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Abstract: Genome-scale metabolic models (GEMs) have been widely used for the phenotypic pre-
diction of microorganisms. However, the lack of other constraints in the stoichiometric model often
leads to a large metabolic solution space being inaccessible. Inspired by previous studies that take
an allocation of macromolecule resources into account, we developed a simplified Python-based
workflow for constructing enzymatic constrained metabolic network model (ECMpy) and constructed
an enzyme-constrained model for Escherichia coli (eciML1515) by directly adding a total enzyme
amount constraint in the latest version of GEM for E. coli (iML1515), considering the protein sub-
unit composition in the reaction, and automated calibration of enzyme kinetic parameters. Using
eciML1515, we predicted the overflow metabolism of E. coli and revealed that redox balance was the
key reason for the difference between E. coli and Saccharomyces cerevisiae in overflow metabolism. The
growth rate predictions on 24 single-carbon sources were improved significantly when compared
with other enzyme-constrained models of E. coli. Finally, we revealed the tradeoff between enzyme
usage efficiency and biomass yield by exploring the metabolic behaviours under different substrate
consumption rates. Enzyme-constrained models can improve simulation accuracy and thus can
predict cellular phenotypes under various genetic perturbations more precisely, providing reliable
guidance for metabolic engineering.

Keywords: enzyme-constrained model; Escherichia coli; enzyme kinetics; protein subunit; over-
flow metabolism

1. Introduction

Accurate prediction of metabolic phenotypes of an organism is a key goal of com-
putational biology and has attracted more and more attention from researchers. For this
purpose, many genome-scale metabolic models have been developed [1,2] and successfully
applied for guiding metabolic engineering based on flux balance analysis (FBA) and other
stoichiometry-based methods [3,4]. However, in many cases, a microorganism shows
suboptimal metabolism [5,6] that is inconsistent with the optimal solution of FBA [7], im-
plying that the metabolic capacity of an organism is also constrained by other factors. For
example, overflow metabolism, involving incomplete oxidation of glucose to fermentation
byproducts such as acetate and ethanol instead of using respiratory pathway even in the
presence of oxygen [8] cannot be properly explained by models only considering reaction
stoichiometries. Studies suggested that it is likely to be caused by the limited amount of
protein molecules within the cell [9].

In recent years, researchers proposed several new methods that introduced new con-
straints such as cell volume limitation [10], protein resource allocation [11], enzyme activity
and total protein mass [12,13], thermodynamics [14] into the model along with the stoi-
chiometric constraints. FBA with molecular crowding (FBAwMC) [10] introduced both the
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crowding coefficient and cell volume constraint to limit the space occupied by enzymes.
With the new constraints, the method successfully simulated the substrate hierarchy utiliza-
tion in E. coli [10]. Adadi et al. further extended FBAwMC by introducing known enzyme
kinetic parameters and proposed a new method called MOMENT (metabolic modeling
with enzyme kinetics), which improved the prediction accuracy of intracellular fluxes and
enzyme gene expression values [15]. In 2017, Sanchez et al. proposed a new construction
workflow of the enzyme-constrained model (GECKO, genome-scale model to account for
enzyme constraints, using kinetics and omics), which used an average enzyme saturation
coefficient and determined the fraction of enzyme proteins from proteomics data [16].
They developed an enzyme-constrained model for S. cerevisiae using GECKO and made
an accurate prediction of several metabolic phenotypes [16]. However, introducing the
enzyme constraints into the original metabolic model using GECKO needs to be extensively
revised by modifying every metabolic reaction with a pseudo-metabolite representing an
enzyme and adding hundreds of exchange reactions for enzymes, which is complex and
significant increases the model size. Bekiaris et al. further provided an automatic workflow
(AutoPACMEN) for the construction of enzyme-constrained models inspired by MOMENT
and GECKO, which only introduced one pseudo-reaction and pseudo-metabolite [17].
These two construction processes, GECKO and AutoPACMEN, have greatly facilitated the
construction of enzyme-constrained models for each species, and successfully constructed
for S. cerevisiae [16], Bacillus subtilis [18], Bacillus coagulans [19], E. coli [20] and Streptomyces
coelicolor [21], which have successfully applied to target prediction for enhancing the yield
of products [18,20,21].

In the current study, we propose a simpler workflow called ECMpy by explicitly
introducing an enzyme constraint without modifying existing metabolic reactions or adding
new reactions. Using ECMpy workflow, we constructed a high-quality enzyme-constrained
model for E. coli (eciML1515) based on its latest metabolic model iML1515 [22], high
coverage of enzyme kinetics data gathering from the literature [23], and automated enzyme
kinetic parameter calibration process. We demonstrated that eciML1515 could simulate
the sub-optimal metabolism such as overflow metabolism and the maximal growth rates
under different carbon sources. The whole process for model construction and simulation
is available at GitHub (https://github.com/tibbdc/ECMpy, accessed on 25 December
2021) for users to easily reproduce the results and use it as a reference to build enzyme-
constrained models for other organisms.

2. Materials and Methods
2.1. The Workflow of ECMpy

A metabolic network (like iML1515 model in this study) was used as the initial model
for the construction of enzyme-constrained models according to the workflow shown
in Figure 1. Firstly, reversible reactions in the model were divided into two irreversible
reactions because of different kcat values. The stoichiometric constraints (Equation (1)) and
reversibility constraints (Equation (2)) used were the same as in flux balance analysis [24].
A new enzymatic constraint (Equation (3)) was introduced into the model, where ptot
and f represent the total protein fraction in E. coli and the mass fraction of enzymes,
respectively. The enzyme mass fraction f was calculated based on Equation (4) where Ai
and Aj represented the abundances (mole ratio) of the i-th protein (p_num represented
proteins expressed in the model) and j-th protein (g_num represented proteins expressed in
the whole proteome). MWi and kcat,i were molecular weight and turnover number of an
enzyme catalyzing reaction i. For reactions catalyzed by multiple isoenzymes, a reaction
can be split into multiple reactions. For reactions catalyzed by enzyme complex, using

the minimum value of protein in complex ( kcat,i
MWi

= min
( kcat,ij

MWij
, j ∈ m

)
, m is the number of

proteins in complex). σi was the saturation coefficient of i-th enzyme.

https://github.com/tibbdc/ECMpy
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S·v = 0 (1)

vlb ≤ v ≤ vub (2)
n

∑
i=1

vi·MWi
σi·kcat,i

≤ ptot· f (3)

f =
p_num

∑
i=1

Ai MWi/
g_num

∑
j=1

Aj MWj (4)
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2.2. Calibration of the Original kcat Values

Generally, enzyme-constrained models need model validation (e.g., adjust the original
kcat values to some extent to improve the agreement of model predictions with experimental
data), similar to the way in GECKO and AutoPACMEN [17]. We proposed two principles
(enzyme usage and 13C flux consistency) to adjust the original kcat values, as follows:
First, a reaction with an enzyme usage exceeding 1% of the total enzyme content requires
parameter correction; Second, a reaction with the kcat multiplied by 10% of the total enzyme
amount (vi =

10%×Etotal ×σi×kcat,i
MWi

) is less than the flux determined by 13C experiment needs
to be corrected. All the kcat data used for correction comes from BRaunschweig ENzyme
DAta base (BRENDA) and System for the Analysis of Biochemical Pathways - Reaction
Kinetics databases (SABIO-RK) (using the maximum kcat value).
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2.3. Simulation

We stored enzyme constraint information and metabolic network into JavaScript Object
Notation (JSON) format, as the Systems Biology Markup Language (SBML) format cannot
save enzyme constraints due to COBRApy [25] limitations. Then, we directly read the
JSON file to obtain the enzyme-constrained model using the ‘get_enzyme_constraint_model’
function written by us. This transformed enzyme-constrained model is consistent with
classical constraint-based models in format, which means that functions in COBRApy can
be used directly on this model.

To evaluate eciML1515′s ability to predict growth rates, we compared the predicted
results of iML1515 and eciML1515 with experimental results performed by Adadi et al. [15],
respectively. Specially, we set the upper bound of substrate uptake rate to 10 mmol/gDW/h
and measured E. coli’s growth rates on 24 single carbon sources (e.g., acetate, fructose,
fumarate and et al.). For comparison of each method on 24 single carbon sources, the model
and experimental results were used to calculate the estimation error of the growth rate
(Equation (5)) [26] and normalized flux error (Equation (6)) [27].

estimation error =

∣∣∣vgrowth,sim − vgrowth,exp

∣∣∣
vgrowth,exp

(5)

normalized flux error =

√
∑n

i

(
vgrowth,simi

− vgrowth,expi

)2

∑n
i

(
vgrowth,expi

)2 (6)

In addition to the maximal growth rates under different carbon sources, we also
explored the overflow metabolic behaviours of E. coli. Especially, the growth rate is fixed
(from 0.1 h−1 to 0.65 h−1) and glucose is supplied infinitely. Besides, we calculated the
reaction enzyme cost (Equation (7)), energy synthesis enzyme cost (Equation (8)) and
oxidative phosphorylation ratio (Equation (9)) to explore the adjustment strategy of E. coli’s
overflow metabolic pathway.

reaction enzyme cos ti =
vi·MWi
σi·kcat,i

(7)

energy synthesis enzyme cos ti =
n

∑
i=1

reaction enzyme cos ti/vnet_generated_ATP (8)

oxidative phosphorylation ratio =
vO2

vglucose
(9)

To obtain the trade-off between yield ( vbiomass
vglucose∗MWglucose

) and enzyme usage efficiency

( vbiomass
Emin

), we developed a new method (Equations (10)–(14)) to calculate the minimum
enzyme amount (Emin) inspired by pFBA (parsimonious FBA) [28]. When simulation, we
set the concentration of glucose from 1 mmol/gDW/h to 10 mmol/gDW/h).

obj : minimize
n

∑
i=1

vi·MWi
σi·kcat,i

(10)

S·v = 0 (11)

vlb ≤ v ≤ vub (12)
n

∑
i=1

vi·MWi
σi·kcat,i

≤ ptot· f (13)

vbiomass = max(growth rate) (14)
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3. Results
3.1. Construction of the Enzyme-Constrained Model of iML1515 by ECMpy

The iML1515 model was used as the initial model for the construction of the enzyme-
constrained model. During the process, we observed that some errors in iML1515 (e.g.,
GPR relationships, reaction direction and EC number, et al.) and corrected them based
on information from the Encyclopedia of Escherichia coli genes and metabolism database
(EcoCyc) [29] (see Table S1 for details). Then, we divided reversible reactions in iML1515
into two irreversible reactions and split reactions catalyzed by multiple isoenzymes into
different reactions (append num in reaction ID, e.g., ALATA_D2_num1). We found that
the subunit composition of different proteins in E. coli differed significantly (Figure S1),
so we took the subunit composition of proteins into account when calculating protein
molecular weights. The molecular weights, subunit composition of enzymes in iML1515
were obtained from EcoCyc. GECKO and sMOMENT (AutoPACMEN for E. coli) used
the in vitro kcat which was obtained in labour-intensive, low-throughput in vitro assays
and resulted in only a small fraction of cellular enzymes having a measured kcat even
in model organisms [30]. That is why we used the kcat values derived from machine
learning methods performed by Heckmann et al. [23]. In the model, kcat values were
assigned to 2432 enzymatic reactions, and the coverage exceeds 60% (including isozyme
split reactions and reversible split reactions, exclude exchange reactions), which is larger
than the GECKO and sMOMENT (the number of reactions that matched EC number
and substrate at the same time was only about 387). The protein fraction ptot was set at
0.56 g gDW−1 based on the experimentally measured macromolecular composition of E.
coli cells [31,32]. The E. coli protein abundance values were obtained from the Protein
abundance database (PAXdb) (https://pax-db.org/, accessed on 25 December 2021) [33]
and the ‘whole organism (integrated)’ dataset with the highest coverage and credibility
was selected. According to Equation (4), f was calculated to be 0.406 g enzyme/g protein.

However, the flux of growth rate predicted by this initial model is low and the con-
version of phosphoenolpyruvate to the TCA pathway is abnormal (Figure S2). We first
calibrated the reaction according to the enzyme usage, and changed 14 reactions (See
Table S2 for details). The flux of growth rate predicted by the calibrated model increased
to 0.5594 h−1, but the conversion of phosphoenolpyruvate to the TCA pathway was still
abnormal (Figure S2). Subsequently, we compared with the 13C experimental data [34]
and found that the kcat value of two reactions (PDH: pyruvate to acetyl-CoA and AKGDH:
2-oxoglutarate to succinyl-CoA) is low, which is mainly caused by the subunit composi-
tion of these two reactions is complicated and the protein molecular weight is very large.
After calibration using 13C data (changed two reactions, Table S2), the growth rate in-
creased to 0.6802 h−1, and the consistency with the pathway obtained by 13C data reached
92.1% (Figure S3). Different from other methods for constructing enzyme-constrained
models, our method considers the composition of protein subunits and realizes enzyme
constraint by simply adding the total enzyme amount equation (Table 1). Therefore, the
enzyme-constrained model we constructed does not change the stoichiometric matrix
format (because the isoenzyme reaction and reversible reaction were split, the number
of reactions increased), and the solution and subsequent operations of the entire model
are consistent with the classical constraint-based model. We used AutoPACMEN to build
the GECKO and sMOMENT model of iML1515, and compared them with ECMpy. We
found that when considering the subunit composition of protein, the growth rate predicted
by GECKO and sMOMENT model is lower, and the flux distribution of the pathway is
abnormal from the 13C data, especially the EMP pathway (Figure 2, purple boxes).

https://pax-db.org/
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Table 1. Comparison of the Construction Methods of Enzyme-constrained Model.

Items MOMENT GECKO AutoPACMEN ECMpy

Subunit number (not consider) × (consider)
√

× (provide interface)
√

Proteomics ×
√ √ √

Saturation 1 0.46 1 1
Mass fraction of enzymes 0.56 0.448 0.095 0.227

Adding methods of
enzyme constraints

add enzyme concentrations
for each reaction and add

the enzymes solvent
capacity constraint

change stoichiometric matrix,
and introduce a large number

of pseudo-reaction and
pseudo-metabolite

change stoichiometric
matrix, and introduce one

pseudo-reaction and
pseudo-metabolite

only add a total
enzyme constraint

Reaction reversibility not split split part split split

Isozyme a reaction can be catalyzed
by multiple enzymes

a reaction can be catalyzed by
multiple enzymes

always assumes that the
enzyme with the minimal

cost is used

a reaction can be
catalyzed by

multiple enzymes

Filling method of missing
kcat

the median turnover
number across all reactions

match the kcat value to other
substrates, organisms, or even
introduce wild cards in the EC

number.

Similar to GECKO enzyme cost=0

Model calibration ×
√ √ √

Model type Not provided XML XML JSON
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constructed by ECMpy (green), prediction results of eciML1515 constructed by GECKO (blue), and
prediction results of eciML1515 constructed by sMOMENT (yelllow).



Biomolecules 2022, 12, 65 7 of 13

3.2. Overflow Metabolism of E. coli

Overflow metabolism describes a phenomenon in which cells produce fermentation
products even in the presence of oxygen that led to the waste of carbon sources [9]. Enzyme-
constrained metabolic models have been used to simulate the overflow metabolism in S.
cerevisiae [16,35]. To test our model, we applied it to simulate the overflow metabolism
reported by literature [36], in which E. coli secreted acetate at high growth rates (above
0.5 h−1). As shown in Figure 3a,b, the eciML1515 model (the kinetic parameters for each
reaction see Table S3) could precisely simulate the switch point where acetate production
started. The simulation results indicated that at high growth rates, the acetate producing
fermentation pathway was activated due to its low enzyme cost in comparison with
the energetically-efficient oxidative respiratory pathway (0.62 g vs. 2.38 g enzyme for
1 mol ATP/h, Table S4).
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The model also predicted a notable difference in the overflow metabolism between E.
coli and S. cerevisiae (Figure 3c). In S. cerevisiae, the oxygen-consuming high-yield respiratory
pathway was decreased to a very low value [37], whereas in E. coli the respiratory pathway
was maintained at a high level (Figure 3a) even though the acetate production pathway
was activated. A logical explanation for this is that the fermentation products of these two
organisms are different. In S. cerevisiae, ethanol was produced and NADH was balanced
in the fermentation pathway. However, in E. coli, acetate was produced and the excess
NADH produced in the fermentation pathway needs to be balanced through the oxidative
respiratory pathway (Figure 3d). This result was in agreement with the finding of a previous
study [38].
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3.3. Maximum Growth Rate of E. coli on Different Carbon Sources

We simulated the maximum growth rates of E. coli on 24 different carbon sources
and observed that certain other fermentation byproducts (e.g., pyruvate and fumarate) in
addition to acetate could also be produced at the maximal growth rates. The predicted
results were in good agreement with previously reported experimental results [15] as
shown in Figure 4a (the normalized flux error is 0.062) and Table S5. On the other hand, the
calculated growth rates using iML1515 (the substrate uptake rates were set as the same as
those for eciML1515) were significantly higher than the measured values (the standard flux
error is 0.205, Figure 4b). The prediction results for most of the substrates (e.g., N-Acetyl-
D-glucosamine and glucose) from eciML1515 were closer to (estimation error is 0.01 and
0.03) experimental values than those from the iML1515 model. In a stoichiometric model
such as iML1515, the substrate uptake rate needs to be preset to calculate the growth rate
and there is a linear relationship between the growth rate and substrate consumption rate.
Whereas in the enzyme-constrained model, the maximal growth rate is limited by enzyme
resources and thus there is no need to preset a substrate consumption rate. This means
that at the maximal growth rate, a considerable quantity of substrates was utilized through
the fermentation pathways with the secretion of fermentation products. Therefore, the
predicted growth rates from the enzyme-constrained model were significantly lower than
those from iML1515 but much closer to the experimental findings. One exception for acetate
as the carbon source is that the predicted results were the same for both models as no
acetate producing fermentation pathway was activated in this case. From the results shown
in Figure 4a, we can also see that for most carbon sources the predicted growth rates were
still higher than the experimentally measured rates. This may imply that there are other
constraints along with enzyme constraints limiting cellular growth, such as the regulatory
or thermodynamic constraints. New models integrating these new constraints in a proper
formula can further improve the prediction accuracy [39]. For xylose and glycerol, the
predicted rates were smaller than the experimental values, implying that the kcat values of
enzymes in the uptake pathways of these two substrates may be underestimated. Besides,
we found that ECMpy is better than GECKO and sMOMENT for the simulation of growth
rate on 24 different carbon sources (all consider protein subunits, but ECMpy corrected
for enzyme kinetic parameters), and the simulation results of all enzyme-constrained
models are also better than non-enzyme-constrained models (Figure 4a–d). This may also
mean more precise measurement of the enzyme kinetic parameters could improve model
prediction.

3.4. Simulation of the Trade-Off between Enzyme Usage Efficiency and Biomass Yield

In addition to the maximal growth rates under different carbon sources, we also
explored the metabolic behaviours of E. coli at different substrate (glucose as an example)
uptake rates. As shown in Figure 5a,b, the metabolism processes can be divided into
three stages: substrate-limited stage, overflow switching phase and overflow stage. At the
first stage, the glucose uptake rate is low and has a linear relationship with growth rates.
The biomass yield is almost constant (not the same as a small number of substrates are
used for non-growth-related maintenance). At the second stage, the cell redistributes the
intracellular fluxes toward pathways with high enzyme usage efficiency but low biomass
yield, and acetate gradually becomes a byproduct of the newly activated pathways. In
contrast, at the overflow stage, the organism has to activate the less energy efficient but
higher enzyme usage efficiency fermentation pathway to produce the energy required
for growth, leading to a sharp drop of biomass yield due to a big fraction of substrates
used in the fermentation pathway. There was a clear trade-off between yield and enzyme
usage efficiency (Figure 5b). These predicted metabolic behaviours were consistent with
long-standing empirical models of microbial growth [40]. This trade-off phenomenon was
also predicted by the E. coli ME-model [41], indicating that the enzyme-constrained model
could accurately predict the same phenomenon as ME-model but without introducing
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thousands of new reactions involved in the transcription and translation process in the
model.Biomolecules 2022, 12, x 9 of 13 
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4. Discussion

We constructed a genome-scale enzyme-constrained model eciML1515 for E. coli
using the simplified Python-based ECMpy workflow. The new model was validated
with various experimental data from literature including metabolic overflow data and
the growth rates under different carbon sources. The prediction results were better than
GECKO and sMOMENT, and those enzyme-constrained models were also better than the
original iML1515, indicating in these conditions enzyme availability rather than network
stoichiometry is the key constraint. The enzyme-constrained model also showed a clear
trade-off between biomass yield and enzyme usage efficiency. Switching from a high
yield pathway to a high-rate pathway could be a general principle in metabolic regulation.
This provides new insight into engineering organisms for the production of valuable
biochemicals. In organisms using a high yield and high enzyme cost biosynthesis pathway,
improving enzyme-specific activity could be more effective than enzyme overexpression.

Different from GECKO and sMOMENT, our method for enzyme constrained model
construction just adds a constraint on the total amount of enzyme does not need to modify
the reaction equations (e.g., introduce enzymes as reactants) and introduce over a thousand
new enzyme exchange reactions (like GECKO). This greatly reduces the complexity in
model construction and the model can be solved using COBRApy or other freely available
python packages for constrained optimization. Besides, compared to the existing E. coli
enzyme constraint model (using GECKO or sMOMENT), which set the number of each of
the protein subunits to one, we defined the number of subunits for each protein in detail
based on the EcoCyc. For example, pyruvate dehydrogenase consists of three subunits,
AceE, AceF and Lpd, and its molecular weight is about 216.43 kD if the number of subunits
is 1:1:1. However, the true number of subunits is 24:24:12 in EcoCyc, which means that the
final molecular weight is 4586.16 kD. The large difference between the molecular weight of
the same reaction would certainly cause a big difference in the flux results. The whole model
construction and simulation processes were written in Jupyter Notebook files available
from GitHub. This enables people from anywhere to reproduce the work and construct
their enzyme constrained models for other organisms.

As we have shown that the quality of the enzyme constrained model depended largely
on the quantity and accuracy of enzyme parameters. Even for E. coli, the enzyme kinetic
data coverage is low in databases such as BRENDA and kinetic parameters from different
researchers are often inconsistent. In this study, we make use of the predicted data from
machine learning [23] to improve the data coverage. Besides, enzyme-constrained models
need model validation to adjust the original kcat values to some extent to improve the
agreement of model predictions with experimental data [17]. A system kinetic parameter
correction method has been presented in the sMOMENT workflow [17], which helps
identify such unreliable parameters and improve model prediction accuracy. However, this
calibration workflow is time-consuming, going through protein pool calibration, manual
kcat adjustment and automated kcat calibration, and there are some unreasonable places,
such as the manual correction is simply expanded by 10 times or reduced by 10 times. In
recently, GECKO 2.0 (https://doi.org/10.1101/2021.03.05.433259, accessed on 25 December
2021) provided an automatic procedure, in which the top enzymatic limitation on growth
rate is identified and its correspondent kcat is then iteratively replaced by the highest one
available in BRENDA for the given enzyme class until the growth rate fit is normal [42].
Currently, we propose a simpler calibration process that requires only two steps (enzyme
usage and 13C flux consistency, see method) to update the kcat for a small number of
reactions to achieve a better growth rate fit. This new calibration process will facilitate the
construction of high-quality enzyme constraint models.

The ECMpy also has some areas that need improvement. First, ECMpy currently
obtains protein subunit composition data manually, while a large amount of protein com-
position data are distributed in databases, such as BioCyc [43], Uniprot [44] and Complex
Portal [45], so an automated tool to obtain them is urgently needed. Second, the rationale

https://doi.org/10.1101/2021.03.05.433259


Biomolecules 2022, 12, 65 11 of 13

of the model needs to be further developed to consider more factors affecting the cost of
the enzyme (e.g., thermodynamics and regulation).

5. Conclusions

We presented ECMpy, a simple open-source Python-based workflow, for constructing
enzyme-constrained models based on enzyme kinetic parameters and proteomics data.
Using this method, we constructed an enzyme constrained model eciML1515 for E. coli.
By introducing the enzyme constraints, the model can predict the overflow metabolism
and growth under different carbon sources more precisely than the stoichiometric model
iML1515. The construction method can be applied to construct enzyme constrained models
for other organisms and the optimization framework can be extended to integrate other
constraints such as thermodynamic feasibility to further reduce the solution space and
subsequently improve model prediction accuracy.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/biom12010065/s1, Figure S1: Number of subunits per complex (only consider complex with two
or more subunits) in E. coli. Figure S2: Flux comparison of eciML1515_ori and eciML1515_adj_round1.
Figure S3: Flux comparison of eciML1515_ori and eciML1515_adj_round2. Table S1: The modified
genes. Table S2: The corrected kinetic parameters. Table S3: The kinetic parameters. Table S4: Enzyme
cost of energy metabolism in E. coli. Table S5: The maximum growth rates.

Author Contributions: Conceptualization, Z.M., X.Z. and H.M.; data curation, Z.M. and X.Z.; formal
analysis, Z.M. and X.Z.; funding acquisition, H.M.; methodology, Z.M., X.Z. and H.M.; project
administration, Z.M. and H.M.; software, Z.M. and P.Z.; validation, X.Z., X.Y., P.Z., J.D. and Q.Y.;
writing—original draft, Z.M., X.Z. and X.Y.; writing—review and editing, Z.M., X.Z., X.Y., Q.Y. and
H.M. Conceived the research, H.M.; developed the automatic workflow of the enzyme-constrained
model, Z.M. and X.Z.; designed the enzyme-constrained model construction method and analyzed
eciML1515, Z.M., X.Z., and X.Y. Wrote the manuscript, Z.M. and X.Z. Further perfected the workflow,
X.Y., P.Z., J.D. and Q.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the National Key Research and Development Program of
China (2018YFA0900300); the International Partnership Program of Chinese Academy of Sciences
(153D31KYSB20170121). Other than supplying funds, the funding agencies played no role in the
development of this research, the analysis of results, or in the preparation of this manuscript.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The scripts and datasets generated during and/or analyzed during the
current study can be found at: https://github.com/tibbdc/ECMpy (accessed on 25 December 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Edwards, J.S.; Palsson, B.O. Systems Properties of the Haemophilus influenzaeRd Metabolic Genotype. J. Biol. Chem. 1999, 274,

17410–17416. [CrossRef] [PubMed]
2. Gu, C.; Kim, G.B.; Kim, W.J.; Kim, H.U.; Lee, S.Y. Current status and applications of genome-scale metabolic models. Genome Biol.

2019, 20, 1–18. [CrossRef] [PubMed]
3. O’Brien, E.J.; Monk, J.M.; Palsson, B.O. Using Genome-scale Models to Predict Biological Capabilities. Cell 2015, 161, 971–987.

[CrossRef] [PubMed]
4. Kerkhoven, E.; Lahtvee, P.-J.; Nielsen, J. Applications of computational modeling in metabolic engineering of yeast. FEMS Yeast

Res. 2014, 15, 1–13. [CrossRef]
5. Schuetz, R.; Kuepfer, L.; Sauer, U. Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia

coli. Mol. Syst. Biol. 2007, 3, 119. [CrossRef]
6. Mahadevan, R.; Schilling, C.H. The effects of alternate optimal solutions in constraint-based genome-scale metabolic models.

Metab. Eng. 2003, 5, 264–276. [CrossRef]
7. Lin, Z.; Zhang, Y.; Yuan, Q.; Liu, Q.; Li, Y.; Wang, Z.; Ma, H.; Chen, T.; Zhao, X. Metabolic engineering of Escherichia coli for

poly(3-hydroxybutyrate) production via threonine bypass. Microb. Cell Factories 2015, 14, 185. [CrossRef]

https://www.mdpi.com/article/10.3390/biom12010065/s1
https://www.mdpi.com/article/10.3390/biom12010065/s1
https://github.com/tibbdc/ECMpy
http://doi.org/10.1074/jbc.274.25.17410
http://www.ncbi.nlm.nih.gov/pubmed/10364169
http://doi.org/10.1186/s13059-019-1730-3
http://www.ncbi.nlm.nih.gov/pubmed/31196170
http://doi.org/10.1016/j.cell.2015.05.019
http://www.ncbi.nlm.nih.gov/pubmed/26000478
http://doi.org/10.1111/1567-1364.12199
http://doi.org/10.1038/msb4100162
http://doi.org/10.1016/j.ymben.2003.09.002
http://doi.org/10.1186/s12934-015-0369-3


Biomolecules 2022, 12, 65 12 of 13

8. Veit, A.; Polen, T.; Wendisch, V.F. Global gene expression analysis of glucose overflow metabolism in Escherichia coli and
reduction of aerobic acetate formation. Appl. Microbiol. Biotechnol. 2006, 74, 406–421. [CrossRef]

9. Basan, M.; Hui, S.; Okano, H.; Zhang, Z.; Shen, Y.; Williamson, J.; Hwa, T. Overflow metabolism in Escherichia coli results from
efficient proteome allocation. Nature 2015, 528, 99–104. [CrossRef]

10. Beg, Q.K.; Vazquez, A.; Ernst, J.; de Menezes, M.A.; Bar-Joseph, Z.; Barabasi, A.; Oltvai, Z.N. Intracellular crowding defines the
mode and sequence of substrate uptake by Escherichia coli and constrains its metabolic activity. Proc. Natl. Acad. Sci. USA 2007,
104, 12663–12668. [CrossRef]

11. Mori, M.; Hwa, T.; Martin, O.; De Martino, A.; Marinari, E. Constrained Allocation Flux Balance Analysis. PLoS Comput. Biol.
2016, 12, e1004913. [CrossRef]

12. Shlomi, T.; Benyamini, T.; Gottlieb, E.; Sharan, R.; Ruppin, E. Genome-Scale Metabolic Modeling Elucidates the Role of Proliferative
Adaptation in Causing the Warburg Effect. PLoS Comput. Biol. 2011, 7, e1002018. [CrossRef]

13. Zeng, H.; Yang, A. Modelling overflow metabolism in Escherichia coli with flux balance analysis incorporating differential
proteomic efficiencies of energy pathways. BMC Syst. Biol. 2019, 13, 3. [CrossRef]

14. Noor, E.; Flamholz, A.; Bar-Even, A.; Davidi, D.; Milo, R.; Liebermeister, W. The Protein Cost of Metabolic Fluxes: Prediction from
Enzymatic Rate Laws and Cost Minimization. PLOS Comput. Biol. 2016, 12, e1005167. [CrossRef] [PubMed]

15. Adadi, R.; Volkmer, B.; Milo, R.; Heinemann, M.; Shlomi, T. Prediction of Microbial Growth Rate versus Biomass Yield by a
Metabolic Network with Kinetic Parameters. PLOS Comput. Biol. 2012, 8, e1002575. [CrossRef]

16. Sánchez, B.J.; Zhang, C.; Nilsson, A.; Lahtvee, P.-J.; Kerkhoven, E.J.; Nielsen, J. Improving the phenotype predictions of a yeast
genome-scale metabolic model by incorporating enzymatic constraints. Mol. Syst. Biol. 2017, 13, 935. [CrossRef]

17. Bekiaris, P.S.; Klamt, S. Automatic construction of metabolic models with enzyme constraints. BMC Bioinform. 2020, 21, 1–13.
[CrossRef] [PubMed]

18. Massaiu, I.; Pasotti, L.; Sonnenschein, N.; Rama, E.; Cavaletti, M.; Magni, P.; Calvio, C.; Herrgard, M.J. Integration of enzymatic
data in Bacillus subtilis genome-scale metabolic model improves phenotype predictions and enables in silico design of poly-γ-
glutamic acid production strains. Microb. Cell Fact. 2019, 18, 1–20. [CrossRef]

19. Chen, Y.; Sun, Y.; Liu, Z.; Dong, F.; Li, Y.; Wang, Y. Genome-scale modeling for Bacillus coagulans to understand the metabolic
characteristics. Biotechnol. Bioeng. 2020, 117, 3545–3558. [CrossRef] [PubMed]

20. Ye, C.; Luo, Q.; Guo, L.; Gao, C.; Xu, N.; Zhang, L.; Liu, L.; Chen, X. Improving lysine production through construction of an
Escherichia coli enzyme-constrained model. Biotechnol. Bioeng. 2020, 117, 3533–3544. [CrossRef]

21. Sulheim, S.; Kumelj, T.; Van Dissel, D.; Salehzadeh-Yazdi, A.; Du, C.; Van Wezel, G.P.; Nieselt, K.; Almaas, E.; Wentzel, A.;
Kerkhoven, E.J. Enzyme-Constrained Models and Omics Analysis of Streptomyces coelicolor Reveal Metabolic Changes that
Enhance Heterologous Production. iScience 2020, 23. [CrossRef]

22. Monk, J.M.; Lloyd, C.J.; Brunk, E.; Mih, N.; Sastry, A.; King, Z.; Takeuchi, R.; Nomura, W.; Zhang, Z.; Mori, H.; et al. iML1515,
a knowledgebase that computes Escherichia coli traits. Nat. Biotechnol. 2017, 35, 904–908. [CrossRef]

23. Heckmann, D.; Lloyd, C.J.; Mih, N.; Ha, Y.; Zielinski, D.C.; Haiman, Z.B.; Desouki, A.A.; Lercher, M.J.; Palsson, B.O. Machine
learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models. Nat. Commun.
2018, 9, 1–10. [CrossRef] [PubMed]

24. Orth, J.D.; Thiele, I.; Palsson, B.Ø. What is flux balance analysis? Nat. Biotechnol 2010, 28, 245–248. [CrossRef] [PubMed]
25. Ebrahim, A.; Lerman, J.A.; Palsson, B.O.; Hyduke, D.R. COBRApy: COnstraints-Based Reconstruction and Analysis for Python.

BMC Syst. Biol. 2013, 7, 74. [CrossRef]
26. Motamedian, E.; Mohammadi, M.; Shojaosadati, S.A.; Heydari, M. TRFBA. An algorithm to integrate genome-scale metabolic

and transcriptional regulatory networks with incorporation of expression data. Bioinformatics 2017, 33, 1057–1063. [CrossRef]
[PubMed]

27. Machado, D.; Herrgård, M. Systematic Evaluation of Methods for Integration of Transcriptomic Data into Constraint-Based
Models of Metabolism. PLoS Comput. Biol. 2014, 10, e1003580. [CrossRef]

28. Lewis, N.; Hixson, K.K.; Conrad, T.M.; Lerman, J.; Charusanti, P.; Polpitiya, A.D.; Adkins, J.; Schramm, G.; Purvine, S.; Lopez-
Ferrer, D.; et al. Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol.
Syst. Biol. 2010, 6, 390. [CrossRef]

29. Karp, P.D.; Ong, W.K.; Paley, S.; Billington, R.; Caspi, R.; Fulcher, C.; Kothari, A.; Krummenacker, M.; Latendresse, M.; Midford,
P.E.; et al. The EcoCyc Database. EcoSal Plus 2018. [CrossRef]

30. Nilsson, A.; Nielsen, J.; Palsson, B.O. Metabolic Models of Protein Allocation Call for the Kinetome. Cell Syst. 2017, 5, 538–541.
[CrossRef] [PubMed]

31. Bremer, H.; Dennis, P.P. Modulation of chemical composition and other parameters of the cell at different exponential growth
rates. EcoSal. Plus 2008, 3. [CrossRef]

32. Brunk, E.; Mih, N.; Monk, J.; Zhang, Z.; O’Brien, E.J.; Bliven, S.E.; Chen, K.; Chang, R.L.; Bourne, P.E.; Palsson, B.O. Systems
biology of the structural proteome. BMC Syst. Biol. 2016, 10, 26. [CrossRef]

33. Wang, M.; Weiss, M.; Simonovic, M.; Haertinger, G.; Schrimpf, S.P.; Hengartner, M.; von Mering, C. PaxDb, a Database of Protein
Abundance Averages Across All Three Domains of Life. Mol. Cell. Proteom. 2012, 11, 492–500. [CrossRef]

34. Okahashi, N.; Kajihata, S.; Furusawa, C.; Shimizu, H. Reliable Metabolic Flux Estimation in Escherichia coli Central Carbon
Metabolism Using Intracellular Free Amino Acids. Metabolites 2014, 4, 408–420. [CrossRef]

http://doi.org/10.1007/s00253-006-0680-3
http://doi.org/10.1038/nature15765
http://doi.org/10.1073/pnas.0609845104
http://doi.org/10.1371/journal.pcbi.1004913
http://doi.org/10.1371/journal.pcbi.1002018
http://doi.org/10.1186/s12918-018-0677-4
http://doi.org/10.1371/journal.pcbi.1005167
http://www.ncbi.nlm.nih.gov/pubmed/27812109
http://doi.org/10.1371/journal.pcbi.1002575
http://doi.org/10.15252/msb.20167411
http://doi.org/10.1186/s12859-019-3329-9
http://www.ncbi.nlm.nih.gov/pubmed/31937255
http://doi.org/10.1186/s12934-018-1052-2
http://doi.org/10.1002/bit.27488
http://www.ncbi.nlm.nih.gov/pubmed/32648961
http://doi.org/10.1002/bit.27485
http://doi.org/10.1016/j.isci.2020.101525
http://doi.org/10.1038/nbt.3956
http://doi.org/10.1038/s41467-018-07652-6
http://www.ncbi.nlm.nih.gov/pubmed/30531987
http://doi.org/10.1038/nbt.1614
http://www.ncbi.nlm.nih.gov/pubmed/20212490
http://doi.org/10.1186/1752-0509-7-74
http://doi.org/10.1093/bioinformatics/btw772
http://www.ncbi.nlm.nih.gov/pubmed/28065897
http://doi.org/10.1371/journal.pcbi.1003580
http://doi.org/10.1038/msb.2010.47
http://doi.org/10.1128/ecosalplus.ESP-0006-2018
http://doi.org/10.1016/j.cels.2017.11.013
http://www.ncbi.nlm.nih.gov/pubmed/29284126
http://doi.org/10.1128/ecosal.5.2.3
http://doi.org/10.1186/s12918-016-0271-6
http://doi.org/10.1074/mcp.O111.014704
http://doi.org/10.3390/metabo4020408


Biomolecules 2022, 12, 65 13 of 13

35. Chen, Y.; Nielsen, J. Energy metabolism controls phenotypes by protein efficiency and allocation. Proc. Natl. Acad. Sci. USA 2019,
116, 17592–17597. [CrossRef]

36. Varma, A.; Palsson, B.O. Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in
wild-type Escherichia coli W3110. Appl. Environ. Microbiol. 1994, 60, 3724–3731. [CrossRef] [PubMed]

37. Thomas, T.D.; Ellwood, D.C.; Longyear, V.M.C. Change from Homo- to Heterolactic Fermentation by Streptococcus lactis
Resulting from Glucose Limitation in Anaerobic Chemostat Cultures. J. Bacteriol. 1979, 138, 109–117. [CrossRef]

38. van Hoek, M.J.; Merks, R.M. Redox balance is key to explaining full vs. partial switching to low-yield metabolism. BMC Syst.
Biol. 2012, 6, 1–10. [CrossRef] [PubMed]

39. Yang, X.; Mao, Z.; Zhao, X.; Wang, R.; Zhang, P.; Cai, J.; Xue, C.; Ma, H. Integrating thermodynamic and enzymatic constraints
into genome-scale metabolic models. Metab. Eng. 2021, 67, 133–144. [CrossRef] [PubMed]

40. Koch, A.L. Microbial physiology and ecology of slow growth. Microbiol Mol. Biol. Rev. 1997, 61, 305–318. [PubMed]
41. O’Brien, E.J.; Lerman, J.; Chang, R.; Hyduke, D.R.; Palsson, B.Ø. Genome-scale models of metabolism and gene expression extend

and refine growth phenotype prediction. Mol. Syst. Biol. 2013, 9, 693. [CrossRef]
42. Domenzain, I.; Sánchez, B.; Anton, M.; Kerkhoven, E.J.; Millán-Oropeza, A.; Henry, C.; Siewers, V.; Morrissey, J.P.; Sonnenschein,

N.; Nielsen, J. Reconstruction of a catalogue of genome-scale metabolic models with enzymatic constraints using GECKO 2.0.
bioRxiv 2021. [CrossRef]

43. Karp, P.D.; Billington, R.; Caspi, R.; Fulcher, C.A.; Latendresse, M.; Kothari, A.; Keseler, I.M.; Krummenacker, M.; Midford, P.E.;
Ong, Q.; et al. The BioCyc collection of microbial genomes and metabolic pathways. Briefings Bioinform. 2019, 20, 1085–1093.
[CrossRef] [PubMed]

44. The UniProt Consortium. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489.
[CrossRef] [PubMed]

45. Meldal, B.H.M.; Bye-A-Jee, H.; Gajdoš, L.; Hammerová, Z.; Horáčková, A.; Melicher, F.; Perfetto, L.; Pokorný, D.; Rodriguez-
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