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Abstract: The genome-scale metabolic model (GEM) is a powerful tool for interpreting and predicting
cellular phenotypes under various environmental and genetic perturbations. However, GEM only
considers stoichiometric constraints, and the simulated growth and product yield values will show a
monotonic linear increase with increasing substrate uptake rate, which deviates from the experimen-
tally measured values. Recently, the integration of enzymatic constraints into stoichiometry-based
GEMs was proven to be effective in making novel discoveries and predicting new engineering targets.
Here, we present the first genome-scale enzyme-constrained model (ecCGL1) for Corynebacterium
glutamicum reconstructed by integrating enzyme kinetic data from various sources using a ECMpy
workflow based on the high-quality GEM of C. glutamicum (obtained by modifying the iCW773
model). The enzyme-constrained model improved the prediction of phenotypes and simulated
overflow metabolism, while also recapitulating the trade-off between biomass yield and enzyme
usage efficiency. Finally, we used the ecCGL1 to identify several gene modification targets for L-
lysine production, most of which agree with previously reported genes. This study shows that
incorporating enzyme kinetic information into the GEM enhances the cellular phenotypes predic-
tion of C. glutamicum, which can help identify key enzymes and thus provide reliable guidance for
metabolic engineering.

Keywords: enzyme-constrained model; Corynebacterium glutamicum; metabolic engineering

1. Introduction

Corynebacterium glutamicum is widely known as an excellent producer of amino
acids [1]. Recent advances in metabolic engineering and synthetic biology have expanded
the scope of chemicals that can be produced from C. glutamicum, but it remains difficult to
synthesize these compounds on an industrially relevant scale [2]. Genome-scale metabolic
models (GEMs) are a proven tool for the prediction of cellular behavior and the discovery
of potential engineering targets [3]. Several GEMs of C. glutamicum have been developed
(Figure S1), and used to guide the production of high-value compounds such as glutaric
acid [4], anthocyanins [5] and L-glutamate family amino acids [6]. The most widely used
model of C. glutamicum is iCW773, constructed in 2017 [7], which accurately predicts the
growth of cells cultured under different conditions. Although the quality of C. glutamicum
models has improved in the last decade, they mostly only consider reaction stoichiometries
and do not accurately depict the real situation inside the cell [8]. For example, metabolic
overflow is a phenomenon in which incomplete oxidation of glucose to ethanol or acetate
occurs in microorganisms in the presence of sufficient substrate, which has been recognized
for a long time and frequently occurs in microbial cultures [9]. It has been shown that
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the limitation of intracellular protein resources is the cause of the metabolic overflow phe-
nomenon [10], which cannot be properly explained by models only considering reaction
stoichiometries.

With the accumulation of enzyme kinetic data and the availability of high-throughput
omics data, it has become possible to integrate these data into models to add constraints
on individual reactions or aggregate constraints on enzyme resources [11,12]. In 2007,
Zhang et al. constructed the FBAwMC model by introducing both a crowding coefficient
and cell volume constraint to limit the space occupied by enzymes [13]. Subsequently,
the researchers developed other protein resource integration methods [14], which are re-
ferred to as enzyme-constrained genome-scale models (ecGEMs), including MOMENT [15],
GECKO [16], AutoPACMEN [17] and ECMpy [18]. The GECKO method was reported in
2017 and was applied to construct an enzyme-constrained model of Saccharomyces cerevisiae
by adding many pseudo-metabolites to represent enzyme utilization and including kcat
values to expand the stoichiometric matrix. Notably, this enzyme-constrained model could
accurately predict several metabolic phenotypes. Recently, Domenzain et al. upgraded
GECKO to 2.0 to enhance models with enzyme and proteomics constraints for any organism
with a compatible GEM reconstruction, which also proposed an automated calibration
process for enzyme kinetic parameters and developed conventional algorithms based on
ecGEMs (e.g., flux variability analysis) [19]. Inspired by MOMENT and GECKO, in 2020,
Bekiaris et al. proposed a simpler method for enzyme-constrained model construction,
called AutoPACMEN [17], which could automatically download kinetic parameters of
enzymes from the BRENDA [20] and SABIO-RK [21] databases. It was used to construct an
enzyme-constrained model of Escherichia coli, which only introduced one pseudo-reaction
and pseudo-metabolite into the stoichiometric matrix. Different from GECKO and Au-
toPACMEN, ECMpy simply adds a constraint on the total amount of enzymes and does
not require modification of the stoichiometric matrix, while providing higher prediction
accuracy for the simulation of the E. coli growth rate [18]. Currently, ecGEMs have been
constructed for many species, such as E. coli [18,22], S. cerevisiae [16], Yarrowia lipolytica [19],
Aspergillus niger [23], and Bacillus subtilis [24].

In the enzyme-constrained models, kcat and molecular weight (MW) of an enzyme set
constraints on the fluxes of the reactions catalyzed by that enzyme. Previous studies have
made efforts to automatically acquire kcat values from databases and fill missing values
using methods like machine learning [25]. In contrast, few studies have paid attention
to molecular weight. It may seem straightforward to obtain the MW of a protein from
databases like UniProt. However, the MW values from these databases are for monomers
and many enzymes contain two or more subunits. For example, 6-phosphogluconate dehy-
drogenase encoded by gene Cgl1452 is a homodimer and, therefore, the MW is 105.2 kDa
instead of 52.6.2 kDa for the monomer. There are also many enzymes consisting of subunits
encoded by different genes which are represented as ‘and’ GPR relationship in GEMs.
However, what is missing in the GPR relationships is the number of each subunit in the
protein complex. For example, Succinyl-CoA synthetase is a heterotetramer containing
two alpha subunits (encoded by Cgl2565 in C. glutamicum with an MW of 30.26 kDa) and
two beta subunits (encoded by Cgl2566 with an MW of 41.76 kDa). Therefore, the MW of
this enzyme complex should be 144.04 kDa (2 × 30.26 + 2 × 41.76) instead of 72.02 kDa.
Such quantitative information on enzyme subunit composition is difficult to obtain from
databases and often missing in the published GEMs, leading to incorrect MW values which
affect the prediction accuracy of enzyme-constrained models.

In this study, we first systematically corrected the GPR relationships in the iCW773
model based on the GPRuler tool [26] and protein homology similarity comparisons, and
extend the GPRuler tool to allow access to the quantitative subunit composition of each
protein in the model. Then, we gathered the enzyme kinetics data of C. glutamicum using
AutoPACMEN and constructed the enzyme-constrained model ecCGL1 based on the
ECMpy workflow. We further comprehensively evaluated ecCGL1 and confirmed that
it had a better prediction accuracy of phenotypes than iCW773R (Revised iCW773) and
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could simulate a variety of biological phenomena. Finally, we applied ecCGL1 to metabolic
engineering and discovered potential targets for increasing the production of L-lysine.

2. Materials and Methods
2.1. Model Calibration

We obtained the iCW773 model, which has 773 genes, 1207 reactions, and 950 metabo-
lites, from the supplemental data of Zhang et al. [9], and converted it to XML format. To
meet the requirements of the AutoPACMEN and ECMpy processes for metabolic network
format input, we modified the gene, reaction and metabolite information in the model as
follows:

(1) Metabolite correction: ‘(e)’ to ‘_e’, ‘-D’ to ‘__D’, ‘-L’ to ‘__L’, ‘-R’ to ‘__R’ and other ‘-’
to ‘_’.

(2) Reaction correction: ‘-’ to ‘__’ in reactions beginning with ‘EX’ and ‘-’ to ‘__’ in other
reactions.

(3) Adding UniProt ID information to the annotation, which is the basis for obtaining
kinetic parameters.

2.2. Correction of GPR Relationship

We found some errors in the GPR relationships in iCW773 during the analysis and
corrected these errors using two methods. First, the modified GPRuler tool was used to
identify more “and” relationships. The GPRuler tool identifies the ‘and‘ relationships
based on the protein complex information extracted from databases such as UniProt [27]
and Complex Portal [28]. However, the original terms (‘subunit’ and ‘chain’) used to
identify complexes in the GPRuler tool were extracted based on human and yeast protein
description information and did not cover all C. glutamicum protein complexes. For example,
the protein name of P06557 (encoding by Cgl3029) is Anthranilate synthase component
1, which will not be identified as a subunit forming an ‘and‘ relationship with another
subunit using the original terms. Therefore, we updated the terms by carefully checking the
words used in UniProt to describe possible protein complex formation (e.g., ‘component’,
‘binding protein’, and ‘assembly factor’, etc. see Table S1 for the full list) to obtain more
‘and‘ relationships in C. glutamicum. We also simplified the GPRuler tool process by parsing
UniProt data directly to obtain the corresponding GPR relationships without running the
processes for gene identification, reaction identification, and gene filter.

We also observed that some ‘and‘ relationships in iCW773 were not identified by
the GPRuler tool and could be wrong. To address this, we developed a semi-automated
process based on protein similarity to determine the correct relationship. We calculated the
protein sequence similarity for the remaining ‘and’ relationships in iCW773 and revised the
relationship to ‘or‘ if similarity exists between protein sequences as proteins with similarity
are more likely to be isoenzymes rather than forming protein complexes. We then manually
checked the gene annotation information in databases (BioCyc [29] and KEGG [30]) to
ensure the correction is right.

2.3. Acquisition of Quantitative Subunit Composition

As discussed in the Introduction section, quantitative subunit information of an
enzyme is essential to correctly determine its MW but is missing in the GPR relationships
in the models. We have manually collected the subunit number of each protein in our
previous approach for constructing the enzyme-constrained model of E. coli eciML1515 [18].
Here, we used a new automatic method to acquire the quantitative subunit information by
extending the GPRuler tool to resolve the subunit number of a protein based on information
in the ‘Interaction information’ section in UniProt. For example, Q8NMK2 is described in
UniProt as ‘Homodimer’, so its subunit number is 2. We created a word list to parse the
description information (e.g., Homodimer; Heterotrimer; Tetramer of two alpha and two
beta chains) and translated them into corresponding subunit numbers (Table S2).
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2.4. Construction of ecCGL1

After model correction, we split the reversible reactions in the model into two irre-
versible reactions because of different kcat values for different catalytic directions. We also
split the isozyme-catalyzed reaction into multiple individual enzyme-catalyzed reactions.
Then, the molecular weight for each protein monomer was obtained automatically from
Uniprot using AutoPACMEN and combined with the protein subunit composition data
obtained in Section 2.3 to calculate the molecular weight for each enzyme using equation
MW = ∑m

j=1 Nj ∗MWj, where m is the number of different subunits in the enzyme complex
and Nj is the number of jth subunits in the complex. We further obtained the kinetic
parameters of the enzymes mainly from BRENDA and SABIO-RK, using AutoPACMEN.
In addition, we calculated the mass fraction of total cellular enzymes (Equation (4)) using
published RNA-Seq data of wild-type C. glutamicum ATCC 13032 grown on glucose [31,32].
Finally, we used the ECMpy process to construct ecCGL1 (see Figure 1 for details), which
can be mathematically represented as follows:
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Z = max
{

CT ∗ v
}

(1)

S ∗ v = 0 (2)

lb ≤ v ≤ ub (3)

f =
n(genemodel)

∑
i=1

Ai MWi/
n(genetotal)

∑
j=1

Aj MWj (4)

n

∑
i=1

vi ∗MWi
σi ∗ kcat,i

≤ Ptotal ∗ f (5)
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where CT is the transposed vector of the integer coefficient of each flux in the objective
function Z; S is the stoichiometric matrix; lb and ub are the lower and upper bounds of
the reaction fluxes in the system, respectively; kcat,i is the turnover number of enzymes
that catalyze reaction i; MWi denotes the molecular weight of enzyme i; σi is the saturation
coefficient for enzyme i, whereby we use an average value of 0.5 for all the enzymes [18];
Ptotal of 0.56 is the average protein content in most microbial cells [15]; f is the total mass
fraction of all cellular enzymes in our ecGEM.

2.5. Calibration of the Original kcat Values

Generally, the initial enzyme-constrained model was unable to accurately predict the
experimental value of the maximal growth rate, requiring an adjustment of the original
kcat values, like GECKO, AutoPACMEN and ECMpy. Because no suitable 13C data were
found, the correction of ecCGL1 was performed using only method 1 proposed by ECMpy,
which is based on enzyme usage. For enzymes that require calibration, the EC number
was obtained and its corresponding kcat value was substituted by the highest value in the
BRENDA and SABIO-RK databases for the given enzyme class. This iterative correction
process was continued until the experimental value or the predefined number of iterations
was reached, as described in GECKO 2.0 (2.0 version) [19].

2.6. Comparative Flux Variability Analysis

We provided a fair comparison of flux variability range distributions between iCW773R

and ecCGL1 for experimental measurements of µmax (e.g., 0.45 h−1 [33]), using the compu-
tational procedure of GECKO 2.0. For reactions containing isozymes, we used the maximal
value of the corresponding flux variability range (Equation (6)). For reversible reactions
from ecModel, the corresponding flux variability ranges were solved using Equation (7).

FVi = max
(

vmax
i,isoj
− vmin

i,isoj

)
, j ∈ m (6)

FVi =
(

vmax
i − vmin

i

)
−
(

vmax
i,REV − vmin

i,REV

)
(7)

2.7. Phenotype Phase Plane (PhPP) Analysis

The PhPP analysis is a powerful tool that provides a global view of how optimal
growth rates are affected by changes in two environmental variables such as the carbon
and oxygen uptake rate [34,35]. We performed PhPP analysis on iCW773R and ecCGL1 to
predict the biomass-specific growth rates by varying the glucose and oxygen uptake rates, as
described in the literature [23]. Therefore, we varied the exchange reaction fluxes of glucose
in the range of 0–10 mmol/gDCW/h and oxygen in the range of 0–10 mmol/gDCW/h,
with the objective set to maximize the biomass production rate, after which the results were
analyzed by parsimonious FBA (pFBA) calculations [36].

2.8. Simulation of Overflow Metabolism

We explored the overflow metabolism of C. glutamicum using ecCGL1 by varying
the substrate uptake rate from 1 to 6.3 mmol/gDCW/h (the model reaches its maximum
growth rate at 0.479 mmol/gDCW/h) and solving for the pFBA to maximize the biomass.
To observe the trade-off phenomenon in unrestrained growth, we set glucose as the carbon
source, and varied the substrate uptake rate from 1 to 6.3 mmol/gDCW/h to obtain the
trade-off between the biomass yield (Equation (8)) and enzyme usage efficiency (Equation
(9)). The Emin value was calculated using the minimum enzyme amount algorithm of
ECMpy [18].

biomass yield =
vbiomass

vglucose ∗MWglucose
(8)

enzyme usage efficiency =
vbiomass

Emin
(9)
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2.9. Prediction of Metabolic Engineering Targets

Enzyme cost can be used to identify key enzymes in the product synthesis pathway.
For example, Ye et al. calculated the enzyme cost for L-lysine biosynthesis by fixing a low
biomass growth rate (0.1 h−1) using the enzyme-constrained model of E.coli and improved
L-lysine production by optimizing the expression of the proteins in the top 20 of the enzyme
cost [22]. Because this approach can only identify overexpressed targets in the pathway, we
extended it to explore enhanced and weakened metabolic engineering targets. First, we
determined the protein cost differences in reactions between two scenarios: high growth
low product generation (HGLP, growth rate was set at 0.46 h−1) and low growth high
product generation (LGHP, growth rate set at 0.1 h−1). Subsequently, we calculated the
cost of each reaction (Equation (10)) for both pathways [18]. Finally, we calculated the
fold changes of enzyme cost and those with a fold change great than 1.5 were chosen as
potential targets for metabolic engineering (Equations (11) and (12)).

Enzyme costi =
vi ∗MWi
σi ∗ kcat,i

(10)

Enhance target =
{

Enzyme
∣∣∣∣Enzyme costLGHP
Enzyme costHGLP

≥ 1.5
}

(11)

Weaken target =
{

Enzyme
∣∣∣∣Enzyme costHGLP
Enzyme costLGHP

≥ 1.5
}

(12)

3. Results
3.1. GPR Correction of iCW773

There are 1207 reactions in the iCW773 model, 96 of which are “and” relationships. We
obtained protein composition information for a total of 112 reactions using the GPRuler tool,
of which 24 had GPR relationships consistent with the model (Table S3). The 88 reactions
with inconsistent GPR relationships were manual checked and corrected using information
from databases like UniProt, BioCyc, KEGG and the literature (Table S3). They can be
classified into three categories. First, the GPR relationship in the model is correct, so there is
no need to replace (14 reactions). Second, the prediction results of GPRuler tool are correct
and can be used to replace the GPR relationship in the model directly (12 reactions). For
example, the GPR relationship of succinyl-CoA synthetase is ‘Cgl2565 or Cgl2566′ in the
model. However, in UniProt, Succinyl-CoA synthetase is described as a heterotetramer
containing two alpha and two beta subunits. The beta subunit (Cgl2566) provides nucleotide
specificity of the enzyme and binds the substrate succinate, while the binding sites for
coenzyme A and phosphate are found in the alpha subunit (Cgl2565). Third, both the
prediction results of the GPRuler tool and the GPR relationship in the model are wrong and
should be manual corrected using Uniprot, BioCyc, KEGG or the literature (62 reactions).
For example, the gene composition of the Adenosylcobalamin 5′-phosphate synthase
(ADOCBLS) is given as ‘Cgl0245 and Cgl2201’ in the model, while from the GPRuler
tool, the GPR relationship were obtained as ‘Cgl0245 and Cgl0246’. Whereas Cgl0245
and Cgl0246 do form a protein complex, its function is Lipid II isoglutaminyl synthase
(glutamine-hydrolyzing) rather than Adenosylcobalamin 5′-phosphate synthase. Therefore,
we corrected the GPR relationship for this reaction to ‘Cgl2201′ as Cgl2201 is the true
adenosylcobalamin-5′-phosphate synthase based on information from UniProt.

In addition, we observed that 58 “and” relationships in the model were not identified
by the GPRuler tool. To determine the correctness of these relationships, we calculated
the protein sequence similarity for all gene pairs which have ‘and’ relationships in the
model. The results showed no similarity between protein pairs in the 41 reactions (Table
S4). However, the remaining 17 reactions with an ‘and’ relationship have high similarities
(great than 20%) between the corresponding proteins, which are more likely to be isozymes.
For example, the GPR relationship for Methylisocitrate lyase (MCITL2) is ‘Cgl0658 and
Cgl0695’, which has 81% sequence similarity. By further searching the KEGG database for
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verification, we found that Cgl0695 and Cgl0658 have the same protein name, catalyse the
same reaction and map the same EC number, but not any information implying they are
subunits of a protein complex. They are more likely to be two isoenzymes and, therefore,
the correct GPR relationship for Methylisocitrate lyase should be ‘Cgl0658 or Cgl0695’. After
manual investigation, we modified ‘and’ relationships to ‘or’ relationships for 17 reactions
in the model (Table S4). Finally, the new model contains 1194 reactions and 794 genes,
which we have named iCW773R (Revised iCW773).

3.2. EcModel Calibration

After that, we split each reversible reaction into independent forward and reverse
reactions, including 333 reactions. The isozyme-catalyzed reactions were divided into
multiple reactions (append num in reaction ID, e.g., ACOATA_num1), and a total of
202 reactions were split into 571 reactions. After this step, the number of reactions in the
model was expanded to 1850. The growth rate predicted by the initial ecModel at a glucose
uptake rate of 5.05 mmol/gDCW/h was low compared to the experimental value (0.12 h−1

vs. 0.45 h−1) [33]. We calibrated the initial ecModel based on the enzyme usage, and after
13 rounds of calibration and modification of 10 reactions, the simulated growth rate of
0.423 h−1 was close to the experimental value (Table S5). Although the growth rate was
corrected, the abnormal flux in the TCA cycle was mainly caused by the exceptionally
large molecular weight of the pyruvate dehydrogenase complex consisting of 24 subunits,
which was corrected using the maximal kcat of this enzyme in the databases (Figure S2).
After this modification, the growth rate reached 0.454 h−1, which was consistent with the
experimental value.

3.3. Basic Information of ecCGL1

There were 794 reactions in the modified ecModel with available kcat data of enzymes
with EC numbers, accounting for 42.92% of the total reactions, which were divided into six
major categories, most of which were transferases (Figure 2A, outer ring). These 794 reac-
tions were catalyzed by a total of 349 enzymes (different EC numbers) (Figure 2A, inner
ring), and the kcat values spanned seven orders of magnitude with a median value of
33.3 s−1 (Figure 2B). There are 1107 enzymes present in the ecCGL1, while non-monomeric
enzymes occupy 30.81% (Figure S3). The distribution of subunit composition in C. glutam-
icum is slightly different to that of E. coli [18], in that the proteins containing more than
two subunits are generally low in C. glutamicum (Figure S3). The biological reason for the
difference is not clear and might be an interesting topic for further research. Finally, the
molecular weights of the enzymes spanned a range from 7 to 2000 kDa (Figure 2C).

As the protein abundance of C. glutamicum could not be found in PAXdb [37], we
obtained the abundance of each protein from the published data [31,32]. An f value of
0.46 was obtained by calculating the mass fraction of enzymes that could be expressed by
the genes in the model, which was a representation of a percentage of the total protein
constraints in C. glutamicum.
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3.4. EcCGL1 Reduces the Solution Space

A major challenge for GEMs is how to obtain a biologically meaningful flux distri-
bution, as there are alternate optimal solutions in which the same maximal objective can
be achieved through different flux distributions [38]. This limitation can be overcome by
integrating experimentally measured exchange fluxes as constraints [19]. Previous studies
have demonstrated that enzyme constraint models can significantly reduce the solution
space of fluxes [18,19]. We compared the cumulative distributions of the flux variability
ranges of iCW773R and ecCGL1, which revealed that the median flux variability range
at a high growth rate is significantly reduced by 1 orders of magnitude after introducing
enzyme constraints (Figure 3A). The cumulative distribution also showed a decrease in
the number of reactions with completely variable fluxes, which may represent undesirable
futile cycles caused by a lack of information regarding their thermodynamic or enzymatic
costs [19]. At high growth rates, completely variable fluxes accounted for 4% of the active
reactions in iCW773R, in contrast to the complete absence of this extreme range of variability
in ecCGL1.

With the subsequent increase of the carbon source consumption and oxygen fluxes,
PhPP analysis showed that the growth rate of iCW773R increased linearly with increasing
carbon source consumption, which is inconsistent with the experimental observations,
while ecCGL1 significantly reduced the solution space (Figure 3B,C). All these results
demonstrate that incorporating more information and constraints into a GEM can improve
the predictive accuracy of the model and enable it to simulate a more realistic cellular
phenotype.
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3.5. Simulation of Overflow Metabolism

In previous studies, ecModels were used to simulate overflow metabolism in S. cere-
visiae [16] and E.coli [18]. As shown in Figure 4A, ecCGL1 was also able to precisely simulate
the overflow metabolism phenomenon at a glucose uptake rate of 4.5 mmol/gDCW/h,
which could not be reproduced in iCW773R. When overflow metabolism occurs, the mi-
croorganism must activate a fermentation pathway with low energy production efficiency
but high enzyme efficiency to maintain growth, and this pathway will cause a portion of
the substrate to be converted into by-products [39], resulting in carbon loss and a rapid
decrease of the biomass yield, illustrating a trade-off between enzyme efficiency and growth
rate (Figure 4B). This metabolic process can be divided into a substrate-limited stage, over-
flow switching stage, and overflow stage. In the first stage, the glucose uptake rate is
low (less than 4.5 mmol/gDCW/h) and has a linear relationship with the growth rate,
which is consistent with iCW773R (Figure 4A). When the substrate supply is gradually in-
creased (between 4.5 and 5 mmol/gDCW/h), the cell growth is limited, and metabolism is
switched to a more enzymatically efficient pathway. Finally, when the overflow metabolism
phenomenon occurs (greater than 5 mmol/gDCW/h), the by-product pathway of acetate
production switches to higher enzymatic efficiency, consuming more substrates and re-
sulting in lower biomass yield, which is consistent with empirical models of microbial
growth [40].



Biomolecules 2022, 12, 1499 10 of 15

Biomolecules 2022, 12, x FOR PEER REVIEW  10 of 15 
 

and resulting in lower biomass yield, which is consistent with empirical models of micro‐

bial growth [40]. 

 

Figure 4. Simulation of overflow metabolism. (A) Comparison of in silico overflow metabolism be‐

tween iCW773R and ecCGL1. (B) Trade‐off phenomenon simulated by ecCGL1. 

3.6. Exploration of the Targets Based on Enzyme Cost 

We compared the pathway characteristics at LGHP and HGLP to analyze the differ‐

ences in the product synthesis pathways and found 23 reactions in which the change of 

enzyme cost was higher (Figure 5). We first noticed the pathway changes in the L‐lysine 

synthesis pathway between the two conditions, some reactions (e.g., ME2, PPC and MDH) 

were more favorable for L‐lysine production (with increased flux) and some others (e.g., 

PTAr, ACKr and SUCOAS) are in contrast (Figure 5 red and blue boxes). For example, 

malate dehydrogenase (ME2) catalyzes the conversion of malate to pyruvate to regenerate 

pyruvate depleted by pyruvate carboxylase (PYRC) [41]. The PYRC catalyzed the conver‐

sion of pyruvate to oxaloacetate, a known precursor of L‐lysine synthesis [40]. Therefore, 

ME2, MDH and PYRC, form a cycle for NADPH regeneration, which can provide more 

NADPH  for  the  L‐lysine  synthesis  pathway.  Furthermore,  the  pyruvate‐oxaloacetate 

(OAA) supply has been considered a bottleneck  for L‐lysine production, while overex‐

pression and point mutation of phosphoenolpyruvate carboxylase (PPC) has been applied 

to increase OAA availability [42–44]. 

Figure 4. Simulation of overflow metabolism. (A) Comparison of in silico overflow metabolism
between iCW773R and ecCGL1. (B) Trade-off phenomenon simulated by ecCGL1.

3.6. Exploration of the Targets Based on Enzyme Cost

We compared the pathway characteristics at LGHP and HGLP to analyze the differ-
ences in the product synthesis pathways and found 23 reactions in which the change of
enzyme cost was higher (Figure 5). We first noticed the pathway changes in the L-lysine
synthesis pathway between the two conditions, some reactions (e.g., ME2, PPC and MDH)
were more favorable for L-lysine production (with increased flux) and some others (e.g.,
PTAr, ACKr and SUCOAS) are in contrast (Figure 5 red and blue boxes). For example,
malate dehydrogenase (ME2) catalyzes the conversion of malate to pyruvate to regenerate
pyruvate depleted by pyruvate carboxylase (PYRC) [41]. The PYRC catalyzed the conver-
sion of pyruvate to oxaloacetate, a known precursor of L-lysine synthesis [40]. Therefore,
ME2, MDH and PYRC, form a cycle for NADPH regeneration, which can provide more
NADPH for the L-lysine synthesis pathway. Furthermore, the pyruvate-oxaloacetate (OAA)
supply has been considered a bottleneck for L-lysine production, while overexpression and
point mutation of phosphoenolpyruvate carboxylase (PPC) has been applied to increase
OAA availability [42–44].

At the same time, some reactions were more amenable for high-level growth and
should be downregulated for L-lysine production. For example, decreased flux via succinyl-
CoA synthetase (SUCOAS) was reported to increase the L-lysine yield and maintain optimal
cell growth at the same time [45]. In addition, as we mentioned above, when enzyme
constraints occurred, the acetate overflow phenomenon can be captured by ecCGL1. It
was reported that the production of organic acids such as acetate or lactate may reduce the
yield of biological products [39]. Consequently, less flux toward acetate overflow reactions
(PTAr and ACKr) may result in more L-lysine production.

After analyzing these pathway changes, we further analyzed the enzyme costs of the
L-lysine synthetic pathway calculated from the enzyme-constrained model. To explore the
variability of enzyme costs, we calculated the log2-fold changes of enzyme costs between
LGHP and HGLP, as shown in Figure 5. We found that the upregulated values were mainly
focused on the pathway of L-lysine synthesis from aspartate (DAPDC, DAPDH, DHSPS,
etc.) and the pentose phosphate (PP) pathway (TKT1, TALA, GND, etc.), which was in
agreement with the literature [41,46,47]. In addition, lower fluxes in TCA may lead to more
fluxes for lysine production [48–50]. For example, Jan et al. showed that reduced citrate
synthase (CS) activity leads to a strong accumulation of L-lysine [50].
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C. glutamicum. Green lines indicate the movement of compounds in and out of the cell membrane.

4. Discussion

We constructed the enzyme-constrained model ecCGL1 based on the iCW773 model
of C. glutamicum using the upgraded workflow (Figure 1). First, we updated the workflow
of ECMpy to automatically acquire kcat values from databases and fill missing values
using AutoPACMEN. In the construction of the ecModel of E. coli using ECMpy, we have
emphasized the impact of the subunit composition of proteins on the accuracy of model
simulations, but it was done by manually correcting GPR relationships and collecting
the subunit number of each protein [18]. In this study, we achieved the semi-automated
correction of GPR relationships using the GPRuler tool and protein homology similarity,
and the automated acquisition of the quantitative subunit composition data based on
UniProt. The GEMs and most of the ecGEMs neglect the quantitative subunit composition
information of non-monomeric enzymes, so the introduction of the number of subunits in
the GPR relationship might also be necessary for future model reconstruction.
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The ecCGL1 model exhibited a better simulation accuracy of strain behavior than
the original iCW773. The growth rate increased linearly with the substrate uptake in the
classical model, while the enzyme constraint narrowed the solution space, resulting in
a model prediction that is closer to the real experimental observations. Due to growth
rate limitations and enzyme resource constraints, ecCGL1 was better able to predict the
phenomenon of overflow metabolism, which was absent from the original model. This
indicates that enzyme restriction is the primary driver behind enzyme protein redistribution
and corresponding metabolic flux changes, which was consistent with previous studies [51].
Consequently, our study not only corroborates the hypothesis that effective proteome
reassignment is an important principle of metabolic regulation, but also shows how simple
physicochemical constraints can be integrated into a GEM to improve its predictive power.
Our model also made predictions based on the enzyme cost, offering a more intuitive
reproduction of metabolic engineering strategies than the original GEM. According to
the results of simulations using ecCGL1, some potential targets in the glycolysis pathway
should be considered for improving L-lysine production in the future, which may generate
more energy and phosphoenolpyruvate, thus redistributing more flux toward the L-lysine
synthesis pathway and cell growth.

Even though the ecCGL1 model offers better phenotype predictions, it still has several
shortcomings. First, the GEM of C. glutamicum is still evolving and there is still a lack of an-
notated information in some areas. Recently, Feierabend et al. reconstructed the iCGB21FR
model using iEZ482 as a reference [52], which added seventeen different databases that are
cross-referenced in the model’s annotations and reached a high MEMOTE score (Figure
S1) [53]. This new model expands the number of reactions in the GEM of C. glutam-
icum to 1892. Of course, our process for constructing the enzyme-constrained model of
C. glutamicum is generic, and another enzyme-constrained model can be constructed by
simply replacing the initial model. Besides, the quality of the enzyme-constrained model
depends on the input data on enzyme kinetics and intracellular protein abundance [16].
Unfortunately, there is little data on both for C. glutamicum. There are three ways to
improve the coverage of enzyme kinetic parameters in the model: (1) directly populate
unknown reactions with mean or median values of enzyme kinetic parameters from other
reactions [16–18]; (2) expand the EC number annotation information of model reactions
using EC number prediction tools [54,55]; and (3) directly predict reactions with unknown
parameters based on existing enzyme kinetic parameters via machine learning or deep
learning approaches [25,56]. In addition, the kinetic data were mainly sourced from the
BRENDA and SABIO-RK databases, which mostly collect in vitro measurements that differ
somewhat from the in vivo data. The improvement of parameter accuracy and coverage
will increase the prediction efficiency and reduce the cost of result evaluation, which will
help construct high-quality metabolic models of species such as C. glutamicum. Finally,
although ecGEM has improved predictive power compared to traditional GEMs, biological
systems are also subject to other constraints in addition to enzyme resources, and the
construction of multi-constraint models (e.g., ETGEM [57] and ETFL [58]) will certainly
provide new prospects for systems biology research.

5. Conclusions

In this study, we constructed an enzyme-constrained genome-scale metabolic model of
C. glutamicum (ecCGL1) by integrating various enzymatic parameters at the entire network
level. The results show that constraints on enzyme resources can simulate strain growth
limitations and recapitulate metabolic overflow phenomena, resulting in more realistic
pathway predictions, which can be used to identify key enzymes to provide metabolic
engineering targets for creating cell factories to produce valuable chemicals.
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