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Abstract: In the present study, the polysaccharide-hydrolyzing secretomes of Irpex lacteus (Fr.) Fr.
(1828) BCC104, Pycnoporus coccineus (Fr.) Bondartsev and Singer (1941) BCC310, and Schizophyllum
commune Fr. (1815) BCC632 were analyzed in submerged fermentation conditions to elucidate the
effect of chemically and structurally different carbon sources on the expression of cellulases and
xylanase. Among polymeric substrates, crystalline cellulose appeared to be the best carbon source
providing the highest endoglucanase, total cellulase, and xylanase activities. Mandarin pomace as a
growth substrate for S. commune allowed to achieve comparatively high volumetric activities of all
target enzymes while wheat straw induced a significant secretion of cellulase and xylanase activities
of I. lacteus and P. coccineus. An additive effect on the secretion of cellulases and xylanases by the tested
fungi was observed when crystalline cellulose was combined with mandarin pomace. In I. lacteus
the cellulase and xylanase production is inducible in the presence of cellulose-rich substrates but is
suppressed in the presence of an excess of easily metabolizable carbon source. These enzymes are
expressed in a coordinated manner under all conditions studied. It was shown that the substitution
of glucose in the inoculum medium with Avicel provides accelerated enzyme production by I. lacteus
and higher cellulase and xylanase activities of the fungus. These results add new knowledge to the
physiology of basidiomycetes to improve cellulase production.

Keywords: wood-rotting basidiomycetes; carbon source; cellulase; regulation of synthesis; saccharification

1. Introduction

Plant biomass is abundant, renewable, rich in carbohydrates, and the most suitable
resource for large-scale production of bioenergy and various organic chemicals [1,2]. It
is a cheap but complex material consisting of polymers of cellulose, hemicellulose, and
lignin; therefore, a wide range of hydrolytic and oxidative enzymes is required for their
degradation. Hydrolysis of biomass polysaccharides into fermentable sugars by cellulases
and hemicellulases is the key step for enzymatic conversion of lignocellulose [1–4]. Cellu-
lases comprise endoglucanases (EC 3.2.1.4) which cleave internal β-1,4-glucosidic bonds
of cellulose chains, exoglucanases (EC 3.2.1.91) which processively act on the reducing
and non-reducing ends of cellulose to release short-chain cello-oligosaccharides, and β-
glucosidases (EC 3.2.1.21) which hydrolyze soluble cello-oligosaccharides to glucose. As
far as hemicellulases are concerned, endo-β-1,4-xylanases (EC 3.2.1.8) and β-xylosidases
(EC 3.2.1.37) and auxiliary enzymes are required for their complete hydrolysis.

Cellulases are widely used in biofuel, food and feed, textile, paper-pulp, cosmetics,
chemicals, and other industries [1,2]. The main challenges for wide and large-scale applica-
tion of cellulases and xylanases remain the reduction of their cost and the development
of more efficient enzyme cocktails with high specific activity and stability [3,4]. Wood-
decomposing white-rot basidiomycetes (WRB) are excellent producers of enzymes that
deconstruct the cell wall of plants [5]. Due to their ecological and biological peculiarities,
they are highly adapted to different environments and resources. Moreover, some of them
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have shown exceptional potential for the production of individual groups of hydrolytic
enzymes under appropriate cultivation conditions. Thus, Coprinellus disseminatus produced
469 U/mL of alkali-thermotolerant xylanase along with negligible cellulase activity [6]
while Armillaria gemina secreted up to 146 U endoglucanase/mL, 15 U β-glucosidase/mL,
and 1.72 U FPA/mL [7]. Further, Jagtap et al. [8] achieved very high β-glucosidase activity
(45.2 U/mL) in the submerged cultivation of Pholiota adiposa in a medium containing rice
straw and corn steep powder. High cellulase and xylanase activities were revealed in sub-
merged cultivation of Irpex lacteus and Schizophyllum commune [9,10]. However, unlike soft
rot ascomycetes, such as Trichoderma reesei and Aspergillus niger, which are the most studied
cellulolytic fungi and widely used in biorefinery microorganisms, the physiology of cellu-
lose degradation and mechanism of cellulases synthesis regulation in WRB remains poorly
understood. Therefore, more in-depth studies are required to understand how specific en-
vironmental factors modulate the secretion of individual cellulases and xylanase to develop
the fungus enzyme system and technological process for their industrial application.

In the present work, profiles of the polysaccharide-hydrolyzing secretomes of three
saprotrophic WRB species were analyzed in their submerged cultivation to elucidate the
effect of chemically and structurally different carbon sources on the expression of cellulases
and xylanase and to establish substrate specificities and enzyme production patterns of
the tested fungi. The results obtained contribute to a better understanding of the effect
of the type of lignocellulosic biomass and carbon source on the induction/repression of
cellulolytic enzymes.

2. Materials and Methods
2.1. Organisms and Inoculum Preparation

Irpex lacteus (Fr.) Fr. (1828) BCC104, Pycnoporus coccineus (Fr.) Bondartsev and Singer
(1941) BCC310, and Schizophyllum commune Fr. (1815) BCC632 isolated from tree branches
in the forests of Georgia and deposited in the basidiomycetes culture collection of the
Institute of Microbial Biotechnology have been used in this study. The fungal inocula were
prepared by growing the mycelia on a rotary shaker (New Brunswick Scientific, Edison,
NJ, USA) at 160 rpm and 27 ◦C in 250 mL flasks containing 100 mL of standard medium
(SM) (g/L): glucose–15.0, KH2PO4–1.0, K2HPO4–0.2, MgSO4·7H2O–0.5, peptone–3.0, yeast
extract–3.0, pH 6.0. After 7 days of fungal cultivation mycelial pellets were harvested and
homogenized using a Waring laboratory blender (Waring Commercial, Torrington, CT,
USA).

2.2. Cultivation Conditions

Submerged cultivation of fungi was carried out using rotary shakers Innova 44 (New
Brunswick, NJ, USA) at 160 rpm and 27 ◦C in 250 mL flasks containing 100 mL of the
medium of following composition (g/L): KH2PO4–1.0, K2HPO4–0.2, MgSO4·7H2O–0.5,
peptone–7.0, yeast extract–5.0, pH 6.0. Crystalline cellulose at a concentration of 15 g/L and
milled to powder wheat straw, beech sawdust, wheat bran, and mandarin squeeze obtained
from the juice manufacturing company in Kobuleti were used at a concentration of 40 g/L
as carbon sources. Moreover, the effect of adding glycerol to the 1.5% Avicel-containing
medium on enzyme synthesis was assessed in special experiments.

During the fungus cultivation, at predetermined time intervals, 1–2 mL samples were
taken from the flasks, the solids were separated by centrifugation at 10,000× g for 10 min at
4 ◦C and the supernatants were analyzed for pH, reducing sugars, and enzyme activities.

2.3. Cultivation in a Fermenter

To scale up the cellulase and xylanase production by I. lacteus, one cultivation of the
fungus was performed in the 7 L fermenter LiFlus GX (Biotron, Incheon, Korea) equipped
with pH, temperature, pO2 probes, and three Rushton impellers. The fermenter was filled
with 5 L of medium containing per liter: 20 g Avicel, 7.5 g glycerol, 1 g KH2PO4, 0.5 g
MgSO4, 7 g peptone, 7 g yeast extract. Polypropylene glycol 2000 (3 mL) was added as
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an antifoam agent and the medium pH was adjusted to 6.0. The fermenter was sterilized
(121 ◦C, 40 min) and inoculated with 500 mL of homogenized mycelium grown in SM
containing crystalline cellulose instead of glucose. Fermentation was performed with
baffles at 27 ◦C and the constant airflow rate of 1 L/L/min. During the fermentation
process, samples were collected daily and analyzed for enzyme activity. After 8 days
of fermentation, the fungal biomass was separated from the culture liquid by filtration
followed by centrifugation at 6000 rpm for 20 min at 4 ◦C. The enzyme preparation was
isolated from the culture liquid by precipitation with ammonium sulfate at 70% saturation
and the precipitate was dissolved in 0.05 M phosphate buffer (pH 6.0).

2.4. Wheat Straw Saccharification

Enzymatic hydrolysis of wheat straw was carried out under standard conditions
(0.1 mM of citrate buffer, pH 5.0, 40 ◦C) with gentle agitation at 150 rpm for 24 h. Pretreated
with 1.5% NaOH wheat straw contained 67.1% cellulose, 15.9% hemicellulose, and 7.3%
lignin. Cellulase from Aspergillus niger (Sigma–Aldrich, Saint Louis, MO, USA) and crude
enzyme preparations isolated (as described above) from the supernatant of I. lacteus culture
in fermenter were used as enzyme sources. The reaction mixture (10 mL) contained 100,
200, and 400 mg substrate and 20 filter paper units (FPU)/g substrate. Samples were taken
from the reaction mixtures after 0, 3, 6, and 24 h of saccharification, heated in a boiling
water bath for 2 min, and then centrifuged at 10,000× g for 5 min at 4 ◦C. The supernatants
were analyzed for reducing sugars using the dinitrosalicylic acid reagent method [11].

2.5. Analytical Methods

The total cellulase activity (filter paper activity, FPA) was measured with Whatman
filter paper No. 1 according to IUPAC recommendations [12]. The reaction mixture contain-
ing a 50 mg string of filter paper Whatman No. 1 (Whatman Internationl, Maidstone, UK),
0.8 mL of a 50 mM citrate buffer (pH 5.0), and 0.2 mL appropriately diluted supernatant
was incubated at 50 ◦C for 60 min. Endoglucanase (CMCase) activity was assayed by mix-
ing 70 µL appropriately diluted samples with 630 µL of 1% low-viscosity carboxymethyl
cellulose in 50 mM citrate buffer (pH 5.0) at 50 ◦C for five minutes [12]. Xylanase activity
was determined at the same conditions using 1% birchwood xylan (Roth 7500) in 50 mM
citrate buffer (pH 5.0) at 50 ◦C for 10 min [13]. Glucose and xylose standard curves were
used to calculate the cellulase and xylanase activities. In all assays, the release of reduc-
ing sugars was measured using the dinitrosalicylic acid reagent method [11]. One unit
of enzyme activity was defined as the amount of enzyme, releasing 1 µmol of reducing
sugars per minute. To measure β-glucosidase and β-xylosidase activities, the reaction
mixture containing 1.8 mL of 2 mM solutions of p-nitrophenyl-β-D-glucopyranoside or
p-nitrophenyl-β-D-xylopyranoside in 0.05 M acetate buffer, pH 4.8, and 0.2 mL of the
enzyme solution was incubated at 50 ◦C for 10 min [14]. One unit of enzyme activity was
defined as the amount of enzyme releasing 1 µmol of p-nitrophenol per minute.

2.6. Statistical Analysis

All experiments were performed twice using three replicates each time. The results
are expressed as the mean ± SD. The mean values, as well as standard deviations, were
calculated by the Excel program (Microsoft Office 2010 package).

3. Results and Discussion
3.1. Effect of the Polymeric Carbon Sources on Basidiomycetes Enzyme Activity

Chemically and structurally different crystalline cellulose, wheat straw, and mandarin
pomace were selected as carbon sources and potential stimulators of cellulase and xylanase
activities production by the three fungi. Due to the high content of sugars and organic acids,
mandarin pomace ensured rapid and abundant growth of all fungi, while wheat straw
showed the weakest growth. The fungi secreted large amounts of cellulase and xylanase
activities regardless of the material tested; however, enzyme yields varied significantly.
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Among the three substrates tested, crystalline cellulose was found to be the best carbon
source providing the highest cellulase and xylanase activity of all fungi (Table 1). This
finding is in agreement with several reports showing cellulases and xylanases production
by Basidiomycota species in the presence of several potential inducers [15–17].

Table 1. Modulation of basidiomycetes hydrolytic enzyme activity by chemically different growth substrates.

Growth
Substrate

Final
pH

CMCase
(U/mL)

Xylanase
(U/mL)

FPA
(U/mL)

β-Glucosidase
(U/mL)

β-Xylosidase
(U/mL)

P. coccineus
1.5% Avicel 5.9 ± 0.1 63 ± 6.011 * 31 ± 3.814 * 4.6 ± 0.514 * 3.6 ± 0.311 * 0.06 ± 0.0111 *

4% mandarin
squeeze (MS) 6.7 ± 0.1 19 ± 2.111 14 ± 1.18 2.2 ± 0.28 2.2 ± 0.28 0.05 ± 06

4% wheat straw
(WS) 6.2 ± 0.1 22 ± 1.411 18 ± 1.211 1.9 ± 0.28 1.5 ± 0.26 0.04 ± 06

1.5% Avicel +
4% MS 5.6 ± 0.1 82 ± 8.314 65 ± 5.811 5.7 ± 0.611 3.3 ± 0.38 0.12 ± 0.0111

4% WS +4% MS 5.9 ± 0.1 27 ± 2.411 19 ± 1.711 2.2 ± 0.311 1.6 ± 0.26 0.05 ± 0.016

S. commune
1.5% Avicel 6.1 ± 0.1 39 ± 4.314 626 ± 7814 2.1 ± 0.311 10.7 ± 0.814 0.12 ± 0.0114

4% MS 6.5 ± 0.1 23 ± 3.011 531 ± 968 3.0 ± 0.311 10.1 ± 0.914 0.15 ± 0.0214

4% WS 6.8 ± 0.1 8 ± 1.014 120 ± 1014 1.3 ± 0.114 3.8 ± 0.314 0.07 ± 0.0114

1.5% Avicel +
4% MS 6.3 ± 0.1 39 ± 2.911 740 ± 8014 4.2 ± 0.414 18.6 ± 2.014 0.31 ± 0.0314

4% WS + 4%
MS 5.9 ± 0.1 14 ± 1.311 528 ± 596 2.2 ± 0.214 5.9 ± 0.414 0.07 ± 0.0111

I. lacteus
1.5% Avicel 5.4 ± 0.1 54 ± 6.611 67 ± 8.111 5.1 ± 0.411 1.4 ± 0.1211 0.02 ± 06

4% MS 6.9 ± 0.1 18 ± 1.48 20 ± 1.711 1.9 ± 0.28 1.1 ± 0.128 0.02 ± 06

4% WS 6.2 ± 0 23 ± 2.011 29 ± 1.48 2.3 ± 0.211 1.0 ± 0.118 0.05 ± 0.018

1.5% Avicel +
4% MS 5.9 ± 0.1 76 ± 9.011 106 ± 8.614 6.8 ± 0.511 2.3 ± 0.278 0.08 ± 0.018

4% WS + 4%
MS 6.3 ± 0.2 40 ± 4.78 34 ± 2.18 2.5 ± 0.38 1.6 ± 0.198 0.05 ± 0.016

* The numbers indicate the days of the peak activity.

The use of mandarin pomace as a growth substrate for S. commune allowed us to
achieve comparatively high volumetric activities of all target enzymes. At the same time,
the lignified material, wheat straw, induced a significant secretion of cellulase and xylanase
activities of I. lacteus and P. coccineus but turned out to be a poor substrate for the production
of these enzymes by S. commune. It should be noted that during the fermentation of straw
and mandarin pomace the pH of the media was significantly higher than those in the media
with Avicel, especially in the second half of the WRB cultivation. It is possible that, in this
case, the hydrolysis of polysaccharides and the supply of fungi with carbon sources were
limited, since the maximum catalytic activity of cellulases and xylanases of basidiomycetes
is usually observed at pH 5.

To ensure rapid and abundant initial growth of fungi, Avicel and wheat straw-
containing media were supplemented with mandarin pomace. Undoubtedly, the introduc-
tion of additional nutrition in the form of mandarin pomace favored an increase in the
biomass of fungi and, accordingly, enzymatic activity. Nevertheless, the results presented
in Table 1, in several variants of the experiment, clearly show the additive effect of the
two substrates on the secretion of enzymes. In particular, an almost twofold increase in
CMCase activity of S. commune and I. lacteus was recorded when the wheat straw-based
medium was supplemented with mandarin pomace. Moreover, the xylanase activity of
S. commune was increased by 4 times. Further, the presence of mandarin pomace in the
Avicel-containing medium favored the accumulation of β-glucosidase and β-xylosidase by
the tested fungi.



Biomolecules 2021, 11, 1341 5 of 10

Analysis of the profiles of enzyme production showed that they depend both on the
type of fungus and the type of growth substrate. In Avicel containing cultures CMCase,
xylanase, and FP activities of the fungi gradually increased and achieved maximum after
11–14 days of cultivation, while in mandarin pomace or wheat straw containing media
enzyme activity in individual fungal cultures peaked after 8 days of cultivation followed
by a steady decline in the activity thereafter. It is worth noting that in the cultures of P.
coccineus and I. lacteus β-glucosidase and β-xylosidase activities achieved their maximum
earlier than the polysaccharide-hydrolyzing enzymes.

Among the fungi studied S. commune appeared to be an outstanding producer of
xylanase and β-glucosidase (740 and 18.6 U/mL, respectively) whereas P. coccineus and I.
lacteus were distinguished by remarkable cellulase activity (Table 1). The highest endoglu-
canase activity (82 U/mL) was revealed in the cultivation of P. coccineus followed by I.
lacteus in a medium containing both Avicel and mandarin pomace as growth substrates. In
the same medium, I. lacteus secreted the highest FPA (6.8 U/mL). For further study, I. lacteus
was chosen not only because of the high activity of the enzymes involved in the hydrolysis
of polysaccharides. This species is characterized by a high potential for colonization of
a wide variety of lignocellulosic materials due to its ability to produce all the enzymes
necessary for the decomposition of polymers of plant raw materials [18,19].

3.2. Effect of Glycerol as an Additional Easily Metabolizable Carbon Source

In a subsequent set of experiments, the effect of glycerol as an additional easily metab-
olized carbon source on the production of hydrolases during submerged fermentation of
Avicel and wheat straw by I. lacteus was studied. There were several reasons for this. Firstly,
microcrystalline cellulose and lignified straw are difficult to decompose growth substrates
that slow down the initial development of fungal culture. At the same time, we observed
that the use of mandarin pomace, which is characterized by a high content of sugars and
organic acids, accelerates the growth of fungi and the rapid accumulation of biomass,
which promotes the accumulation of enzymes. Secondly, the use of a high concentration of
mandarin pomace in the nutrient medium complicates the subsequent purification of the
enzyme. Thirdly, glycerol is a cheap byproduct in the biodiesel manufacturing process and
an excellent carbon source for the cultivation of majority basidiomycetes. Finally, it was
important to elucidate the features of the synthesis of cellulases by I. lacteus in the presence
of a readily metabolizable carbon source.

The results presented in Figure 1A show that when the fungus was cultivated in
a medium with crystalline cellulose, sufficiently high activity of cellulase was already
detected after two days to provide the culture with a source of carbon and energy. Then the
activity of the secreted enzyme rapidly increased, reaching a maximum on the tenth day
of cultivation of the fungus. After this, the activity of the extracellular enzyme decreased.
When the Avicel-containing medium was supplemented with glycerol, no CMCase produc-
tion was observed even though the inducer was also present. It is worth noting that the
higher was the glycerol concentration in the medium the longer was the period of catabolite
repression of cellulase synthesis. However, when the level of available glycerol decreased,
obviously due to fungal metabolism, the production of enzyme was initiated even with a
higher rate than in the control culture. Nevertheless, we believe that the accelerated rate of
accumulation of the enzyme, as well as the significantly increased yields of the enzyme,
are simply explained by the accumulation of greater biomass of the fungus in the presence
of glycerol. Interestingly, the secretion of I. lacteus xylanase followed similar production
profiles as CMCase (Figure 1B), and they appeared to be co-expressed. It should be noted
that the cultivation of I. lacteus in a medium containing only glycerol accompanied by an
abundant growth of fungal mycelium, but very low enzyme activity. If we consider this
activity as the basal level of the enzyme, then the induction ratio for I. lacteus CMCase is 67,
and for xylanase-22. Thus, it can be concluded that as in many other WRB [4,10,16] cellulase
and xylanase of I. lacteus are inducible enzymes only in the presence of cellulose-containing
materials and another mechanism of cell economy, namely, catabolite repression of the
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cellulases and xylanases synthesis, by easily metabolizable carbon sources is inherent in
this fungus.

Figure 1. Effect of glycerol (G) as an additional carbon source on the production of endoglucanase (A) and xylanase
(B) during submerged fermentation of Avicel by I. lacteus.

3.3. Effect of the Type of Carbon Source in the Inoculum Preparation Medium

Recently, we showed that preliminary adaptation to the substrate in the inoculation
medium may be an important factor determining the biosynthetic activity of some fungal
cultures [20]. In this study, we compared the enzymatic activity of I. lacteus, an inoculum of
which was grown in a standard medium with glucose as well as with crystalline cellulose
as the only carbon source. We hypothesized that the inoculum prepared in the presence of
Avicel would contain sufficient activities of hydrolases to start hydrolysis of polysaccharides
immediately after inoculation. Moreover, this inoculum may contain oligosaccharides
required to induce the synthesis of target enzymes.

Many research groups have used a wide range of agro-industrial lignocellulosic
materials as inexpensive raw materials for the production of cellulases and have shown
that the production of polysaccharide-hydrolyzing enzymes in WRB is influenced by
the type of lignocellulosic substrate [7,8,17,21]. Therefore, besides Avicel, several cheap
chemically different lignocellulosic materials were tested in this study as I. lacteus growth
substrates and stimulate enzyme production. The results in Table 2 show that, regardless
of the conditions of preparation of the inoculum, the highest CMCase, xylanase, and
β-glucosidase activities were found when the fungus was cultivated in a medium with
crystalline cellulose. Wheat straw followed by wheat bran also supported efficient secretion
of these enzymes by I. lacteus. By contrast, beech sawdust appeared to be a poor substrate
for the secretion of three tested enzymes. The most important finding is that replacing
glucose with Avicel as a carbon source in the seed culture medium increased the activity
of all enzymes in the presence of all growth substrates tested. For example, the CMCase
activity of I. lacteus in the Avicel-containing medium increased by 38%, xylanase by 50%,
and β-glucosidase by 72%. Moreover, the use of inoculum grown in the presence of
crystalline cellulose accelerated the production of target enzymes and the peaks of CMCase,
and in some cases, xylanase activities were reached much earlier than when using mycelium
grown on glucose.
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Table 2. Effect of the carbon source in the inoculum medium on the enzyme activity of I. lacteus.

Growth
Substrate

Final
pH

CMCase
(U/mL)

Xylanase
(U/mL)

β-Glucosidase
(U/mL)

The inoculum was grown in the presence of glucose
Avicel 5.4 ± 0.1 52.6 ± 6.111 * 71.0 ± 6.111 * 1.65 ± 0.208 *

Mandarin
squeeze 6.9 ± 0.1 11.0 ± 0.98 23.8 ± 2.214 0.87 ± 0.068

Wheat bran 5.5 ± 0.1 17.4 ± 1.611 45.2 ± 5.611 1.18 ± 0.168

Wheat straw 5.7 ± 0.1 29.4 ± 3.911 39.1 ± 3.411 1.34 ± 0.148

Beech sawdust 5.7 ± 0.1 3.8 ± 0.211 10.3 ± 1.214 0.21 ± 0.0311

The inoculum was grown in the presence of Avicel
Avicel 5.7 ± 0.1 72.6 ± 8.06 106.5 ± 9.411 2.84 ± 0.218

Mandarin
squeeze 7.0 ± 0.1 14.2 ± 1.16 24.5 ± 1.98 0.82 ± 0.0611

Wheat bran 6.0 ± 0.1 24.5 ± 2.011 67.2 ± 6.011 1.46 ± 0.1611

Wheat straw 5.5 ± 0.1 46.5 ± 3.46 63.2 ± 7.18 2.08 ± 0.178

Beech sawdust 6.1 ± 0.1 4.3 ± 0.46 8.2 ± 1.18 0.38 ± 0.0311

* The numbers indicate the days of the peak activity.

3.4. Scaled Up Enzyme Production in I. lacteus Cultivation in a Fermenter

At the final stage, the possibility of obtaining cellulase and xylanase with a high yield
was tested when cultivating the fungus in a fermenter. In the fermentation process, the
medium pH was controlled at 6.0 for three days to prevent a decrease of medium pH due
to the metabolism of glycerol and create optimal conditions for the rapid development
of fungal culture. Then the pH of the medium was controlled at 5.0 to ensure optimal
conditions for hydrolysis of cellulose, while after six days, when the culture entered the
stationary growth phase, at 5.7, to still allow saccharification of cellulose, but prevent the
accumulation of sugars and catabolic repression of enzyme synthesis by I. lacteus.

Traces of cellulase and xylanase activity were detected after two days of fungus
cultivation (Figure 2). Thereafter, intense secretion of polysaccharide-hydrolyzing enzymes
was observed. The activity of endoglucanase and xylanase reached its maximum after
8 days of fermentation, while FPA was picked on the seventh day of I. lacteus cultivation.
The enzyme preparation (210 mL) isolated from the culture liquid contained 1710 U/mL
CMCase, 2090 U/mL xylanase, and 150 U/mL FPA.

3.5. Saccharification of Pretreated Wheat Straw with an Enzyme Preparation from I. lacteus

In this study, because of the recalcitrant structure, wheat straw (WS) was pretreated
with 1.5% NaOH before enzymatic hydrolysis to make the polysaccharide more accessible
to the enzymes. The hydrolysis of pretreated WS was compared using a commercial enzyme
preparation and the crude enzyme obtained after I. lacteus cultivation in the fermenter.

At a FPA load of 20 U/g substrate, the saccharification of 10 mg WS/mL for 3, 6,
and 24 h resulted in a reducing sugar yield of 1.2, 2.4, and 4.1 mg/mL, respectively
(Figure 3). These concentrations represent yields from wheat straw hydrolysis of 14.5,
29.0, and 49.4% from the theoretically possible, respectively. Doubling the concentration
of the WS resulted in an increase of reducing sugars to 1.9, 3.9, 6.2 mg/mL, respectively,
but decreased their yield, respectively, to 11.4, 23.5, 37.3% from the theoretically possible.
Finally, saccharification of 40 mg WS/mL for 3, 6, and 24 h led to an increase of reducing
sugar content up to 3.5, 7.2, and 10.7 mg/mL, respectively. In this case, the yields of
reducing sugars were 10.5, 21.7, 32.2% from the theoretically possible. Thus, the degree
of hydrolysis of WS and sugar yield was dependent on the substrate concentration and
incubation duration. As usual, the rate of cellulose hydrolysis first 6 h was high and
decreased over time. One of the reasons may be the accumulation of excess end products,
cellobiose and glucose, which inhibit the action of enzymes. Another reason is the partial
inactivation of enzymes since enzyme preparations of I. lacteus after 24 h of incubation
lost an average of 41% of the initial activity, while the commercial preparation lost 38%.
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Interestingly, the enzyme preparation derived from I. lacteus showed a slightly higher
cellulose hydrolysis potential than the commercial enzyme. This can be attributed to a
more balanced mixture of enzymes and their synergistic interactions [3] as well as to a
higher β-glucosidase content, which reduced the inhibitory effect of forming cellobiose.
It is worth noting that recently, Mezule and Civzele [19] performed biomass hydrolysis
using enzyme preparation obtained from the same strain I. lacteus but reaction mixtures
containing 3% w/v of dry biomass (hay, wood or sawing residue chips, barley straw) and
0.2–0.3 FPU/mL were incubated at pH 5.5 and 30 ◦C. The highest conversion yields were
obtained from hay substrate, where more than 20% of the dry matter of biomass has been
converted to fermentable sugar within 24 h of incubation. Barley straw yielded more than
0.1 g fermentable sugar from each g of dry substrate.

Figure 2. Kinetics of CMCase, xylanase, and FPA accumulation in I. lacteus cultivation in fermenter.

Figure 3. Accumulation of reducing sugars during hydrolysis of pretreated wheat straw (WS) using
I. lacteus (1–3) and commercial (4) enzyme preparations. Enzyme load–20 U/g substrate. 1–10 mg
WS; 2, 4–20 mg WS; 3–40 mg WS.
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4. Conclusions

Thus, I. lacteus is an excellent producer of polysaccharide-hydrolyzing enzymes, which
can be used for saccharification of plant biomass with a high yield of sugars. The cellulase
production system is inducible in the presence of cellulose-rich substrates but is suppressed
in the presence of an excess of easily metabolizable carbon sources. Consequently, when
growing fungus in a fermenter, it is necessary to create conditions that prevent the ac-
cumulation of reducing sugars in the medium. Further, the expression of cellulases and
xylanases is highly dependent on the type of lignocellulosic growth substrate. The additive
effect on the secretion of cellulase and xylanase of I. lacteus observed when crystalline
cellulose is combined with mandarin pomace may be a good approach to increase the yield
of the target enzyme. Our data show that endoglucanase and xylanase are coordinately
expressed under all the conditions studied indicating that both enzymes synthesis is under
a common regulatory control mechanism. Overall, this study indicates that comprehensive
physiological studies are needed to improve the methods of basidiomycetes cultivation, to
understand their nutritional requirements and the mechanisms of regulation of hydrolases
synthesis, providing the maximum yield of target enzymes.
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