Using ska, we generated an all-vs-all
matrix of RMSD distances between all proteins of each dataset. Viewed as a set of column
vectors, this matrix is decomposed into training and test sets and the training sets are used
to train an LR classifier via five fold validation, similar to [47]. Finally, the test set is passed
to the classifier to form predictions.

Clustalw [40] is the classic sequence-based comparison algorithm that measures simi-
larity between the sequences of amino acids that define two proteins. It applies dynamic
programming to build correspondences between amino acid sequences and then measure
the percentage of sequence identity. Higher percentages are generated by protein pairs
with similar sequences of amino acids, and lower percentages indicate proteins that are
more different. These percentages are subtracted from 100 so that smaller values indicate
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more similar proteins, and then used to populate an all-vs-all matrix that is treated in the
same way as the RMSDs are for ska.

2.5. Implementation Details

All models were implemented in Python 3.6 with Tensorflow 1.15 for the deep learning
backend. The validation of our method was performed by randomly and uniformly
splitting each dataset and each subclass by a 4:1 ratio. The split results in a larger training
set (80% of the data) and a smaller test set (20% of the data). Since the subclasses were
split uniformly, the approximate balance of the subclasses in each dataset was preserved in
each split. The performance of all classifiers reported in Tables 3 and 4 is an average and a
standard deviation of accuracy, f1-score, and AUC-ROC computed from 10 such random
splits. We evaluate predictions as correct if the prediction agrees with the class label and
incorrect if the prediction does not agree with the label. We report accuracy (acc) as the
ratio of correct predictions to total predictions, Correct

Correct+Incorrect .
We performed parameter tuning on all methods using 5-fold validation on the training

set. Since this training set is held separate from the testing set, no data leakage influ-
ences the classifier performance reported. Training was performed for 50 epochs per fold,
and parameters associated with the highest accuracy fold were used for evaluation on the
corresponding test set. We used the Adam optimizer [48] and selected the learning rate lr
from {5e−4, 1e−4, 5e−3, 1e−3}.

For the design of HBcompare we considered between 1 and 6 GCN layers, and batch
sizes in the range {1, 2, 4, 8, 16}. To build the CNN model, we varied the number of filters
in the set {6, 12, 18, 24, 30}, and the number of strides in the set {1, 2, 4, 8, 16}. The total
number of parameters in the network was 384. The number of layers, epochs, the batch
size, and learning rate are selected for the CNN model in the same manner as HBcompare.
For the other compared methods, we also carefully tuned their parameters and use the same
data splits and the same 5-fold cross-validation scheme. All experiments were performed
on a 8-core machine with 32 GB RAM.

3. Results

During training, we observed converging improvements in accuracy relative to train-
ing time and number of epochs. These observations are illustrated for all datasets in
Appendix A, Figures A1 and A2. By dividing the data sets into non-overlapping training
and testing sets, we found that classification accuracy of HBcompare for training and testing
quickly converged towards a stable accuracy performance and remains at this performance
level regardless of added epochs past the saturation point. This is shown in Appendix A,
Figure A3. Collectively, these observations suggest that overtraining is not a major concern
for the accuracy of HBcompare on our datasets.

Overall, using only hydrogen bond topology, HBcompare had a high degree of classi-
fication accuracy. The classification accuracy of HBcompare averaged from 85.0% to 92.3%
on all folds of all primary datasets (Table 3, right column, top three rows). The standard
deviation in accuracy across all folds ranged from 4.8% to 7.7%. The F1 score averaged be-
tween 84.8% and 92.2%, and the area under the ROC curve (AUC-ROC) averaged between
90.6% and 92.3%.

In comparison to existing coordinate-free methods, HBcompare was 11.38% more
accurate, had 12.17% greater F1 score, and had 9.92% higher AUC, on average, than the
second best method, PCA-NF, across all data sets. Standard deviations in HBcompare
accuracy, F1 score and AUC were also generally the same or lower than existing methods.
Overall, HBcompare had the best classification performance of all methods on all primary
datasets (Table 3, top three rows).
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Table 3. Average classification accuracy and F1 score (avg ± std) of compared methods using only
hydrogen bond topology, across all cross-validation folds. The set(#) column indicates the dataset
and the number of subfamilies it contains. The stat column indicates rows with either classifier
accuracy or F1 score. The highest value in each row is bolded.

set(#) stat GK PCA PCA-NF 2DPCA CNN HBCompare

P1(2)
Acc 68.8 ± 1.1 76.7 ± 15.3 81.7 ± 12.2 73.3 ± 8.2 85.0 ± 15.3 92.3 ± 7.0
F1 69.3 ± 1.1 74.7 ± 17.6 79.8 ± 15.6 73.1 ± 8.1 83.1 ± 18.5 92.2 ± 6.8

AUC-ROC 68.8 ± 1.1 76.7 ± 15.3 81.7 ± 12.2 73.3 ± 8.2 85.0 ± 15.3 92.3 ± 6.7

P2(5)
Acc 38.1 ± 1.5 63.3 ± 4.6 67.8 ± 4.0 65.3 ± 6.9 68.6 ± 3.1 85.0 ± 4.8
F1 41.8 ± 1.4 62.0 ± 5.0 67.2 ± 3.9 65.4 ± 7.0 68.6 ± 3.4 84.8 ± 5.0

AUC-ROC 27.0 ± 1.1 76.8 ± 2.8 79.7 ± 2.4 69.1 ± 4.3 80.2 ± 2.0 90.6 ± 3.1

P3(2)
Acc 58.7 ± 3.4 61.6 ± 10.7 68.0 ± 9.6 59.1±12.0 68.0 ± 9.6 91.3 ± 7.7
F1 60.2 ± 3.7 60.9 ± 10.8 66.3 ± 10.7 58.4 ± 12.7 67.3 ± 9.2 91.2 ± 8.5

AUC-ROC 58.1 ± 3.4 62.0 ± 10.2 67.0 ± 9.9 60.0 ± 11.3 68.0 ± 8.6 91.5 ± 8.2

A1(2)
Acc 76.6 ± 1.2 90.0 ± 5.0 93.8 ± 4.0 90.0 ± 3.1 88.1 ± 4.4 91.8 ± 5.5
F1 77.8 ± 1.5 89.9 ± 5.0 93.7 ± 4.0 89.9±3.1 88.0 ± 4.4 91.7 ± 5.6

AUC-ROC 76.6 ± 1.2 90.0 ± 5.0 93.8 ± 4.0 90.0 ± 3.1 88.1 ± 4.4 91.8 ± 5.5

A2(4)
Acc 52.2 ± 0.9 75.7 ± 4.7 80.0 ± 2.9 72.9 ± 5.3 73.6 ± 3.6 86.8 ± 5.4
F1 50.2 ± 2.0 74.3 ± 5.2 79.3 ± 3.1 70.1 ± 5.1 73.3 ± 3.6 86.3 ± 6.7

AUC-ROC 54.6 ± 1.0 83.4 ± 3.3 86.3 ± 2.1 81.3 ± 3.0 82.4 ± 1.7 90.9 ± 4.3

Auxiliary-1 simplified the multi-class classification problem by removing three of the
five subfamilies in Primary-2. As a result, on Auxiliary-1, all comparison methods were
significantly more accurate, with PCA-NF outperforming HBcompare slightly (93.8% vs.
91.8%). The fact that HBcompare significantly outperforms other methods on the five cate-
gories of Primary-2 suggest that it is more robust to the multi-class classification problem.

On Auxiliary-2, which combined two subfamilies from each of Primary-1 and Auxiliary-
1, HBcompare outperformed other methods by at least 6.8%. In this case, where some
subfamilies are far more similar than others, HBcompare did not lose discriminating power,
performing only slightly worse than it did on Primary-1 and on Auxiliary-1 despite two
additional categories.

Since HBcompare operates with only hydrogen bond topology, we also asked how
HBcompare and other graph-based methods would perform if atomic coordinates were
included (Table 4). Again, on all primary datasets, HBcompare outperformed existing meth-
ods, with accuracy averaging from 2.1% to 14.9% above existing methods. Unsurprisingly,
since these comparisons used representations of both hydrogen bond topology and also
atomic coordinates, GK, PCA, 2DPCA, CNN, and HBcompare all performed the same or
better than their coordinate-free counterparts. Classifications using only sequence identity
or structure similarity underperformed.

On Auxiliary-1, the addition of atomic coordinates into the graph representation
resulted in slightly superior classification accuracy for HBcompare (93.8%) relative to PCA-
NF (91.3%). As in the coordinate-free scenario, GK, PCA, 2DPCA and CNN all performed
similarly. On Auxiliary-2, HBcompare was again more accurate (88.4%).
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Table 4. Average classification accuracy and F1 score (avg ± std) using both hydrogen bond topology
and coordinate information, across all folds. The set column indicates the dataset. The stat column
indicates rows with either classifier accuracy or F1 score. The highest value in each row is bolded.

Set stat Clustalw Ska GK PCA PCA-NF 2DPCA CNN HBcompare

P1 Acc 75.0 ± 17.7 63.3 ± 4.6 68.3 ± 1.2 83.3 ± 12.9 86.7 ± 11.3 83.3 ± 9.1 88.3 ± 8.5 92.3 ± 7.2
F1 79.5 ± 11.7 66.9 ± 5.3 68.8 ± 1.2 81.5 ± 16.3 85.8 ± 12.8 82.4 ± 10.6 87.8 ± 9.6 92.8 ± 7.1

P2 Acc 80.0 ± 8.1 68.8 ± 7.7 37.3 ± 1.1 70.4 ± 3.8 72.4 ± 3.9 74.5 ± 5.9 70.4 ± 3.0 83.6 ± 6.3
F1 80.8 ± 7.1 70.1 ± 8.1 41.7 ± 1.8 69.5 ± 5.5 72.0 ± 4.7 74.8 ± 5.6 70.8 ± 3.1 83.9 ± 6.5

P3 Acc 60.8 ± 3.4 63.3 ± 2.6 58.7 ± 2.4 74.7 ± 12.8 76.7 ± 12.6 74.7 ± 12.8 76.8 ± 8.9 90.6 ± 6.8
F1 69.2 ± 2.3 73.4 ± 7.7 60.3 ± 2.8 73.8 ± 13.1 76.2 ± 12.7 73.8 ± 13.1 76.4 ± 8.7 90.5 ± 6.9

A1 Acc 60.7 ± 2.5 50.0 ± 8.1 76.3 ± 1.3 91.3 ± 6.4 91.3 ± 6.4 92.5 ± 6.1 91.9 ± 5.6 93.8 ± 4.4
F1 67.6 ± 3.8 53.9 ± 6.8 77.3 ± 1.5 91.2 ± 6.4 91.2 ± 6.4 92.5 ± 6.1 91.8 ± 5.6 93.9 ± 4.4

A2 Acc 86.6 ± 14.5 81.1 ± 8.0 52.1 ± 0.5 75.0 ± 6.4 77.9 ± 5.2 80.7 ± 5.3 80.4 ± 6.4 88.4 ± 6.4
F1 87.6 ± 13.3 82.3 ± 6.8 49.5 ± 1.3 73.7 ± 6.5 76.7 ± 5.4 80.0 ± 5.4 80.1 ± 6.7 88.2 ± 6.5

3.1. Hyperparameter Analysis

In training HBcompare, we considered a range of batch sizes and GCN layers, both
of which can influence classifier performance. Adding more GCN layers expands the
graph neighbourhood within which the node features are averaged [49]. These findings are
plotted in Figure 2. We observed that accuracy was maximized with batch size 4 and with
3 GCN layers, using these parameters in HBcompare.

(a) Batch size (b) Number of Layers

Figure 2. Influence of the number of layers (a), and of the batch size (b) on the classification accuracy
of HBcompare. Accuracy is shown on all three primary datasets (blue, red and green lines), and was
highest for batch size 4 and for 3 GCN layers.

3.2. Feature Concatenation

In our HBcompare model, we concatenate the output of all GCN layers to obtain the
final feature representation (Figure 1). To evaluate the effectiveness of this concatenation
strategy, we compare the implementation of HBcompare with and without feature concate-
nation in Table 5 using only hydrogen bond topology. We observed that HBcompare can
benefit from the concatenation strategy, which helps to aggregate more information when
the input node feature size is small.
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Table 5. Average classification accuracy of HBcompare model with and without concatenation
strategy using only hydrogen bond topology across all folds. The more accurate method is bolded.

Method (Acc) Primary-1 Primary-2 Primary-3 Auxillary-1 Auxillary-2

Hbcompare with
concatenation 91.3 80.6 89.6 90.8 87.1

Hbcompare without
concatenation 88.6 78.2 89.1 91.8 86.4

4. Discussion

We have presented HBcompare, a GCN-based algorithm for classifying protein struc-
tures based exclusively on hydrogen bonding topology. Once trained on a group of closely
related subfamilies that perform the same function on different preferred ligands, HBcom-
pare addresses the problem where a novel protein structure or model is to be classified
into one of the subfamilies. HBcompare should be retrained to make classifications into
different subfamilies.

Since it only examines hydrogen bond topology, accurate classifications implicate
the importance of hydrogen bonds in achieving the binding preferences of the predicted
subfamily. This novel capability contrasts from holistic representations, which do not
implicate specific mechanisms.

To evaluate HBcompare, we performed specificity classification experiments on protein
superfamilies that achieve distinct binding preferences based on differences in hydrogen
bonding. On nonredundant subsets of the glucosidases, serine proteases, and tRNA
synthetase superfamilies, the average accuracy of HBcompare was 92.3%, 85.0% and 91.3%.
As a tool for classifying hydrogen bond topologies, HBcompare is a capable classifier. When
we adapted several modern techniques to the topology-only classification problem, we
observed that HBcompare was more accurate in all but one case, where PCA with node
features outperformed HBcompare 93.8% versus 91.8%. This classification performance
was well within the variations observed in different training folds, indicating comparable
performance between PCA-NF and HBcompare, rather than a superior performance of
one over the other. Furthermore, it is important to note that CNN, GK, PCA, PCA-NF
and 2DPCA all require a structural alignment to produce a 1-to-1 mapping between most
amino acids, ensuring that all proteins could be indexed in the same order. CNN, PCA,
PCA-NF and 2DPCA also require input graphs to have the same number of nodes. Our
comparison included a preprocessing step that maximizes their comparability in this study,
but in truly experimental settings, accurate preprocessing could not be guaranteed, further
limiting the applicability of these alternative methods. The same challenges do not apply
to HBcompare, which is unaffected by input order or graph size, making it more applicable
in experimental settings and often more accurate than existing methods.

We also compared HBcompare to conventional coordinate-based approaches. In com-
parison to ska, a coordinate-based method that does not use hydrogen bonding topology
(Table 4), coordinate-free HBcompare (Table 3) was an average of 20.6% more accurate
on all datasets. These findings demonstrate that hydrogen bond topology contributes
information that is complementary to conventional structural approaches.

Finally, we modified HBcompare to consider both atomic coordinates and also hy-
drogen bond topology. In a comparison to the same methods above, each modified to
incorporate both data types, HBcompare was 2.1% to 14.9% more accurate on average
(Table 4). This result demonstrates that combining hydrogen bond topology and atomic
coordinates enhances subfamily classification at the cost of being able to implicate hydrogen
bonds as a mechanism.
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As a first step in the atomistic analysis of hydrogen bond topology, HBcompare has
considerable potential for novel applications. Where specificity mechanisms are unknown,
HBcompare can detect when hydrogen bonding distinguishes between isoforms with
different binding preferences without influences from other structural properties. This
capability can focus experimental scrutiny on hydrogen bonding when it correlates with
specificity. Combined with structural models, HBcompare could be applied to identify
mutations that change bond topology to resemble proteins with different binding prefer-
ences. Together with other sources of information, HBcompare could thus support efforts
in protein engineering and in annotating binding specificity mechanisms.
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Appendix A. Protein Datasets Used in This Work

The following tables catalog the protein structures used in this work, based on Protein
Data Bank codes. The two datasets Auxiliary-1 and Auxiliary-2 are generated from these
sets (see Table 1), so they are not listed again here.

Table A1. Dataset: Primary-1.

Subfamily A: Alpha-Amylase (3.2.1.1)
1amy 1aqm 1b2y 1bpl 1bvn 1clv 1e3x 1eh9 1g94 1hny
1ht6 1hvx 1hx0 1jae 1ji1 1jxk 1kxq 1l0p 1mfu 1mwo
1ose 1p6w 1pif 1rpk 1smd 1tmq 1u2y 1ua3 1ud2 1uh3

Subfamily B: Beta-Amylase (3.2.1.2)
1b90 1b9z 1btc 1bya 1byb 1byc 1byd 1cqy 1fa2 1j0y
1j0z 1j10 1j11 1j12 1j18 1q6c 1vem 1wdp 2laa 2lab
2xff 2xfr 2xfy 2xg9 2xgb 2xgi 3voc 5bca 5wqs 5wqu

https://github.com/LehighInfolab/HBcompare
https://github.com/LehighInfolab/HBondFinder
https://github.com/LehighInfolab/HBcompare/tree/main/dataset-contents
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Table A2. Dataset: Primary-2.

Subfamily A: Chymotrypsin (3.4.21.1)
1ab9 1acb 1afq 1cbw 1cgi 1chg 1cho 1dlk 1eq9 1ggd
1gha 1ghb 1gl0 1gl1 1gmc 1gmh 1hja 1mtn 1oxg 1p2m
1yph 2cga 2jet 3bg4 3cp7 3gch 3ru4 3t62 3wy8 4cha
4gch 4q2k 4vgc 5cha 5gch 5j4q 6di8 6gch 7gch 8gch

Subfamily B: Trypsin (3.4.21.4)
1a0j 1aks 1ane 1bit 1bju 1bra 1brc 1btp 1bzx 1c1n
1co7 1d6r 1eja 1ezx 1f5r 1fmg 1fn8 1fni 1fxy 1fy4
1fy8 1g36 1gdn 1ghz 1h4w 1h9i 1hj8 1jir 1mbq 1mts
1os8 1ox1 1ppc 1pq5 1qb1 1trm 1trn 1utj 1xvm 2f3c

Subfamily C: Elastase (3.4.21.36)
1b0e 1bma 1btu 1c1m 1e34 1eai 1eas 1eat 1eau 1ela
1elb 1elc 1esa 1est 1fle 1fzz 1gvk 1gwa 1h9l 1hax
1hay 1hb0 1hv7 1inc 1jim 1l0z 1l1g 1lka 1lkb 1lvy
1mmj 1nes 1okx 1qgf 1qix 1qnj 1qr3 1uo6 1uvo 1uvp

Subfamily D: Thrombin (3.4.21.5)
1a2c 1aoh 1avg 1awf 1bbr 1bcu 1hah 1hrt 1id5 1ihs

1mkw 1mu6 1nrp 1sr5 1ta2 1tb6 1tbq 1tbr 1tmb 1ucy
1uma 1vit 1vr1 1ycp 1ypm 2a1d 2c8z 2jh5 2ocv 2pf1
2pf2 2pgb 2pux 2r2m 2thf 2v3h 3edx

Subfamily E: Coagulation factor Xa (3.4.21.6)
1apo 1c5m 1ccf 1ezq 1f0s 1fjs 1g2l 1hcg 1iod 1ioe
1iqf 1kig 1ksn 1lpg 1mq5 1xkb 2bmg 2boh 2bok 2bq6
2cji 2ei7 2fzz 2g00 2h9e 2j94 2p16 3sw2 3tk5 4a7i
4bti 4btt 4bxw 4y6d 5jqy 5jtc 5k0h 5voe 5vof

Table A3. Dataset: Primary-3.

Subfamily A: Ser-tRNA Synthetase (6.1.1.11)
1ses 1set 1sry 2dq0 2zr2 2zr3 3lsq 3lss 3qne 3qo5
3qo8 3vbb 6gir 6h9x 6hdz 6he1 6he3 6hhy 6hhz 6r1m
6r1n 6r1o 6rlt 6rlv

Subfamily B: Thr-tRNA Synthetase (6.1.1.3)
1tje 1tke 1tkg 1tky 1wwt 1y2q 2hl0 2hl1 3pd2 3pd3

3pd4 3pd5 3ugq 3uh0 4eo4 4hwo 4hwp 4hwr 4hws 4hwt
4p3n 4ttv 4yye
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Appendix B. Additional Results

The following figures show additional data on HBcompare performance over all
data sets.

Figure A1. Accuracy over time.

Figure A2. Accuracy over number of epochs.
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Figure A3. Learning Curve: Training and testing accuracy for P1 (a), P2 (b), P3 (c), A1 (d) and A2 (e).
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