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Abstract: Semi-quantitative scoring is a method that is widely used to estimate the quantity of
proteins on chromogen-labelled immunohistochemical (IHC) tissue sections. However, it suffers from
several disadvantages, including its lack of objectivity and the fact that it is a time-consuming process.
Our aim was to test a recently established artificial intelligence (AI)-aided digital image analysis
platform, Pathronus, and to compare it to conventional scoring by five observers on chromogenic
IHC-stained slides belonging to three experimental groups. Because Pathronus operates on grayscale
0-255 values, we transformed the data to a seven-point scale for use by pathologists and scientists. The
accuracy of these methods was evaluated by comparing statistical significance among groups with
quantitative fluorescent IHC reference data on subsequent tissue sections. The pairwise inter-rater
reliability of the scoring and converted Pathronus data varied from poor to moderate with Cohen’s
kappa, and overall agreement was poor within every experimental group using Fleiss’ kappa. Only
the original and converted that were obtained from Pathronus original were able to reproduce the
statistical significance among the groups that were determined by the reference method. In this study,
we present an AI-aided software that can identify cells of interest, differentiate among organelles,
protein specific chromogenic labelling, and nuclear counterstaining after an initial training period,
providing a feasible and more accurate alternative to semi-quantitative scoring.

Keywords: artificial intelligence (AI); digital image analysis; immunohistochemistry; semi-quantitative
scoring

1. Introduction

Digital technology is an organic part of our daily lives and has a huge impact on our
profession, social network, and leisure activities. It has had an impact in nearly every
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aspect of modern medicine, but the degree of digitalization is highly uneven among med-
ical fields [1]. While conventional light microscopy is still the gold standard method for
investigations in the pathological workup, in radiology, a new discipline called radiomics
has recently evolved, integrating the work of radiologists, software engineers, and data
scientists [2]. However, in pathology, the application of digital image analysis, especially
aided by artificial intelligence (AI), is still relatively rare [3]. Immunohistochemistry (IHC)
is a fundamental technique that is used to identify certain antigens in tissue sections
with diagnostic, differential diagnostic and prognostic value [4–6]. The chromogen 3,3′-
Diaminobenzidine (DAB) is widely-used to visualize proteins of interest. However, there
is no stochiometric relationship between the chromogen’s intensity and the quantity of
antigens; in a standardized experiment, a stronger DAB intensity indicates a higher protein
level in the tissue and vice versa [7]. IHC intensity scoring is a method that is widely used
for the assessment of protein quantity and is usually ranked on a four-point scale (0, 1, 2, 3)
in pathological diagnostics and research [8–12]. However, this semi-quantitative technique
is subjective and highly inaccurate and demonstrates significant intra- and inter-observer
variability [13]. One possible solution is the application of machine learning, which is
valuable in automating workflows where repetitive, lengthy, and monotonous tasks are
encountered [14]. In histopathology the task at hand is the qualitative and quantitative
assessment of differentially stained cellular morphology of tissue sections. On the differen-
tially stained samples, the major organelles of the cells can be distinguished with different
colours due to their unique chemical interactions with the dye molecules. Parameters
describing the shape of cells, optical densities, etc., differ from type to type. Consequently,
cells (i.e., neurons) can be identified by the ‘old-fashioned’ manual way of looking into the
microscope or via the highly automated processing of digital images (taken by microscope
cameras or slide scanners) using different analytical algorithms. Moreover, AI-aided plat-
forms cannot only recognize different tissue structures, but they can also measure staining
intensity more accurately than semi-quantitative scoring systems can [15]. In this study, we
examine the usability of AI-aided digital image analysis to estimate the protein levels on
DAB-labelled IHC slides. Furthermore, we also investigated the reliability of the software
by comparing its intensity results to the semi-quantitative IHC scores of three experimental
groups that have been assessed by five scientists. The inter-observer variability of the
conventional scoring method was also evaluated. The current research focused strictly on
the comparison of the two methods. The biological significance of the labelled protein’s
(lemur tyrosine kinase 2 (LMTK2)) was previously published in an immunofluorescent
IHC study [16]. Furthermore, we declare that this is the first time where chromogenic
(CHR)-IHC intensity scoring results and this type of investigation have been published.

2. Materials and Methods
2.1. Sample Selection and Processing

Post-mortem formalin-fixed paraffin-embedded (FFPE) human brain samples were
obtained from the Medical Research Council (MRC) London Neurodegenerative Diseases
Brain Bank at the Institute of Psychiatry, Psychology and Neuroscience, King’s College Lon-
don. All procedures were conducted under the ethical approval of the Institutional Ethics
Committee of the MRC London Neurodegenerative Diseases Brain Bank (18/WA/0206) at
the Institute of Psychiatry, Psychology and Neuroscience, King’s College London, and the
Brains for Dementia Research Project (08/H0704/128+5). Informed consent for autopsy,
neuropathological assessment, and research participation were obtained for all subjects,
and data were anonymized. Block taking, immunohistochemical labelling, and neuropatho-
logical assessment for neurodegenerative diseases were carried out in accordance with
standard protocols as described in detail in earlier studies [6,16,17].

We established three groups, including two different neurodegenerative dementias
(Alzheimer’s disease and Dementia with Lewy bodies) with severe neuropathological
stages and age-matched controls (CNT) with no known neurodegenerative condition. The
assessed brain region was the middle frontal gyrus (Brodmann area 9). There were 6-6
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(n = 18 in total) samples in the three experimental groups. CHR-IHC labelling of LMTK2
was performed according to a standardized protocol that had been published earlier [16].

The slides were scanned with a Virtual Slide Microscope VS120 (Olympus Corp.,
Tokyo, Japan) with the same illumination intensities, exposure times, and camera settings.
Focusing on the cortex, 39 photos/case were taken from the WSI files at medium magnifica-
tion (200×), covering the whole cortical area on each slide. Both digital image analysis and
semi-quantitative scoring were performed on these photos to guarantee that the software
and the observers evaluated the same images and to avoid discrepancies resulting from the
different settings of the light microscope and the slide scanner as well as the digital display.

2.2. IHC Intensity Scoring

Semi-quantitative cellular scoring was carried out using a four-point scale based on
the IHC intensity of the cells: negative (0), mild positivity (1+), moderate positivity (2+),
and strong positivity (3+) (Figure 1). A few reference images were analysed quantitatively
with ImageJ software (National Institute of Health, Bethesda, MD, US), using Cell counter
module to calculate the exact average IHC intensity score of the given images. These were
used as reference images and allowed the investigators to execute a more accurate semi-
quantitative scoring methodology such as the one described in our previous work [4]. Then,
the observers determined the mean IHC intensity scores for each image. To do this, we
extended the original scores with values of 0.5, 1.5, and 2.5, e.g., if an image contained mild
(1+) and moderate (2+) positive cells in a ratio that was approximately 1:1, then we assigned
a score of 1.5. Thus, the final scores of the images were determined on a 7-point scale.
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2.3. Digital Image Analysis

The core of the image analysis software of Pathronus platform (V1.2, Vitrolink Kft.,
Debrecen, Hungary) was a Convolutional Neural Network (CNN) [18]. Pathronus was
developed as an AI-assisted image analysis platform that was only to be used for the
purposes of research and development. It combines the concept of a pathology-focused
online shared workspace with state-of-the-art CNN techniques. In general, the two aspects
of the application work to improve each other in a feedback-loop system: The users provide
new images that are uploaded and analysed to determine whether the analysed objects were
detected correctly by the AI or whether points of interest should be annotated manually,
and these images act as new training data for the network. This improves the capabilities
and accuracy of the CNN, allowing it to make better predictions when a new image is
uploaded later on. Since the platform functions use diverse user images (and equipment),
most of the biases that a network might naturally develop when trained using data from
a handful of sources can be naturally eliminated. With a sufficient quantity of training
data, such a system might be capable of identifying any desirable features on any type of
pathological imagery.

In this particular case, the constructed convolutional network was trained on thou-
sands of neurons that had been gathered into two morphology classes to detect specific
IHC patterns. As the starting step, the recognition criteria were first determined, which
were the abundant cytoplasm and the large, well-recognized nucleus that was visible in
the given section plane as the types of accepted neurons (Class 1, Figure 2C). Any other
object not falling into the previously mentioned categories was labeled as a rejected item
(Class 0, Figure 2A) for the purposes of the training process. A confusion matrix analysis
was performed to test the accuracy of the system.
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Figure 2. The selection criteria (A,C) and the deconvoluted 3,3′-Diaminobenzidine (DAB) chro-
mogen (B,D). Class 0 represents an example of a misidentified item (vessels which mimic the shape
of a neuron). Class 1 depicts an ideal neuron that could be used for the intensity measurements, which
has a large amount of cytoplasm and an easily observed nucleus. H = nuclear counterstain; haematoxylin.

By design, the Pathronus platform runs an object detection algorithm, which feeds
images to the CNN and marks the areas of the morphology class as a Region of Interest
(ROI) in the images (e.g., specified the exact number, coordinates, and extent of the neurons



Biomolecules 2022, 12, 19 5 of 14

in the images of the tissue sections). The AI model system that was used in this research is
based on the Keras-RetinaNet module. It implements deep learning and uses an algorithm
called RetinaNet, which is one of the most advanced object recognition algorithms that
is used to detect features in images. The code itself is based on the Keras deep learning
framework that is part of the python programming language [19]. As a result, it successfully
recognized and cropped Class 1 DAB-stained neurons in the images (Figure 2D). The
neurons were manually checked by humans. The accepted neurons were found on the same
set of images that the pathologist used for scoring and were processed for DAB intensity
signal levels by the platform. It used colour deconvolution with the same parameters
applied to all ROIs to separate the nuclear counterstain haematoxylin and the cytoplasmic
DAB signals in all of the cropped neurons (see Figure 2). The platform only kept the
inverted DAB signal and measured the average intensity (8-bit grayscale) of all of the
neurons with the same settings (Figure 2D). In an 8-bit image, 0 represents black and
255 means white, thus for a better graphical presentation and to avoid misunderstandings,
we used an inverse grayscale, where the more intense (darker) DAB signals have higher
inverse grayscale values (i.e., darkest value = 255). The individual intensity values of the
images corresponding to the CNT, AD, and DLB cases were then summarized. Finally, we
determined the mean inverse gray intensities of the experimental groups. Please note that
the analysis focused on the neuron intensity that had been identified by the software and
that had been further evaluated by the pathologists participating this study; therefore, the
surpassing performance of the neural network module was not a fundamental requirement,
as the neurons that were subjected to intensity analysis were manually checked and filtered
prior to assessment. It was not within the scope of this study to create an all-out version of
a neuron classifier software.

2.4. Comparison between Semi-Quantitative Scoring and Digital Image Analysis

Because original semi-quantitative scoring is based on a four-point scale while the
software used the grayscale ranges from 0 to 255, it was not possible to compare the
methods directly. Therefore, we converted the inverse grayscale values of the neurons into
IHC intensity scores according to the following formula: 0–33→0; 34–107→1; 108–181→2;
182–255→3, where the first ranges refer to the inverse grayscale values and where the
numbers after arrows are the converted scores. The first inverse grayscale range (0–33)
was derived from the digital image analysis of the IHC negative, haematoxylin-only slide,
where the maximum measured value was 33, and the rest of the conversion resulted from
the division of the grayscale range of 34–255 into three equal parts. Then, we calculated
the mean scores of the images that were from cell-level data. In order to perform a valid
inter-rater reliability analysis, a second conversion to the 7-point scale was applied on
the mean values based on the following formula: 0–0.25→0; 0.26–0.75→0.5; 0.76–1.25→1;
1.26–1.75→1.5; 1.76–2.25→2; 2.26–2.75→2.5; 2.75–3→3. Through this formula, the IHC
intensity data that were measured by the Pathronus platform and the semi-quantitative
scores that were determined by the observers are easily comparable. Nevertheless, it should
be noted that the presentation of digital image analysis results on a seven-point scale due
to double-conversion decreases the evaluation accuracy by losing a significant amount
of resolution.

2.5. Statistical Analysis

Inter-observer reliability for the experimental groups was investigated by the com-
parison of the intensity scores of the images (n = 234/group) given by the observers
and Pathronus using Fleiss’ kappa. Pairwise comparisons of the observers (including
Pathronus) were also performed with Cohen’s kappa. Strength of agreement was adopted
from the study by Landis and Koch [20] as follows: κ < 0.20→Poor; 0.21–0.40→Fair;
0.41–0.60→Moderate; 0.61–0.80→Good; 0.81–1.00→Very good. Statistical tests were exe-
cuted with IBM SPSS Statistics for Windows, Version 25.0 (IBM Corp., Armonk, NY, USA).
To determine the accuracy of the semi-quantitative scoring and original Pathronus, data
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validation was required. The statistical relevance of the found differences in CHR-IHC
intensities among the three experimental groups were calculated for each observer. The
Shapiro–Wilk normality test, equal variance test, one-way analysis of variance (ANOVA),
and all pairwise comparison (Holm–Sidak method) were carried out using the SigmaPlot
12.0 software (Systat Software Inc., San Jose, CA, USA). We used the previously published
quantitative fluorescent IHC analysis on the same disease groups as a reference [16].

3. Results

The two classes (Figure 2) were populated randomly and represented all cases (CNT,
DLB and AD) after annotation was completed utilizing the Pathronus platform. Class 0 con-
sisted of 4061 samples, while Class 1 had 5009 neurons. A total of 70% of the 9070 neurons
were used as the training data set, 20 % were for the validation data set, and 10% were used
as the test dataset. The confusion matrix that was generated on the test dataset can be seen
in Table 1. The total number of test data (for Class 0 and Class 1 summed) was 907. Out of
the 907 samples, the AI classified 409 (False Negative (FN) + True Negative (TN)) cells that
did not meet the criteria, and 498 (False Positive (FP) + True Positive (TP)) were classified
as ideal neurons that were eligible for further intensity processing. In the test dataset, a
total of 445 (TN + FP) neurons were determined to be inadequate for further analysis, and
462 (FN + TP) were determined to be ideal neurons. The best performing model reached
a total accuracy value of 0.91 and achieved a recall of 0.95, a false positive rate of 0.12, a
specificity of 0.87, a precision of 0.88, and a null error rate of 0.49. The misclassification
rate (error rate) was 0.08. The loss function return values went from 0.701 (validation)
and 0.767 (training) to 0.367 (validation) and 0.278 (training), and a 0.908 validation and a
0.887 training accuracy was obtained by the end of epoch 3996.

Table 1. Confusion matrix on test dataset of the convolutional neural network model trained for
differentiation between Class 0 and Class 1 type objects (See Figure 2). n = 907; FN = False Negative;
TP = True Positive; TN = True Negative; FP = False Positive.

Actual Class 1 21 (FN) 441 (TP)
Actual Class 0 388 (TN) 57 (FP)

Predicted Class 0 Predicted Class 1

The number of neurons on the CHR images that was analysed by Pathronus and
that was manually checked by pathologists was 12,516. Supplementary Table S1 contains
the summarized inverse mean gray intensities of the images after color deconvolution
(see Methods) of the individually processed IHC-stained neurons. The mean intensity
values of the individual cases in the experimental groups ranged between 113.58–123.22,
100.21–114, and 107.76–122.8 in CNT, AD, and DLB, respectively. Semi-quantitative scoring
was performed by five observers on 39 images/case (n = 234/group). The scores that
were given for each group ranged between one and three (Supplementary Table S1). CNT
achieved the highest rating, and AD received the lowest scores from the majority of the
observers. Double-converted Pathronus values spread from 1 to 2. Table 2 contains the
inter-rater reliability among the observers and Pathronus. Sub-tables A, B, and C show
the Cohen’s kappa values and the strength of the agreements that were determined in
the pairwise comparisons in the CNT, DLB, and AD groups, respectively. Sub-table D
includes the overall comparison among the five human observers plus Pathronus using
Fleiss’ kappa. Although, Cohen’s kappa values were highly variable among the observers
in different groups, poor agreement dominated, while moderate agreement was the least
common. Overall agreement with statistically significant (p < 0.005) Fleiss’ kappa values
was poor in every experimental group.
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Table 2. Inter-rater reliability.

(A)

CNT Cohen’s kappa values

St
re

ng
th

of
ag

re
em

en
t

Observers #1 #2 #3 #4 #5 Pathronus
#1 0.091 0.103 0.6 0.048 −0.01
#2 poor 0.301 0.195 0.008 −0.012
#3 poor fair 0.169 −0.023 −0.009
#4 moderate poor poor −0.004 −0.034
#5 poor poor poor poor 0.262

Pathronus poor poor poor poor fair

(B)

DLB Cohen’s kappa values

St
re

ng
th

of
ag

re
em

en
t

Observers #1 #2 #3 #4 #5 Pathronus
#1 0.063 0.138 0.516 0.226 0.177
#2 poor 0.316 0.141 0.087 0.048
#3 poor fair 0.114 0.143 −0.022
#4 moderate poor poor 0.286 0.196
#5 fair poor poor fair 0.270

Pathronus poor poor poor poor fair

(C)

AD Cohen’s kappa values

St
re

ng
th

of
ag

re
em

en
t

Observers #1 #2 #3 #4 #5 Pathronus
#1 0.204 0.179 0.457 0.034 0.195
#2 poor 0.297 0.285 0.118 0.232
#3 poor fair 0.178 0.180 0.062
#4 moderate fair poor 0.260 0.214
#5 poor poor poor fair 0.116

Pathronus poor fair poor fair poor

(D)
CNT DLB AD

Fleiss’ kappa 0.091 0.176 0.183
p-value <0.005 <0.005 <0.005

Agreement poor poor poor
Pairwise inter-rater reliability of semi-quantitative scoring by five observers and converted Pathronus data in
CNT (A), DLB (B), and AD (C) groups. Crosstabs contain the Cohen’s kappa values (yellow background) and the
strength of agreement (blue background) between two different observers. Sub-table D: Fleiss’kappa values show
the overall inter-rater reliability by group and their statistical significance. (CNT = control; DLB = Dementia with
Lewy bodies; AD = Alzheimer’s disease).

The statistically significant differences of the distinct experimental groups varied
among the observers and between methods. Certain observers (#1 and #4) achieved sta-
tistically significant alterations among every group, while others (#2, #3, and #5) did not.
However, only the Pathronus analysis (original and converted) was able to reproduce the
reference data; specifically, CNT had the strongest and AD had the weakest immunoposi-
tivity, and statistically significant differences were revealed between the CNT versus (vs.).
AD groups and the DLB vs. AD groups. Figure 3 depicts the summarized intensities of the
CNT, AD, and DLB groups by the five observers as well as by the converted (Panels A, B,
C) and original Pathronus (Panel D) methods.
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Figure 3. Mean semi-quantitative scores defined by five observers and Pathronus-converted values
are depicted on Panels A, B, C for the CNT, AD, and DLB groups, respectively. Panel D shows
the original Pathronus inverse mean gray intensities of the experimental groups. Insert of panel B
specifies the colored lines depicted on panels A, B, and C.; CNT = control; DLB = dementia with
Lewy bodies; AD = Alzheimer’s disease; #1–5 = observers].

4. Discussion

A major difficulty in biological research is the transformation of qualitative data to
quantitative data [21]. Semi-quantitative scoring is a widely used method that is able
to solve this problem [13,22]. However, we must be aware of its limitations. Subjec-
tivity is a major issue in the scoring process, which is highly influenced by histological
expertise [23,24]. In many fields of translational research, tissue scoring is delegated to
biomedical personnel (including senior researchers, post-docs and even students) who
do not have the same amount of experience as board-certified pathologists, who receive
many years of tissue interpretation training. Studies following a ‘do-it-yourself’ pathology
approach may suffer from Type I (false positivity) and Type II (false negativity) errors [21].
Although, board-certified pathologists are highly skilled in recognizing patterns in morpho-
logical changes, the human visual system has a limited ability to detect subtle changes in
tissues, especially with respect to spatial and intensity assessments [22]. A major shortage
of conventional scoring and the necessity of a better, higher resolution method is exempli-
fied in Figure 4. Both images were rated with score 2 by all observers, but digital image
analysis by Pathronus revealed that the inverse grayscale (0–255 = light to dark) value of
first image is 110.02 (Panel A), while of the second is 123.03 (Panel B). This discrepancy
arose from the significantly smaller evaluation range (7 vs. 256), resulting in difficulties
detecting subtle differences in the labelling intensities with the naked eye and from various
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human physiological factors such as fatigue and eyestrain, which may occur during the
monotonous process of assessing a large number of images [21,25,26]. Although the overall
inter-rater agreement was poor, the ranking of mean intensities given to each of the exper-
imental groups was the same for all but one of the observers (Table 3). Better inter-rater
agreement might have been reached with a longer pre-training period that was restricted to
the evaluation of neuronal cells using this scoring system or by applying cut-offs (e.g., size
of neuron or visibility of nuclei). However, it is known from the literature that while high
inter-observer agreement is achievable in qualitative scoring (e.g., existence of IHC labelled
structures or percentage of positive cells) [27–30], often fair or poor overall agreement is
achieved in the semi-quantitative scoring of staining intensity, even among experts with
decades of practice [31]. Generally, results are influenced by study design, the type of
tissue being investigated, and how the observers use a specific scoring system [21,22].
Consequently, tissue-specific training with an established scoring system probably im-
proves inter-observer agreement, but it still cannot eliminate the problem of intra-observer
variability, such as that observed in the above-detailed physiological factors [22].

Besides inter- and intra-observer reproducibility, it is also essential that the results can
be validated. However, as semi-quantitative scoring is the gold standard, digital image
analysis of datasets is rarely performed. Studies are not consistent regarding the practicality
of the methods that are used. Some authors have reported unequivocal advantages of digital
analysis [32], while others did not find any analytical benefits other than time-efficiency [33].
Favorably, a previous quantitative immunofluorescent IHC analysis was carried out on
the same cases that were used in the present study, allowing us to make a trustworthy
comparison with our current results. Reasonably good agreement was determined in
the groups in the order of (CNT > DLB > AD), except for in the case of one investigator.
However, the statistically significant differences that were observed among the groups were
highly variable, with only the original Pathronus analysis and, perhaps more surprisingly,
the converted analysis was able to reproduce the reference data (Table 3). Questions may
arise as to why we do not interpret the original Pathronus evaluation as a quantitative
technique. CHR-IHC quantification is very difficult due to the numerous variables that are
involved from the pre-analytical phase to the post-processing steps, resulting in doubts and
inconsistencies in the literature [34–36]. Moreover, DAB chromogen does not follow the
Beer–Lambert law; the reaction is not stochiometric, and consequently, the staining intensity
is not related to the number of antigens [37]. Nonetheless, DAB-based CHR-IHC is the
primary choice in diagnostic pathology because it is an easily accessible, relatively cheap,
and fast technique compared to quantitative molecular biological methods (i.e., Western
blot, qPCR), which may not be feasible in the first-line pathological workup. Furthermore,
CHR-IHC intensity-based semiquantitative evaluation is an organic part of several widely
used scoring systems with therapeutic relevance (e.g., breast cancer) [8,38]. Originally, the
Pathronus platform was developed to support pathologists in routine diagnostic procedures
that predominantly required the assessment of CHR-IHC slides. It is an online forum that
can be used by pathologists and histologists where they can upload images of difficult
or interesting cases and can share and discuss them with other experts from all over the
world. In addition, they can teach and train the platform by annotating disease-specific
or diagnostically relevant structures on the images. Pathronus may synthesize these data,
and the next time somebody uploads a similar image in association with the same disease,
the platform may be able to pre-analyze it and label the previously learnt pathologically
important ROIs. The software may eliminate inter- and intra-observer bias in the future
because the number of investigated neurons is practically unlimited, as the method is able
to analyse thousands of cells and can cover whole slides very quickly. However, DAB
labelling is still not a quantifiable technique even though results are comparable and can
provide a better estimation on protein expression (in accordance with reference datasets)
in a standardized experiment (reagents, incubation times, etc.) compared to when the
commonly used eyeballing semi-quantitative methods are implemented (Table 3) [16].
Based on the findings outlined here, digital image analysis is undoubtedly the future of
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histology. Although a comprehensive investigation into the differences between semi-
quantitative scoring and digital image analysis was beyond the scope of our current work,
an emerging number of publications within this field shed light on a considerable number
of features of the two methods. Despite its numerous advantages such as speed, objectivity
with good predictive value, its ability to handle large datasets, etc., it also has several
disadvantages, namely the cost, equipment requirements, or level of acceptance by some
scientific communities and regulators (Table 4) [3,21,22,25,26,33,34,37,39–44].
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Figure 4. A remarkable limitation of semi-quantitative scoring compared to digital image analysis is
the significantly smaller evaluation range (7 vs. 256) due to the difficulties that are experienced when
attempting to detect subtle differences in the labelling intensities using the human eye alone. The
observers allocated a score of 2 to both of the images, whereas the Pathronus original method revealed
that the intensity of Panel A was 110.02, while that of Panel B was 123.03 on the grayscale (ranged
between 0–255). Although the human eye is capable of perceiving small differences, the objective and
reproducible categorization of hundreds of images on an extended scale is not possible for human
observers whereas possible for a digital image analysis software. This shortage of semi-quantitative
scoring may result in statistical bias compared to software-based results.
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Table 3. Decreasing order of experimental groups based on the mean intensities assessed by semi-quantitative scoring, Pathronus original analysis, and reference data.

Observers #1 #2 #3 #4 #5 Pathronus
Converted

Pathronus
Original Reference Data

Strength of
immunopositivity

among groups
CNT > DLB > AD CNT > DLB > AD CNT > DLB> AD CNT > DLB > AD DLB > CNT> AD CNT > DLB > AD CNT > DLB> AD CNT > DLB > AD

Statistical significance
(p < 0.05)

CNT vs. DLB
CNT vs. AD
DLB vs. AD

CNT vs. AD CNT vs. AD
CNT vs. DLB
CNT vs. AD
DLB vs. AD

- CNT vs. AD
DLB vs. AD

CNT vs. AD
DLB vs. AD

CNT vs. AD
DLB vs. AD

Strength of immunopositivity is introduced in decreasing order based on mean immunohistochemical (IHC) intensities of the experimental groups, which were determined by the semi-quantitative scoring of five observers,
Pathronus original and converted values as well as the immunofluorescent IHC reference method [16]. Statistical significance among groups by analysis of variance (ANOVA) is also presented for every observer and method.
(CNT = control; DLB = dementia with Lewy bodies; AD = Alzheimer’s disease; #1–5 = observers).

Table 4. Comparison of digital image analysis and semi-quantitative scoring based on relevant factors according to the literature [3,21,22,25,26,33,34,37,39–44].
(DAB = 3,3′-Diaminobenzidine).

Digital Image Analysis Semi-Quantitative Scoring

Expensive Cost Cheap
Fast Speed Slow

Not required (except training period) Histological experiment Required
Objective (with standard settings) Objectivity Subjective

Based on software and settings Inter-rater variability Considerable
Not applicable Intra-rater variability Notable

Yes (except DAB labelling) Quantification Not applicable
Automatic (after training period) Operation Manual

Large Data volume Limited
IT background, slide scanner Equipment Light microscope

New era Research purposes Gold standard
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5. Conclusions

Semi-quantitative scoring is still widely used as the gold-standard for evaluating CHR-
IHC samples. However, it has obvious limitations that need to be addressed. AI-aided
software (i.e., Pathronus) might identify cells of interest, differentiate among organelles,
protein specific chromogenic labelling, and nuclear counterstaining after an initial training
period. This provides a real alternative to semi-quantitative scoring, allowing robust and
fast data processing with better predictive value.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biom12010019/s1, Supplementary Table S1. Table shows the semi-
quantitative immunohistochemical intensity scores given by five observers as well as the original and
converted Pathronus data for each image categorized by cases and groups. Mean intensities/cases
are also included. (CNT = control; DLB = dementia with Lewy bodies; AD = Alzheimer’s disease;
#1–5 = observers]

Author Contributions: Conceptualization, J.B., T.H. and M.S.; methodology, J.B., T.H., W.S., V.B. and
M.S.; software, M.S. and B.K.; investigation, J.B., T.H., T.G.H., V.B., L.V.M. and M.S.; data curation,
J.B. and M.S.; writing—original draft preparation J.B. and T.H.; writing—review and editing, T.G.H.,
W.S., V.B., L.V.M., B.K. and M.S.; visualization, J.B. and M.S.; supervision, T.H.; funding acquisition,
T.H. and L.V.M. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by the ÚNKP-21–3 New National Excellence Program of the
Ministry of Innovation and Technology from the source of the National Research Development and
Innovation Fund; Human Resources Development Operational Programme: EFOP-3.6.3-VEKOP-
16-2017-00009 (L.V.M.); Hungarian Brain Research Program (NAP) Grant No. KTIA_13_NAP-A-
II/7; SZTE ÁOK-KKA No. 5S 567 (A202); National Research, Development and Innovation Office:
NKFIH_SNN_132999 (T.H.).

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki and was approved by the Institutional Ethics Committee of the MRC
London Neurodegenerative Diseases Brain Bank (18/WA/0206) at the Institute of Psychiatry, Psy-
chology and Neuroscience, King’s College London, and the Brains for Dementia Research Project
(08/H0704/128+5).

Informed Consent Statement: Informed consent for autopsy, neuropathological assessment, and
research participation were obtained for all subjects and data were anonymized.

Data Availability Statement: The datasets used and/or analysed during the current study are
available from the corresponding author upon reasonable request.

Acknowledgments: We would like to express our gratitude to the software engineers and staff at
Vitrolink Kft., particularly Máté Smajda, Gergely Kövér, Tamás Kószó, and István Szarka, for making
the platform available for the study.

Conflicts of Interest: M.S. and B.K. are responsible for Research and Development and Software
Engineering at Vitrolink Kft., which created and owns the Pathronus platform. The platform is for
research and development purposes only, not for diagnostics. The other authors declare no conflict
of interest.

References
1. Capobianco, E.; Iacoviello, L.; de Gaetano, G.; Donati, M.B. Editorial: Trends in Digital Medicine. Front. Med. 2020, 7, 116. [CrossRef]
2. Van Timmeren, J.E.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B. Radiomics in Medical Imaging—“How-to” Guide and

Critical Reflection. Insights Imaging 2020, 11, 91. [CrossRef]
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