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Abstract: In 2019, COVID-19 emerged as a severe respiratory disease that is caused by the novel
coronavirus, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). The disease has
been associated with high mortality rate, especially in patients with comorbidities such as diabetes,
cardiovascular and kidney diseases. This could be attributed to dysregulated immune responses
and severe systemic inflammation in COVID-19 patients. The use of effective antiviral drugs against
SARS-CoV-2 and modulation of the immune responses could be a potential therapeutic strategy for
COVID-19. Studies have shown that natural phenolic compounds have several pharmacological
properties, including anticoronavirus and immunomodulatory activities. Therefore, this review
discusses the dual action of these natural products from the perspective of applicability at COVID-19.

Keywords: natural products; flavonoid; plants; chalcone; Middle East Respiratory Syndrome Virus;
SARS-CoV; MERS-CoV; SARS-CoV-2; COVID-19; viruses

1. Introduction

Coronaviruses (CoVs) are positive single-stranded (+ss) RNA viruses belonging to
family Coronaviridae [1]. A large number of CoVs have been discovered as the causative
agents of diseases in animals and humans [2]. Seven human CoVs (HCoVs) were discovered
to date and they have all been linked to respiratory diseases. Four HCoVs cause mild
diseases; whereas three HCoVs are the causative agents of severe respiratory diseases [3,4].
Of those three HCoVs, Severe Acute Respiratory Syndrome-CoV (SARS-CoV) was the first
discovered in 2002–2003, followed by Middle East Respiratory Syndrome-CoV (MERS-CoV)
in 2012, and finally the causative agent of the current COVID-19 pandemic; SARS-CoV-2
in 2019 [3,4]. SARS-CoV-2 was first discovered in patients that were linked to Huanan
Seafood Market in Wuhan, China [4]. Since its emergence according to World Health
Organization (WHO), millions of COVID-19 cases have been reported worldwide with
over 4 million deaths. The severity of the diseases associated with SARS-CoV, MERS-CoV,
and SARS-CoV-2 and the high fatality rates have prompted several research groups to
develop effective antivirals against coronaviruses. Natural products have shown antiviral
activities against several viruses including coronaviruses [5]. Of these natural products,
phenolic compounds have shown a wide range of pharmacological activities [6].

Phenolic compounds are chemically characterized by having at least one aromatic
rings attached to one or more hydroxyl substituent, and more than 8000 phenolic com-
pounds have already been identified in plants [7]. Several plant families contain phenolic
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compounds including Sapindaceae [8], Rubiaceae [9], Crassulaceae [10], Punicaceae [11],
Fabaceae [12], and others.

Flavonoids are large group of secondary metabolites produced by a wide range of
botanical families and are found in several plant parts. In fact, there are many flavonoids
that are also phenolic compounds [13]. These natural products are synthesized by the
phenylpropanoid pathway and are categorized into different classes based on structure,
degree of hydroxylation, and polymerization [13]. Also, several activities have been re-
ported including antimicrobial, antioxidant, anti-inflammatory, and antiviral activities [13].
Flavonoids have been tested for their antiviral activities since 1951 [14]. Quercetin, among
other flavonoids, showed antiviral effects against influenza A virus, herpes simplex virus
type 1, respiratory syncytial virus (RSV and other viruses [15–19]. The first study to docu-
ment the anticoronavirus activity of flavonoids was published in 1990 [20]. In this study,
quercetin (Figure 1) inhibited the replication of human coronavirus-OC43 (HCoV-OC43)
and neonatal calf diarrhea coronavirus (NCDCV) in embryonic bovine lung fibroblasts.
In another study, flavonoids inhibited the replication of porcine epidemic diarrhea virus
(PEDV) [21]. Therefore, this review discusses the immunomodulatory activities of natural
phenolic compounds, mainly flavonoids, that have antiviral activity against SARS-CoV,
MERS-CoV, and SARS-CoV-2. These compounds could be further developed into more
effective drugs for the treatment of COVID-19. Figure 1 illustrates these compounds.

Figure 1. Chemical structures of anticoronavirus phenolic compounds found in nature.

2. Materials and Methods

The present study was carried out based on the literature review of natural phenolic
compounds, immunomodulatory action and coronavirus. The search, performed in the
PubMed database, concerning studies published until December 2020, used the following
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keywords: coronavirus, phenol, phenolic compounds, immunomodulatory, Middle East
Respiratory Syndrome Virus, 229E, NL63, OC43, HKU1, SARS-CoV, MERS-CoV or SARS-
CoV-2 (2019-nCoV or COVID-19). The scientific publications on immunomodulatory
phenolic compounds found in nature and against coronaviruses were selected from studies
published in English and discussed in this manuscript.

3. Flavonoids as Entry Inhibitors for SARS-CoV

Since the emergence of SARS-CoV in 2002–2003, several groups have been testing
plant-derived compounds for anti-SARS-CoV activity. Screening extracts from 121 chinese
herbs, for binding to SARS-CoV S2 domain and inhibiting viral infection of target cells,
identified luteolin as a flavonoid with anti-SARS-CoV activity [22]. Luteolin inhibited
SARS-CoV entry into Vero E6 cells with a concentration that results in 50% inhibition (IC50)
of 10.6 µM and concentration that reduces cell viability by 50% (CC50) of 155 µM. Luteolin
exerts its anti-SARS-CoV activity by binding to S2 domain of SARS-CoV S protein and
inhibiting viral envelope fusion with cellular membranes [22]. In the same study, quercetin
inhibited HIV-luc/SARS pseudotyped virus entry into Vero E6 cells with an IC50 of 83.4 µM
and a high CC50 of 3320 µM indicating that different flavonoids could be used as effective
and safe inhibitors of SARS-CoV viral infections.

Another study showed that the n-butanol fraction from the dried bark of Cinnamomum
cassia which contain flavonoids inhibited both HIV/SARS-CoV pseudovirus infection and
wild-type SARS-CoV infection of target cells [23].

4. Flavonoids as SARS-CoV and MERS-CoV Protease Inhibitors

The coronaviruses’ genome codes for two proteinases, 3-chymotrypsin-like protease
(3CLpro) and papain-like protease 2 (PLpro), that are critical for viral polyprotein processing
that precedes viral replication [24]. These critical roles of 3CLpro and PLpro in viral life
cycle has prompted many research groups to screen for and developing antiviral drugs that
inhibit these two proteinases. Flavonoids such as hesperetin, quercetin, and naringenin
were tested for their inhibitory effects against SARS-CoV 3CLpro in cell-free and cell-based
assays. However, only hesperetin inhibited 3CLpro with an IC50 of 60 µM and 8.3 µM in cell-
free and cell-based assays, respectively [25]. The poor water solubility of hesperetin may
explain its lower efficacy in cell-free assays. Quercetin was used as a control compound
to evaluate the inhibitory effect of compounds, isolated from the medicinal plant Torreya
nucifera, on commercial 3CLpro [26]. In this study, the biflavone amentoflavone showed
the highest inhibitory activity with an IC50 of 8.3 µM. However, quercetin, luteolin, and
apigenin showed lower inhibitory activity on 3CLpro, compared to amentoflavone, with
IC50 of 23.8, 20.2, and 280.8 µM respectively. Other flavonoids, such as gallocatechin gallate
(GCG) and epigallocatechin gallate (EGCG) inhibited recombinant SARS-CoV 3CLpro

with the galloyl moiety at 3-OH position reported as being important for the inhibitory
activity [27]. The IC50s were 47 and 73 µM for GCG and EGCG, respectively.

A flavonoid library was also tested to identify inhibitors for SARS-CoV 3CLpro. In this
study, herbacetin, rhoifolin and pectolinarin inhibited recombinant SARS-CoV 3CLpro and
the IC50 were reported as 33.17, 27.45 and 37.78µM respectively [28].

With respect to PLpro, six flavonoids isolated from Psoralea corylifolia L. namely, bava-
chinin, neobavaisoflavone, isobavachalcone, 4′-O-methylbavachalcone, psoralidin and
corylifol A inhibited SARS-CoV PLpro in a fluorescence assay using the fluorogenic sub-
strate, Z-RLRGG-7-amido-4-methylcoumarin [29]. Psoralidin and isobavachalcone were
identified as the most active with IC50 of 4.2± 1.0 and 7.3± 0.8 µM respectively.

A study screened flavonoids for inhibition of MERS-CoV 3CLpro and identified
herbacetin, isobavachalcone, and helichrysetin as potent inhibitors with IC50 of 40.59,
35.85, and 67.04 µM respectively [30].
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5. Flavonoids as Inhibitors of SARS-CoV NSP13 (Helicase/ATPase)

SARS-CoV nonstructural protein 13 (NSP13) possesses helicase and ATPase activity
both of which are important for viral life cycle [31]. In addition to flavonoids activity
against SARS-CoV 3CLpro, quercetin was identified as an inhibitor of NSP13 helicase activ-
ity with an IC50 of 8.1 µM [32]. Unlike other flavonoids, myricetin and scutellarein showed
inhibition to ATPase activity of NSP13 with an IC50 of 2.71 ± 0.19 µM and 0.86 ± 0.48 µM,
respectively [33]. The inhibition was specific to SARS-CoV ATPase of NSP13 as the com-
pounds did not inhibit hepatitis C virus helicase.

6. Flavonoids and Other Natural Phenolic Compounds as Inhibitors of SARS-CoV-2

Since the emergence of SARS-CoV-2 in December 2019, several studies have focused
on repurposing drugs that have been used for other health conditions including drugs with
reported anti-SARS-CoV activity. In line with that, flavonoids that inhibited SARS-CoV
were tested against SARS-CoV-2. In one study, quercetin and EGCG were shown to interact
with and inhibit SARS-CoV-2 3CLpro activity in a FRET-based enzymatic assay [34,35].
Moreover, EGCG inhibited the entry of SARS-CoV-2-pseudotyped virus and live SARS-CoV-
2 into HEK293T-hACE2 and Vero cells respectively [36]. Another study has demonstrated
that EGCG inhibited the endoribonuclease enzymatic activity of SARS-CoV-2 nonstructural
protein-15 (Nsp15) with an IC50 of 1.62 µM, while blocking viral replication in Vero cells
with an IC50, 0.2 µM [37]. The low IC50 of ECGC indicates its potency and warrants
its further development as a potential SARS-CoV-2 antiviral. GCG was also found to
inhibit the binding of SARS-CoV-2 N protein to viral RNA inhibiting viral replication in
A549-hACE2 with an IC50, 44.4 µM [38]. As shown previously with SARS-CoV 3CLpro,
herbacetin and pectolinarin inhibited SARS-CoV-2 3CLpro with an IC50 of 53.90 and 51.64
µM, respectively [28,39]. However, rhoifolin exhibited weaker inhibition, whereas baicalin
showed stronger inhibition of SARS-CoV-2 3CLpro than that observed for SARS-CoV 3CLpro.
These differences in inhibition of 3CLpro by rhoifolin and baicalin may be attributed to
the slight differences in the amino acid sequence since the two 3CLpro have 96% sequence
identity. A study has also demonstrated potent inhibition of recombinant SARS-CoV-2
3CLpro by myricetin, which suggests that myricetin could be further tested and developed
as a potential SARS-CoV-2 antiviral [40].

A recent study that screened for inhibitors of angiotensin converting enzyme 2 (ACE2),
the SARS-CoV-2 receptor, identified the flavonoids rutin, quercetin, and tamarixetin as
inhibitors of ACE2 activity [41]. However, the most potent of all flavonoids tested was
quercetin with an IC50 of 4.48 µM.

Stilbene derivatives, such as resveratrol, are natural polyphenolic compounds that are
abundant in a variety of plants including grapes [42]. They have a wide range of activi-
ties including antimicrobial, antioxidant, antileukemic, anti-platelet aggregative, protein
tyrosine kinase inhibitory, anti-inflammatory, anticarcinogenic activity, antiviral activi-
ties [42]. Several studies evaluated resveratrol and its derivatives for their antiviral activity
against SARS-CoV, SARS-CoV-2, and MERS-CoV [42–44]. Resveratrol and a few deriva-
tives showed potent inhibition of SARS-CoV replication [42]. Resveratrol also inhibited
MERS-CoV viral replication, nucleocapsid protein expression, and protected MERS-CoV
infected cells from apoptosis [43]. Most recently, a study showed that resveratrol inhibited
SARS-CoV-2 infection of Vero cells [44]. This study suggests that resveratrol inhibits the
entry of virus into Vero cells. In addition to the above studies, several molecular docking
and computational studies have described different flavonoids that target SARS-CoV-2 S
protein, 3CLpro, PLpro, helicase and RNA polymerase [45–62]. Molecular docking studies
have also identified resveratrol, quercetin, and luteolin as phenolic compounds that binds
with high affinity to ACE2 receptor [63,64].

All the previous activities of flavonoids and phenolic compounds indicate that they
may serve as promising and potential therapeutics for SARS-CoV-2 and could be considered
for further development. Table 1 summarizes the anticoronavirus activities of phenolic
compounds discussed in this study.
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Table 1. Anticoronavirus actions of natural phenolic compounds.

Compound Mechanism of Action IC50 CC50 SI Experimental Model Reference

Quercetin - 198.5 µM - - HCoV-OC43 and NCDCV infection of
embryonic bovine lung fibroblasts [20]

Apigenin, Luteolin,
and Catechin

Blockade of early steps of
viral life cycle

Apigenin: 0.37–0.74 µM
Luteolin: 0.7–1.4 µM

Catechin: 37.9–41.3 µM

Apigenin: >185 µM
Luteolin: 23.4 µM

Catechin: >341.7 µM

Apigenin: 250–500
Luteolin: 16.75–33.5

Catechin: 8.3–9

PEDV infection of Vero cells and
Sulforhodamine B assay for cytotoxicity [21]

Luteolin and
Quercetin

Inhibiton of viral entry by
binding to S2 domain of S

protein and inhibiting fusion

Luteolin: 10.6 µM
Quercetin: 83.4 µM

Luteolin: 155 µM
Quercetin: 3320 µM

Luteolin: 14.62
Quercetin: 39.8

SARS-CoV live virus and
HIV-luc/SARS pseudotyped viral

infection of Vero E6 cells
[22]

Hesperetin Inhibition of SARS-CoV
3CLpro

8.3 µM and 60 µM in
cell-based and cell-free

assays respectively
2718 µM

327.5 and 45.3 in
cell-based and
cell-free assays

respectively

Cell-free assay using recombinant
3CLpro fusion protein and substrate
Cell-based assay using recombinant
3CLpro–substrate–luciferase fusion

protein

[25]

Amentoflavone Inhibition of SARS-CoV
3CLpro 8.3 µM - - FRET assay using commercial 3CLpro [26]

GCG and EGCG Inhibition of SARS-CoV
3CLpro

GCG: 47 µM
EGCG: 73 µM - - FRET assay using recombinant 3CLpro [27]

Herbacetin, Rhoifolin
and Pectolinarin

Inhibiton of SARS-CoV
3CLpro

Herbacetin: 33.17 µM
Rhoifolin: 27.45 µM

Pectolinarin: 37.78µM
- - FRET assay using recombinant

SARS-CoV 3CLpro [28]

Psoralidin and
Isobavachalcone

Inhibition of SARS-CoV
PLpro

Psoralidin: 4.2± 1.0 µM
Isobavachalcone:

7.3± 0.8 µM
- -

Fluorescence-based assay using a
fluorogenic substrate and recombinant

SARS-CoV PLpro
[29]

Herbacetin,
Isobavachalcone, and

Helichrysetin
Inhibition of MERS-CoV

3CLpro
Herbacetin: 40.59 µM

Isobavachalcone: 35.85 µM
Helichrysetin: 67.04 µM

- - FRET assay using recombinant
MERS-CoV 3CLpro [30]

Quercetin Inhibition of helicase activity
of SARS-CoV NSP13 Quercetin: 8.1 µM - - FRET-based assay for the DNA

unwinding activity of helicase [32]
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Table 1. Cont.

Compound Mechanism of Action IC50 CC50 SI Experimental Model Reference

Myricetin and
Scutellarein

Inhibition of ATPase activity
of SARS-CoV NSP13

Myricetin: 2.71 ± 0.19 µM
Scutellarein: 0.86 ± 0.48 µM - - Colorimetric-based ATP hydrolysis

assay [33]

Quercetin Inhibition of SARS-CoV-2
3CLpro - - - FRET assay using recombinant

SARS-CoV-2 3CLpro [34]

EGCG Inhibition of SARS-CoV-2
3CLpro 0.874 ± 0.005 µM - - FRET assay using recombinant

SARS-CoV-2 3CLpro [35]

EGCG

Inhibition of viral entry by
blocking the binding of

SARS-CoV-2 S protein to
ACE2

3.77 µM - - Plaque reduction assay using live
SARS-CoV-2 [36]

EGCG
Inhibition of

endoribonuclease activity of
SARS-CoV-2 Nsp15

1.62 µM and 0.2 µM in
enzymatic assay and live

virus infection assay
respectively

- -
FRET assay using recombinant NSP15
and live SARS-CoV-2 palque reduction

assay
[37]

GCG
Inhibition of binding of

SARS-CoV-2 N protein to
viral RNA

44.4 µM 155.4 µM 3.5 SARS-CoV-2 infection of A549-hACE2
cells [38]

Herbacetin,
Pectolinarin

Inhibition of SARS-CoV-2
3CLpro

Herbacetin: 53.90 µM
Pectolinarin: 51.64 µM - - FRET assay using recombinant

SARS-CoV-2 3CLpro [39]

Myricetin Inhibition of SARS-CoV-2
3CLpro 3.684 ± 0.076 µM - - FRET assay using recombinant

SARS-CoV-2 3CLpro [40]

Quercetin Inhibition of ACE2 4.48 µM - - FRET assay using recombinant ACE2
and Mca-APK(Dnp) as the substrate [41]

Resveratrol

Inhibition of MERS-CoV
viral RNA replication,
nucelocapsid protein

expression, and
MERS-CoV-mediated cell

apoptosis
Inhibiton of SARS-CoV-2

viral entry

4.48 µM >200 µM >45

Live MERS-CoV infection assays such
as plaque assay, MTT, and neutral red

uptake assay as well as
immunofluorescent assay

Live SARS-CoV-2 infection of Vero cells

[43]
[44]



Biomolecules 2021, 11, 1254 7 of 28

7. Immune Response to SARS-CoV-2

Immune responses to viral infections are essential to control viral replication, kill in-
fected cells and induce protective immunity against virus [65,66]. Following infection, viral
nucleic acid and viral proteins are detected by patter recognition receptors (PRRs), such
as Toll-like receptors (TLRs) on immune cells and other cells [65]. The recognition of viral
proteins and nucleic acid results in production of inflammatory cytokines, chemokines and
adhesion molecules by immune tissue resident cells, such as macrophages [67]. Although
appropriate levels of proinflammatory cytokines are required to activate immune cells
involved in viral control, extremely high levels of IL-1β, IL-10, G-CSF, GM-CSF, IFN-γ and
TNF-α were detected in COVID-19 patients [68]. Moreover, disease severity positively
correlated with increased IL-6 levels [69].

Type I interferon (IFN) is required to activate cellular antiviral mechanisms to sup-
press viral replication and virion assembly [70]. Severe COVID-19 patients demonstrated
decreased type I IFN response and exacerbated inflammation [71]. Indeed, autoantibodies
against type I IFN were detected in severe COVID-19 pneumoniae [72] and mutations in
genes related to type I IFN immunity were also detected in critical patients [73]. Besides
the host defects in type I IFN immunity, a study showed that SARS-CoV-2 ORF6 protein
inhibited type I interferon production and signaling pathway [74]. In addition, natural
killer (NK) cell numbers were reduced in blood of severe COVID-19 patients [75]. There-
fore, impaired innate immune responses and increased production of proinflammatory
cytokines may contribute to disease severity and worse outcomes in COVID-19 patients.

In addition to innate immune system deficiencies reported in severe COVID-19 pa-
tients, adaptive immune responses are also compromised as demonstrated by lymphopenia
and decreased numbers of T cells in severe COVID-19 patients [76]. Direct viral cytotoxicity,
impaired cell proliferation and enhanced apoptosis have been related to lymphopenia in
severe COVID-19 patients [77]. Increased levels of C-reactive protein (CRP), D-dimer, fib-
rinogen, procalcitonin, lactate dehydrogenase (LDH), and ferritin have also been reported
in severe COVID-19 patients [78,79]. The immune dysregulation during COVID-19 results
in hyperinflammation, pulmonary injury, coagulopathy and multiorgan dysfunction, lead-
ing to worse outcome [80]. Indeed, comorbidities, including hypertension, diabetes and
obesity, are prevalent in severe COVID-19 patients [81–83].

Natural products with immunomodulatory activities are worth investigation as
promising therapeutics for COVID-19. In addition to antiviral activity, many natural prod-
ucts have antifungal and antibacterial activities, which are interesting since coinfections
have been reported in severe SARS-CoV-2 pneumonia patients [84]. Anti-inflammatory,
antiapoptotic, antioxidant, and immunomodulatory activities have been described for
natural compounds [85–88]. Indeed, natural compounds capable of reducing inflamma-
tion without compromising host immunity would be beneficial for treatment of severe
COVID-19 [80]. Herein, we review the immunomodulatory activities of natural pheno-
lic compounds, including flavonoids, that possess anti-SARS-CoV, anti-MERS-CoV, and
anti-SARS-CoV-2 activities.

8. Immunostimulatory Activities of Natural Phenolic Compounds

A variety of natural compounds have shown anti-inflammatory and antioxidant activ-
ities in addition to immunomodulatory activities that are reported in different experimental
models [87–89] (Table 2). Apigenin and luteolin at 10 µM induced activation of NK and
CD8+ T cells (CTLs) in vitro, and enhanced the proliferation of splenocytes stimulated with
lipopolysaccharide (LPS) [90].

EGCG enhanced the antiviral state in Huh7 cells, a hepatoma cell line, infected with
hepatitis C virus (HCV) [91]. Treatment of HCV-infected Huh7 cells with 10 µM of EGCG
enhanced polyinosinic–polycytidylic acid (Poly I:C) induced expression of IFN-stimulated
genes (ISGs), increased TLR3 and IFN-λ1 expression, and decreased viral replication [91].
Indeed, pretreatment of Huh7 cells with 10 µM epigallocatechin gallate followed by HCV
dsRNAs enhanced antiviral defense that is mediated by interferon-λ1 (IFN-λ1), TLR3, RNA-
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sensing retinoic acid-inducible gene I (RIG-I) and IFN-stimulated gene (ISG) expression [92].
In a murine leukemia model, oral treatment with 87.26 µmol/kg of EGCG induced T and
B cell proliferation and NK cell activity [93]. Furthermore, EGCG (50 µM) increased
macrophage receptor with collagenous structure (MARCO) expression and improved
macrophage phagocytosis of Streptococcus pneumoniae [94]. Ex vivo experiments using cells
from mice orally treated, every day for 6 weeks, with 1000 mg/kg of EGCG fraction of
green tea extract demonstrated enhanced innate and adaptive immune responses such as
NK cytolysis, peritoneal cells phagocytosis, splenocyte proliferation, and IL-2 and IFN-γ
production [95].

Quercetin, resveratrol and apigenin were also reported to have antimicrobial and
immunostimulatory activities [88,96,97]. Mice fed with quercetin (0.86 µmol day−1) for
34 days and immunized at day 29 with forssman heterophilic glycolipid antigen, a T cell-
dependent antigen, showed increased ex vivo B and T cell proliferation as well as enhanced
numbers of IgM-producing lymphocytes [98]. During in vitro viral infection, macrophages
treated with a noncytotoxic concentration of quercetin (100 µM) showed impaired dengue
virus type 1 and type 3 (DENV1, DENV3) replication and diminished TNF-α and IL-6
secretion by human U937-DC-SIGN macrophages in the presence or absence of enhancing
4G2 antibodies, whereas resveratrol (100 µM) and apigenin (40 µM) only impaired DENV3
replication in the absence of enhancing antibodies [96]. On the other hand, quercetin
(10 µM) and resveratrol (50 µM) suppressed human metapneumovirus (hMPV) replication,
decreased 8-isoprostane, an oxidative stress marker, and reduced IL-8, RANTES, IL-6,
TNF-α, CXCL-10, CCL4 production by hMPV-infected A549 airway epithelial cell line [99].

Resveratrol at 25 µM inhibited influenza virus replication through activation of
TLR9/MyD88/IRF7 pathway in A549 infected cells, and enhancing IFN-β production [97].
Also, pre-treatment of RAW 264.7 cells with 100 µg/mL of aqueous extract of Eupatorium
fortune demonstrated antiviral activity against influenza A virus infection by enhancing
production of type I IFN. Indeed, quercetin was identified as one of the active antiviral
and immunomodulatory compounds of the extract [100]. This was confirmed by a study
which showed that pre-treatment with 3.0 µg/mL quercetin inhibited influenza virus
replication in RAW 264.7 cells and increased IFN-β production [101]. Moreover, quercetin
dose dependently decreased nontypeable Haemophilus influenzae (NTHi) bacterial viability
in vitro, reduced production of proinflammatory markers in the lungs of infected mice
that were pre-treated with 60 mg/kg for 8 days and for 24h postinfection, and decreased
mortality of NTHi-infected zebrafish that were intraperitoneally treated with 0.3 mg/g of
quercetin at 29 and 53h postinfection [102].

Hesperetin is another flavonoid with antioxidant, anti-inflammatory, anticancer and
antimicrobial activity [103,104]. It has been shown that hesperetin (25 µM) activated host
cellular and humoral responses [105], enhanced LPS-mediated in vitro proliferation of
splenocytes, and potentiated killing activity of NK and CTLs [105]. Moreover, hesperetin
activated antigen presenting cells (APCs), enhanced CTL response, and antitumor immu-
nity when used as an adjuvant at 2.65 µmol/mouse in combination with inactivated B16F10
melanoma cells vaccine which prolonged the survival of tumor-bearing mice [106].
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Table 2. Immunostimulatory effects of natural phenolic compounds.

Compound Experimental Model Dose/Concentration Effect Reference

Apigenin
Luteolin In vitro

LPS-stimulation of murine
splenocytes

Killing of target tumor cells

10 µM
1–10 µM
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9. Effects of Natural Phenolic Compounds on NF-κB Pathway and Inflammation

It has been established that activated nuclear factor-κB (NF-κB) translocates to the
nucleus and induces the transcription of genes involved in inflammation, apoptosis, cell
proliferation, survival, and differentiation [107]. Since NF-κB drives the expression of
cytokines and others inflammatory mediators involved in COVID-19 hyperinflammatory
state, targeting NF-κB pathway has been proposed to ameliorate severe inflammation in
COVID-19 [108,109].

Monocyte-derived macrophages are involved in lung and multiorgan inflammation
observed in severe COVID-19 patients [110–112] which necessitate the investigation of
potential natural phenolic compounds that could reduce NF-κB activation and inhibit the
production of proinflammatory cytokines and chemokines by macrophages.

The anti-inflammatory activity of some natural compounds is due to their ability to
impair NF-κB activation. The in vitro suppression of NF-κB pathway by amentoflavone,
herbacetin, rhoifolin, luteolin, myricetin, psoralidin, scutellarin and hesperetin has been
described in RAW 264.7 murine macrophages. Amentoflavone decreased NO production
by LPS-activated RAW 264.7 macrophages, and this activity was dose dependent [113,114].
RAW 264.7 cells, that were pretreated with 60 µM of amentoflavone, showed reduced NF-κB
activation and translocation of p65 to the nucleus. Moreover, inducible nitric oxide synthase
(iNOS) expression and NO production were reduced in these cells [113]. Herbacetin exerts
its anti-inflammatory effects by inhibiting Jun N-terminal kinase (JNK) and NF-κB signaling
pathway in RAW 264.7. Herbacetin (50 µM) reduced the production of NO, IL-1β and
TNF-α in cells that are stimulated with LPS [115]. Rhoifolin (100 µmol/L) suppressed IκBα
and IKKβ phosphorylation in RAW 264.7 cells, that are stimulated with LPS, resulting
in reduced production of TNF-α, IL-1β and IL-6 cytokines, and lower levels of iNOS
and CCL2 mRNA [116]. Furthermore, luteolin (5 µM) impaired NFκB translocation in
LPS-activated RAW 264.7 cells, induced heme oxygenase-1 (HO-1) expression, and reduced
iNOS expression and NO production [117]. Similarly, myricetin (100 µM) impaired STAT-1
activation, IκBα degradation, and the p65 nuclear translocation, and induced heme HO-1
expression in LPS-stimulated RAW 264.7 cells [118]. Psoralidin (30 µM) inhibited iNOS
expression in LPS-activated RAW 264.7 cells by suppressing IKK phosphorylation, IκB
degradation and NF-κB nuclear translocation [119]. In addition, pretreatment with 100
µM scutellarin decreased the production of prostaglandin E2 (PGE2), NO, IL-6 and TNF-α
by LPS-activated RAW 264.7 cells [120]. Hesperetin exerts anti-inflammatory effects in
LPS-stimulated RAW 264.7 since treatment with 40 µM decreased TNF-α, IL-6, IL-1β
production, and reduced iNOS and COX-2 expression by impairing NF-κB activation and
stimulation of HO-1 and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways [121].

In human monocytes, 10 µM of apigenin decreased IL-1β, TNF-α and IL-8 production
by cells stimulated with LPS. This anti-inflammatory activity of apigenin is due to inhibition
of NF-κB activation by reducing the phosphorylation of p65 and inhibiting IKK [122]. An-
other study have shown that pre-treatment of LPS-stimulated THP-1-derived macrophages,
with 25 µM of apigenin, blocked ERK1/2 phosphorylation, impaired NF-κB activation, and
decreased the expression of chemokine (C-C motif) ligand 5 (CCL5), intercellular adhesion
molecule-1 (ICAM-1), vascular cell adhesion protein-1 (VCAM-1), IL-1β, and IL-6 [123].

Also, THP-1 macrophages that were pre-treated with 40 µM catechin, before infection
with Porphyromonas gingivalis, showed downregulation of NF-κB activation, and reduced
IL-1β and TNF-α production with no effect on bacterial growth [124].

EGCG can directly bind to CXCL9, 10 and 11 chemokines and limit their ability to re-
cruit leukocytes [125]. In addition, pre-treatment with 10 µM EGCG, quercetin and luteolin
reduced inflammation in endothelial cells by impairing IKKB activation and downregulat-
ing VCAM-1 expression [126]. Another study have demonstrated that EGCG and GCG
in a concentration dependent manner (0.3 and 30 µM) blocked IκBα degradation, NF-κB
activation and IL-12p40 production in LPS-stimulated murine peritoneal macrophages and
J774.1 macrophages, and these effects were dose dependent [127]. Similarly, luteolin (10
and 100 µM) inhibited VCAM-1 expression on formyl-MLP (fMLP)-stimulated endothelial
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cells [128]. In the same study, luteolin suppressed the adhesion of monocytes to endothelial
cells by reducing chemokine monocyte chemotactic protein-1 (MCP-1), ICAM-1 and VCAM-
1 expression by endothelial cells stimulated with TNF-α. Such effects were explained by
the ability of luteolin to inhibit NF-κB activation by impairing IκBα degradation, IκB kinase
β (IKKβ) expression, and NF-κB nuclear translocation in endothelial cells [129]. Another
study showed that isobavachalcone impaired NF-κB activation and ICAM-1 expression
in a cerebrovascular endothelial cell line that was stimulated with LPS, polyriboinosinic
polyribocytidylic acid (Poly [I:C]) or macrophage-activating lipopeptide 2-kDa (MALP-2).
In line with the above findings, as well as at 0,1, 1 or 5 µM isobavachalcone inhibited the
adhesion of monocytes to LPS-stimulated endothelial cells in vitro [130].

Studies showed that resveratrol impaired NF-κB activation in different cells includ-
ing myeloid cells, HeLa, and Jurkat cells that were stimulated with phorbol myristate
acetate (PMA), LPS, H2O2, okadaic acid or ceramides [131]. Indeed, human and murine
macrophages stimulated with TNF-α or LPS in the presence of 25 µM of resveratrol showed
reduced production of proinflammatory cytokine and chemokine [132]. In human epithe-
lial cells, high concentration of resveratrol (300 µM) inhibited rhinovirus replication and
ICAM-1 expression, and decreased basal levels of IL-6 and RANTES in uninfected human
epithelia [133].

Impaired NF-κB and reduced production of AP-1-dependent proinflammatory cy-
tokines were described in LPS-stimulated RAW 264.7 macrophages that were pre-treated
with 20 µM of quercetin. The ability of quercetin to impair TLR4/MyD88/PI3K down-
stream signaling pathways resulted in reduced production of NO, PGE2, TNF-α, IL-6,
IL-1β and GM-CSF [134]. Interestingly, synergistic anti-inflammatory activity of quercetin
and catechin was detected in LPS-stimulated RAW 264.7 macrophages that were treated
with 3 µM of quercetin and 75 µM of catechin [135]. Pre-treatment with quercetin inhibited
nuclear translocation of NF-κB p65 in human peripheral blood mononuclear cells (PBMCs)
that were stimulated with oxidized low-density lipoprotein (OxLDL). Moreover, quercetin
(25 µM) decreased PGE2 and IL-6 production, and downregulated TLR2 and TLR4 expres-
sion in these PBMCs [136]. The anti-inflammatory effects of hesperetin and resveratrol (100
µM) were reported in PBMCs that were stimulated with LPS. Pre-treatment with hesperetin
or resveratrol, 2 h prior to stimulation, reduced the production of TNF-α, IFN-γ, CCL-2,
CCL-5, IL-1β and GM-CSF, while only resveratrol inhibited IL-6 production [137].

BV-2 cells, a mouse microglial cell line, were used to study neuroinflammation
in vitro [138]. Isobavachalcone, at 5 µM, suppressed p65 translocation to the nucleus and
NF-κB activation in LPS-stimulated BV-2 cells, resulting in decreased expression of TNF-α,
IL-6, IL-1β, and iNOS [139]. Scutellarin showed similar effects in LPS-stimulated BV-2 cells.
In this study, 139.7 µM of scutellarin reduced AKT, JNK, p38 and p65 phosphorylation and
suppressed the production of NO, TNF-α, IL-1β, and IL-6 [140].

Studies showed that helichrysetin possessed anti-inflammatory, anti-oxidant and anti-
tumor activities in different cell lines [141,142]. Helichrysetin (50 µM) impaired NF-κB
activation in mouse pancreatic β-MIN-6 cells [141], HeLa, and T98G cells [142]. Rheuma-
toid arthritis fibroblast-like synoviocytes treated for 48h with 10 or 20 µM of pectolinarin
showed decreased activation of the phosphatidylinositol 3 kinase/protein kinase B path-
way, reduced cell proliferation and decreased production of IL-6, IL-18, NO and PGE2 [143].
However, in LPS-stimulated RAW 264.7 macrophages, pectolinarin at 1, 10, 25 or 50 µM
did not affect COX-2 expression and PGE2 synthesis [144]. Table 3 summarizes the anti-
inflammatory activities of phenolic compounds discussed in this study.
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Table 3. Anti-inflammatory effects of natural phenolic compounds in LPS-stimulated monocytes/macrophages.

Compound Concentration In Vivo Models Using LPS-Stimulated Monocytes/Macrophages Effect Reference

Amentoflavone 60 µM RAW 264.7 pretreated with amentoflavone 10 min prior to LPS stimulation
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Compound Experimental Model Dose/Concentration Effect Reference 

Apigenin 
Luteolin In vitro 

LPS-stimulation of murine 
splenocytes 

Killing of target tumor cells 

10 μM 
1–10 μM 

  
CTL and NK cytotoxicity activity [90] 

Epigallocatechin 
gallate (EGCG) 

In vitro 
HCV JFH-1-infected Huh7 

treated with EGCG 1h prior to 
poly I:C stimulation 

1–10 μM Poly I:C induced expression of ISGs 
   [91] 

In vivo Murine leukemia model 10.91, 43.63 and 87.26 μmol/kg 
T and B cell proliferation 

NK activity 
Macrophage phagocytosis

[93] 

In vitro 
Human U937-DC-SIGN 

macrophages infected with 
DENV1 or DENV2 

100 μM DENV1 and DENV2 replication 
TNF-α and IL-6 secretion 

[96] 

Ex vivo 
LPS-stimulated proliferation of 

B cells 
SRBC-immunized mice 

215.1 μmol/kg in diet for 34 days B cells proliferation 
IgM-producing lymphocytes

[98] 

Quercetin 
Resveratrol In vitro 

hMPV-infected A549 airway 
epithelial cell line 

10 μM 
50 μM 

Oxidative stress 
IL-8, RANTES, IL-6, TNF-α, CXCL-10, 

CCL4 secretion 
Virus replication 

[99] 

Hesperetin In vivo 
Adjuvant in combination with 
inactivated B16F10 melanoma 

cells vaccine 
2.65 μmol/mouse 

APC activation 
CTL response [106] 

LPS: Lipopolysaccharide. CTL: Cytotoxic T Lymphocytes. NK: Natural Killer Cells. SRBC: Forssman heterophilic glycolipid antigen occurring on sheep erythrocytes. DENV: Dengue 
virus. hMPV: Human metapneumovirus. APC: Antigen Presenting Cells. The compounds in the table are in the order in which the compounds are presented in the section 
Immunostimulatory Activities of Natural Phenolic Compounds. Increased ordecreased. 

 

I-κBα degradation
[113]

Herbacetin 50 µM RAW 264.7 pretreated with herbacetin 30 min prior to LPS stimulation
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Table 2. Immunostimulatory effects of natural phenolic compounds. 

Compound Experimental Model Dose/Concentration Effect Reference 

Apigenin 
Luteolin In vitro 

LPS-stimulation of murine 
splenocytes 

Killing of target tumor cells 

10 μM 
1–10 μM 

  
CTL and NK cytotoxicity activity [90] 

Epigallocatechin 
gallate (EGCG) 

In vitro 
HCV JFH-1-infected Huh7 

treated with EGCG 1h prior to 
poly I:C stimulation 

1–10 μM Poly I:C induced expression of ISGs 
   [91] 

In vivo Murine leukemia model 10.91, 43.63 and 87.26 μmol/kg 
T and B cell proliferation 

NK activity 
Macrophage phagocytosis

[93] 

In vitro 
Human U937-DC-SIGN 

macrophages infected with 
DENV1 or DENV2 

100 μM DENV1 and DENV2 replication 
TNF-α and IL-6 secretion 

[96] 

Ex vivo 
LPS-stimulated proliferation of 

B cells 
SRBC-immunized mice 

215.1 μmol/kg in diet for 34 days B cells proliferation 
IgM-producing lymphocytes

[98] 

Quercetin 
Resveratrol In vitro 

hMPV-infected A549 airway 
epithelial cell line 

10 μM 
50 μM 

Oxidative stress 
IL-8, RANTES, IL-6, TNF-α, CXCL-10, 

CCL4 secretion 
Virus replication 

[99] 

Hesperetin In vivo 
Adjuvant in combination with 
inactivated B16F10 melanoma 

cells vaccine 
2.65 μmol/mouse 

APC activation 
CTL response [106] 

LPS: Lipopolysaccharide. CTL: Cytotoxic T Lymphocytes. NK: Natural Killer Cells. SRBC: Forssman heterophilic glycolipid antigen occurring on sheep erythrocytes. DENV: Dengue 
virus. hMPV: Human metapneumovirus. APC: Antigen Presenting Cells. The compounds in the table are in the order in which the compounds are presented in the section 
Immunostimulatory Activities of Natural Phenolic Compounds. Increased ordecreased. 

 

NO
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Table 2. Immunostimulatory effects of natural phenolic compounds. 

Compound Experimental Model Dose/Concentration Effect Reference 

Apigenin 
Luteolin In vitro 

LPS-stimulation of murine 
splenocytes 

Killing of target tumor cells 

10 μM 
1–10 μM 

  
CTL and NK cytotoxicity activity [90] 

Epigallocatechin 
gallate (EGCG) 

In vitro 
HCV JFH-1-infected Huh7 

treated with EGCG 1h prior to 
poly I:C stimulation 

1–10 μM Poly I:C induced expression of ISGs 
   [91] 

In vivo Murine leukemia model 10.91, 43.63 and 87.26 μmol/kg 
T and B cell proliferation 

NK activity 
Macrophage phagocytosis

[93] 

In vitro 
Human U937-DC-SIGN 

macrophages infected with 
DENV1 or DENV2 

100 μM DENV1 and DENV2 replication 
TNF-α and IL-6 secretion 

[96] 

Ex vivo 
LPS-stimulated proliferation of 

B cells 
SRBC-immunized mice 

215.1 μmol/kg in diet for 34 days B cells proliferation 
IgM-producing lymphocytes

[98] 

Quercetin 
Resveratrol In vitro 

hMPV-infected A549 airway 
epithelial cell line 

10 μM 
50 μM 

Oxidative stress 
IL-8, RANTES, IL-6, TNF-α, CXCL-10, 

CCL4 secretion 
Virus replication 

[99] 

Hesperetin In vivo 
Adjuvant in combination with 
inactivated B16F10 melanoma 

cells vaccine 
2.65 μmol/mouse 

APC activation 
CTL response [106] 

LPS: Lipopolysaccharide. CTL: Cytotoxic T Lymphocytes. NK: Natural Killer Cells. SRBC: Forssman heterophilic glycolipid antigen occurring on sheep erythrocytes. DENV: Dengue 
virus. hMPV: Human metapneumovirus. APC: Antigen Presenting Cells. The compounds in the table are in the order in which the compounds are presented in the section 
Immunostimulatory Activities of Natural Phenolic Compounds. Increased ordecreased. 

 

NF-κB activation
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Table 2. Immunostimulatory effects of natural phenolic compounds. 

Compound Experimental Model Dose/Concentration Effect Reference 

Apigenin 
Luteolin In vitro 

LPS-stimulation of murine 
splenocytes 

Killing of target tumor cells 

10 μM 
1–10 μM 

  
CTL and NK cytotoxicity activity [90] 

Epigallocatechin 
gallate (EGCG) 

In vitro 
HCV JFH-1-infected Huh7 

treated with EGCG 1h prior to 
poly I:C stimulation 

1–10 μM Poly I:C induced expression of ISGs 
   [91] 

In vivo Murine leukemia model 10.91, 43.63 and 87.26 μmol/kg 
T and B cell proliferation 

NK activity 
Macrophage phagocytosis

[93] 

In vitro 
Human U937-DC-SIGN 

macrophages infected with 
DENV1 or DENV2 

100 μM DENV1 and DENV2 replication 
TNF-α and IL-6 secretion 

[96] 

Ex vivo 
LPS-stimulated proliferation of 

B cells 
SRBC-immunized mice 

215.1 μmol/kg in diet for 34 days B cells proliferation 
IgM-producing lymphocytes

[98] 

Quercetin 
Resveratrol In vitro 

hMPV-infected A549 airway 
epithelial cell line 

10 μM 
50 μM 

Oxidative stress 
IL-8, RANTES, IL-6, TNF-α, CXCL-10, 

CCL4 secretion 
Virus replication 

[99] 

Hesperetin In vivo 
Adjuvant in combination with 
inactivated B16F10 melanoma 

cells vaccine 
2.65 μmol/mouse 

APC activation 
CTL response [106] 

LPS: Lipopolysaccharide. CTL: Cytotoxic T Lymphocytes. NK: Natural Killer Cells. SRBC: Forssman heterophilic glycolipid antigen occurring on sheep erythrocytes. DENV: Dengue 
virus. hMPV: Human metapneumovirus. APC: Antigen Presenting Cells. The compounds in the table are in the order in which the compounds are presented in the section 
Immunostimulatory Activities of Natural Phenolic Compounds. Increased ordecreased. 

 

IL-1β and
TNF-α levels

[115]

Rhoifolin 100 µM LPS-stimulated RAW 264.7 in the presence of rhoifolin treatment
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Table 2. Immunostimulatory effects of natural phenolic compounds. 

Compound Experimental Model Dose/Concentration Effect Reference 

Apigenin 
Luteolin In vitro 

LPS-stimulation of murine 
splenocytes 

Killing of target tumor cells 

10 μM 
1–10 μM 

  
CTL and NK cytotoxicity activity [90] 

Epigallocatechin 
gallate (EGCG) 

In vitro 
HCV JFH-1-infected Huh7 

treated with EGCG 1h prior to 
poly I:C stimulation 

1–10 μM Poly I:C induced expression of ISGs 
   [91] 

In vivo Murine leukemia model 10.91, 43.63 and 87.26 μmol/kg 
T and B cell proliferation 

NK activity 
Macrophage phagocytosis

[93] 

In vitro 
Human U937-DC-SIGN 

macrophages infected with 
DENV1 or DENV2 

100 μM DENV1 and DENV2 replication 
TNF-α and IL-6 secretion 

[96] 

Ex vivo 
LPS-stimulated proliferation of 

B cells 
SRBC-immunized mice 

215.1 μmol/kg in diet for 34 days B cells proliferation 
IgM-producing lymphocytes

[98] 

Quercetin 
Resveratrol In vitro 

hMPV-infected A549 airway 
epithelial cell line 

10 μM 
50 μM 

Oxidative stress 
IL-8, RANTES, IL-6, TNF-α, CXCL-10, 

CCL4 secretion 
Virus replication 

[99] 

Hesperetin In vivo 
Adjuvant in combination with 
inactivated B16F10 melanoma 

cells vaccine 
2.65 μmol/mouse 

APC activation 
CTL response [106] 

LPS: Lipopolysaccharide. CTL: Cytotoxic T Lymphocytes. NK: Natural Killer Cells. SRBC: Forssman heterophilic glycolipid antigen occurring on sheep erythrocytes. DENV: Dengue 
virus. hMPV: Human metapneumovirus. APC: Antigen Presenting Cells. The compounds in the table are in the order in which the compounds are presented in the section 
Immunostimulatory Activities of Natural Phenolic Compounds. Increased ordecreased. 

 

IκBα and IKKβ phosphorylation
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Table 2. Immunostimulatory effects of natural phenolic compounds. 

Compound Experimental Model Dose/Concentration Effect Reference 

Apigenin 
Luteolin In vitro 

LPS-stimulation of murine 
splenocytes 

Killing of target tumor cells 

10 μM 
1–10 μM 

  
CTL and NK cytotoxicity activity [90] 

Epigallocatechin 
gallate (EGCG) 

In vitro 
HCV JFH-1-infected Huh7 

treated with EGCG 1h prior to 
poly I:C stimulation 

1–10 μM Poly I:C induced expression of ISGs 
   [91] 

In vivo Murine leukemia model 10.91, 43.63 and 87.26 μmol/kg 
T and B cell proliferation 

NK activity 
Macrophage phagocytosis

[93] 

In vitro 
Human U937-DC-SIGN 

macrophages infected with 
DENV1 or DENV2 

100 μM DENV1 and DENV2 replication 
TNF-α and IL-6 secretion 

[96] 

Ex vivo 
LPS-stimulated proliferation of 

B cells 
SRBC-immunized mice 

215.1 μmol/kg in diet for 34 days B cells proliferation 
IgM-producing lymphocytes

[98] 

Quercetin 
Resveratrol In vitro 

hMPV-infected A549 airway 
epithelial cell line 

10 μM 
50 μM 

Oxidative stress 
IL-8, RANTES, IL-6, TNF-α, CXCL-10, 

CCL4 secretion 
Virus replication 

[99] 

Hesperetin In vivo 
Adjuvant in combination with 
inactivated B16F10 melanoma 

cells vaccine 
2.65 μmol/mouse 

APC activation 
CTL response [106] 

LPS: Lipopolysaccharide. CTL: Cytotoxic T Lymphocytes. NK: Natural Killer Cells. SRBC: Forssman heterophilic glycolipid antigen occurring on sheep erythrocytes. DENV: Dengue 
virus. hMPV: Human metapneumovirus. APC: Antigen Presenting Cells. The compounds in the table are in the order in which the compounds are presented in the section 
Immunostimulatory Activities of Natural Phenolic Compounds. Increased ordecreased. 

 

TNF-α, IL-1β, IL-6 and CCL2
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Table 2. Immunostimulatory effects of natural phenolic compounds. 

Compound Experimental Model Dose/Concentration Effect Reference 

Apigenin 
Luteolin In vitro 

LPS-stimulation of murine 
splenocytes 

Killing of target tumor cells 

10 μM 
1–10 μM 

  
CTL and NK cytotoxicity activity [90] 

Epigallocatechin 
gallate (EGCG) 

In vitro 
HCV JFH-1-infected Huh7 

treated with EGCG 1h prior to 
poly I:C stimulation 

1–10 μM Poly I:C induced expression of ISGs 
   [91] 

In vivo Murine leukemia model 10.91, 43.63 and 87.26 μmol/kg 
T and B cell proliferation 

NK activity 
Macrophage phagocytosis

[93] 

In vitro 
Human U937-DC-SIGN 

macrophages infected with 
DENV1 or DENV2 

100 μM DENV1 and DENV2 replication 
TNF-α and IL-6 secretion 

[96] 

Ex vivo 
LPS-stimulated proliferation of 

B cells 
SRBC-immunized mice 

215.1 μmol/kg in diet for 34 days B cells proliferation 
IgM-producing lymphocytes

[98] 

Quercetin 
Resveratrol In vitro 

hMPV-infected A549 airway 
epithelial cell line 

10 μM 
50 μM 

Oxidative stress 
IL-8, RANTES, IL-6, TNF-α, CXCL-10, 

CCL4 secretion 
Virus replication 

[99] 

Hesperetin In vivo 
Adjuvant in combination with 
inactivated B16F10 melanoma 

cells vaccine 
2.65 μmol/mouse 

APC activation 
CTL response [106] 

LPS: Lipopolysaccharide. CTL: Cytotoxic T Lymphocytes. NK: Natural Killer Cells. SRBC: Forssman heterophilic glycolipid antigen occurring on sheep erythrocytes. DENV: Dengue 
virus. hMPV: Human metapneumovirus. APC: Antigen Presenting Cells. The compounds in the table are in the order in which the compounds are presented in the section 
Immunostimulatory Activities of Natural Phenolic Compounds. Increased ordecreased. 

 

iNOS

[116]

Luteolin 5 µM LPS-stimulated RAW 264.7 in the presence of luteolin treatment
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Table 2. Immunostimulatory effects of natural phenolic compounds. 

Compound Experimental Model Dose/Concentration Effect Reference 

Apigenin 
Luteolin In vitro 

LPS-stimulation of murine 
splenocytes 

Killing of target tumor cells 

10 μM 
1–10 μM 

  
CTL and NK cytotoxicity activity [90] 

Epigallocatechin 
gallate (EGCG) 

In vitro 
HCV JFH-1-infected Huh7 

treated with EGCG 1h prior to 
poly I:C stimulation 

1–10 μM Poly I:C induced expression of ISGs 
   [91] 

In vivo Murine leukemia model 10.91, 43.63 and 87.26 μmol/kg 
T and B cell proliferation 

NK activity 
Macrophage phagocytosis

[93] 

In vitro 
Human U937-DC-SIGN 

macrophages infected with 
DENV1 or DENV2 

100 μM DENV1 and DENV2 replication 
TNF-α and IL-6 secretion 

[96] 

Ex vivo 
LPS-stimulated proliferation of 

B cells 
SRBC-immunized mice 

215.1 μmol/kg in diet for 34 days B cells proliferation 
IgM-producing lymphocytes

[98] 

Quercetin 
Resveratrol In vitro 

hMPV-infected A549 airway 
epithelial cell line 

10 μM 
50 μM 

Oxidative stress 
IL-8, RANTES, IL-6, TNF-α, CXCL-10, 

CCL4 secretion 
Virus replication 

[99] 

Hesperetin In vivo 
Adjuvant in combination with 
inactivated B16F10 melanoma 

cells vaccine 
2.65 μmol/mouse 

APC activation 
CTL response [106] 

LPS: Lipopolysaccharide. CTL: Cytotoxic T Lymphocytes. NK: Natural Killer Cells. SRBC: Forssman heterophilic glycolipid antigen occurring on sheep erythrocytes. DENV: Dengue 
virus. hMPV: Human metapneumovirus. APC: Antigen Presenting Cells. The compounds in the table are in the order in which the compounds are presented in the section 
Immunostimulatory Activities of Natural Phenolic Compounds. Increased ordecreased. 

 

iNOS, NO
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Table 2. Immunostimulatory effects of natural phenolic compounds. 

Compound Experimental Model Dose/Concentration Effect Reference 

Apigenin 
Luteolin In vitro 

LPS-stimulation of murine 
splenocytes 

Killing of target tumor cells 

10 μM 
1–10 μM 

  
CTL and NK cytotoxicity activity [90] 

Epigallocatechin 
gallate (EGCG) 

In vitro 
HCV JFH-1-infected Huh7 

treated with EGCG 1h prior to 
poly I:C stimulation 

1–10 μM Poly I:C induced expression of ISGs 
   [91] 

In vivo Murine leukemia model 10.91, 43.63 and 87.26 μmol/kg 
T and B cell proliferation 

NK activity 
Macrophage phagocytosis

[93] 

In vitro 
Human U937-DC-SIGN 

macrophages infected with 
DENV1 or DENV2 

100 μM DENV1 and DENV2 replication 
TNF-α and IL-6 secretion 

[96] 

Ex vivo 
LPS-stimulated proliferation of 

B cells 
SRBC-immunized mice 

215.1 μmol/kg in diet for 34 days B cells proliferation 
IgM-producing lymphocytes

[98] 

Quercetin 
Resveratrol In vitro 

hMPV-infected A549 airway 
epithelial cell line 

10 μM 
50 μM 

Oxidative stress 
IL-8, RANTES, IL-6, TNF-α, CXCL-10, 

CCL4 secretion 
Virus replication 

[99] 

Hesperetin In vivo 
Adjuvant in combination with 
inactivated B16F10 melanoma 

cells vaccine 
2.65 μmol/mouse 

APC activation 
CTL response [106] 

LPS: Lipopolysaccharide. CTL: Cytotoxic T Lymphocytes. NK: Natural Killer Cells. SRBC: Forssman heterophilic glycolipid antigen occurring on sheep erythrocytes. DENV: Dengue 
virus. hMPV: Human metapneumovirus. APC: Antigen Presenting Cells. The compounds in the table are in the order in which the compounds are presented in the section 
Immunostimulatory Activities of Natural Phenolic Compounds. Increased ordecreased. 

 

NF-κB nuclear translocation
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Table 2. Immunostimulatory effects of natural phenolic compounds. 

Compound Experimental Model Dose/Concentration Effect Reference 

Apigenin 
Luteolin In vitro 

LPS-stimulation of murine 
splenocytes 

Killing of target tumor cells 

10 μM 
1–10 μM 

  
CTL and NK cytotoxicity activity [90] 

Epigallocatechin 
gallate (EGCG) 

In vitro 
HCV JFH-1-infected Huh7 

treated with EGCG 1h prior to 
poly I:C stimulation 

1–10 μM Poly I:C induced expression of ISGs 
   [91] 

In vivo Murine leukemia model 10.91, 43.63 and 87.26 μmol/kg 
T and B cell proliferation 

NK activity 
Macrophage phagocytosis

[93] 

In vitro 
Human U937-DC-SIGN 

macrophages infected with 
DENV1 or DENV2 

100 μM DENV1 and DENV2 replication 
TNF-α and IL-6 secretion 

[96] 

Ex vivo 
LPS-stimulated proliferation of 

B cells 
SRBC-immunized mice 

215.1 μmol/kg in diet for 34 days B cells proliferation 
IgM-producing lymphocytes

[98] 

Quercetin 
Resveratrol In vitro 

hMPV-infected A549 airway 
epithelial cell line 

10 μM 
50 μM 

Oxidative stress 
IL-8, RANTES, IL-6, TNF-α, CXCL-10, 

CCL4 secretion 
Virus replication 

[99] 

Hesperetin In vivo 
Adjuvant in combination with 
inactivated B16F10 melanoma 

cells vaccine 
2.65 μmol/mouse 

APC activation 
CTL response [106] 

LPS: Lipopolysaccharide. CTL: Cytotoxic T Lymphocytes. NK: Natural Killer Cells. SRBC: Forssman heterophilic glycolipid antigen occurring on sheep erythrocytes. DENV: Dengue 
virus. hMPV: Human metapneumovirus. APC: Antigen Presenting Cells. The compounds in the table are in the order in which the compounds are presented in the section 
Immunostimulatory Activities of Natural Phenolic Compounds. Increased ordecreased. 

 

HO-1
[117]

Myricetin 100 µM RAW 264.7 pretreated with myricetin 1h prior to LPS stimulation
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Table 2. Immunostimulatory effects of natural phenolic compounds. 

Compound Experimental Model Dose/Concentration Effect Reference 

Apigenin 
Luteolin In vitro 

LPS-stimulation of murine 
splenocytes 

Killing of target tumor cells 

10 μM 
1–10 μM 

  
CTL and NK cytotoxicity activity [90] 

Epigallocatechin 
gallate (EGCG) 

In vitro 
HCV JFH-1-infected Huh7 

treated with EGCG 1h prior to 
poly I:C stimulation 

1–10 μM Poly I:C induced expression of ISGs 
   [91] 

In vivo Murine leukemia model 10.91, 43.63 and 87.26 μmol/kg 
T and B cell proliferation 

NK activity 
Macrophage phagocytosis

[93] 

In vitro 
Human U937-DC-SIGN 

macrophages infected with 
DENV1 or DENV2 

100 μM DENV1 and DENV2 replication 
TNF-α and IL-6 secretion 

[96] 

Ex vivo 
LPS-stimulated proliferation of 

B cells 
SRBC-immunized mice 

215.1 μmol/kg in diet for 34 days B cells proliferation 
IgM-producing lymphocytes

[98] 

Quercetin 
Resveratrol In vitro 

hMPV-infected A549 airway 
epithelial cell line 

10 μM 
50 μM 

Oxidative stress 
IL-8, RANTES, IL-6, TNF-α, CXCL-10, 

CCL4 secretion 
Virus replication 

[99] 

Hesperetin In vivo 
Adjuvant in combination with 
inactivated B16F10 melanoma 

cells vaccine 
2.65 μmol/mouse 

APC activation 
CTL response [106] 

LPS: Lipopolysaccharide. CTL: Cytotoxic T Lymphocytes. NK: Natural Killer Cells. SRBC: Forssman heterophilic glycolipid antigen occurring on sheep erythrocytes. DENV: Dengue 
virus. hMPV: Human metapneumovirus. APC: Antigen Presenting Cells. The compounds in the table are in the order in which the compounds are presented in the section 
Immunostimulatory Activities of Natural Phenolic Compounds. Increased ordecreased. 

 

iNOS and COX-2 expression
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Table 2. Immunostimulatory effects of natural phenolic compounds. 

Compound Experimental Model Dose/Concentration Effect Reference 

Apigenin 
Luteolin In vitro 

LPS-stimulation of murine 
splenocytes 

Killing of target tumor cells 

10 μM 
1–10 μM 

  
CTL and NK cytotoxicity activity [90] 

Epigallocatechin 
gallate (EGCG) 

In vitro 
HCV JFH-1-infected Huh7 

treated with EGCG 1h prior to 
poly I:C stimulation 

1–10 μM Poly I:C induced expression of ISGs 
   [91] 

In vivo Murine leukemia model 10.91, 43.63 and 87.26 μmol/kg 
T and B cell proliferation 

NK activity 
Macrophage phagocytosis

[93] 

In vitro 
Human U937-DC-SIGN 

macrophages infected with 
DENV1 or DENV2 

100 μM DENV1 and DENV2 replication 
TNF-α and IL-6 secretion 

[96] 

Ex vivo 
LPS-stimulated proliferation of 

B cells 
SRBC-immunized mice 

215.1 μmol/kg in diet for 34 days B cells proliferation 
IgM-producing lymphocytes

[98] 

Quercetin 
Resveratrol In vitro 

hMPV-infected A549 airway 
epithelial cell line 

10 μM 
50 μM 

Oxidative stress 
IL-8, RANTES, IL-6, TNF-α, CXCL-10, 

CCL4 secretion 
Virus replication 

[99] 

Hesperetin In vivo 
Adjuvant in combination with 
inactivated B16F10 melanoma 

cells vaccine 
2.65 μmol/mouse 

APC activation 
CTL response [106] 

LPS: Lipopolysaccharide. CTL: Cytotoxic T Lymphocytes. NK: Natural Killer Cells. SRBC: Forssman heterophilic glycolipid antigen occurring on sheep erythrocytes. DENV: Dengue 
virus. hMPV: Human metapneumovirus. APC: Antigen Presenting Cells. The compounds in the table are in the order in which the compounds are presented in the section 
Immunostimulatory Activities of Natural Phenolic Compounds. Increased ordecreased. 

 

NF-κB p65 nuclear translocation
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Table 2. Immunostimulatory effects of natural phenolic compounds. 

Compound Experimental Model Dose/Concentration Effect Reference 

Apigenin 
Luteolin In vitro 

LPS-stimulation of murine 
splenocytes 

Killing of target tumor cells 

10 μM 
1–10 μM 

  
CTL and NK cytotoxicity activity [90] 

Epigallocatechin 
gallate (EGCG) 

In vitro 
HCV JFH-1-infected Huh7 

treated with EGCG 1h prior to 
poly I:C stimulation 

1–10 μM Poly I:C induced expression of ISGs 
   [91] 

In vivo Murine leukemia model 10.91, 43.63 and 87.26 μmol/kg 
T and B cell proliferation 

NK activity 
Macrophage phagocytosis

[93] 

In vitro 
Human U937-DC-SIGN 

macrophages infected with 
DENV1 or DENV2 

100 μM DENV1 and DENV2 replication 
TNF-α and IL-6 secretion 

[96] 

Ex vivo 
LPS-stimulated proliferation of 

B cells 
SRBC-immunized mice 

215.1 μmol/kg in diet for 34 days B cells proliferation 
IgM-producing lymphocytes

[98] 

Quercetin 
Resveratrol In vitro 

hMPV-infected A549 airway 
epithelial cell line 

10 μM 
50 μM 

Oxidative stress 
IL-8, RANTES, IL-6, TNF-α, CXCL-10, 

CCL4 secretion 
Virus replication 

[99] 

Hesperetin In vivo 
Adjuvant in combination with 
inactivated B16F10 melanoma 

cells vaccine 
2.65 μmol/mouse 

APC activation 
CTL response [106] 

LPS: Lipopolysaccharide. CTL: Cytotoxic T Lymphocytes. NK: Natural Killer Cells. SRBC: Forssman heterophilic glycolipid antigen occurring on sheep erythrocytes. DENV: Dengue 
virus. hMPV: Human metapneumovirus. APC: Antigen Presenting Cells. The compounds in the table are in the order in which the compounds are presented in the section 
Immunostimulatory Activities of Natural Phenolic Compounds. Increased ordecreased. 

 

HO-1, Nrf2

[118]

Psoralidin 30 µM LPS-stimulated RAW 264.7 in the presence of psoralidin treatment
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Table 2. Immunostimulatory effects of natural phenolic compounds. 

Compound Experimental Model Dose/Concentration Effect Reference 

Apigenin 
Luteolin In vitro 

LPS-stimulation of murine 
splenocytes 

Killing of target tumor cells 

10 μM 
1–10 μM 

  
CTL and NK cytotoxicity activity [90] 

Epigallocatechin 
gallate (EGCG) 

In vitro 
HCV JFH-1-infected Huh7 

treated with EGCG 1h prior to 
poly I:C stimulation 

1–10 μM Poly I:C induced expression of ISGs 
   [91] 

In vivo Murine leukemia model 10.91, 43.63 and 87.26 μmol/kg 
T and B cell proliferation 

NK activity 
Macrophage phagocytosis

[93] 

In vitro 
Human U937-DC-SIGN 

macrophages infected with 
DENV1 or DENV2 

100 μM DENV1 and DENV2 replication 
TNF-α and IL-6 secretion 

[96] 

Ex vivo 
LPS-stimulated proliferation of 

B cells 
SRBC-immunized mice 

215.1 μmol/kg in diet for 34 days B cells proliferation 
IgM-producing lymphocytes

[98] 

Quercetin 
Resveratrol In vitro 

hMPV-infected A549 airway 
epithelial cell line 

10 μM 
50 μM 

Oxidative stress 
IL-8, RANTES, IL-6, TNF-α, CXCL-10, 

CCL4 secretion 
Virus replication 

[99] 

Hesperetin In vivo 
Adjuvant in combination with 
inactivated B16F10 melanoma 

cells vaccine 
2.65 μmol/mouse 

APC activation 
CTL response [106] 

LPS: Lipopolysaccharide. CTL: Cytotoxic T Lymphocytes. NK: Natural Killer Cells. SRBC: Forssman heterophilic glycolipid antigen occurring on sheep erythrocytes. DENV: Dengue 
virus. hMPV: Human metapneumovirus. APC: Antigen Presenting Cells. The compounds in the table are in the order in which the compounds are presented in the section 
Immunostimulatory Activities of Natural Phenolic Compounds. Increased ordecreased. 

 

iNOS expression
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Table 2. Immunostimulatory effects of natural phenolic compounds. 

Compound Experimental Model Dose/Concentration Effect Reference 

Apigenin 
Luteolin In vitro 

LPS-stimulation of murine 
splenocytes 

Killing of target tumor cells 

10 μM 
1–10 μM 

  
CTL and NK cytotoxicity activity [90] 

Epigallocatechin 
gallate (EGCG) 

In vitro 
HCV JFH-1-infected Huh7 

treated with EGCG 1h prior to 
poly I:C stimulation 

1–10 μM Poly I:C induced expression of ISGs 
   [91] 

In vivo Murine leukemia model 10.91, 43.63 and 87.26 μmol/kg 
T and B cell proliferation 

NK activity 
Macrophage phagocytosis

[93] 

In vitro 
Human U937-DC-SIGN 

macrophages infected with 
DENV1 or DENV2 

100 μM DENV1 and DENV2 replication 
TNF-α and IL-6 secretion 

[96] 

Ex vivo 
LPS-stimulated proliferation of 

B cells 
SRBC-immunized mice 

215.1 μmol/kg in diet for 34 days B cells proliferation 
IgM-producing lymphocytes

[98] 

Quercetin 
Resveratrol In vitro 

hMPV-infected A549 airway 
epithelial cell line 

10 μM 
50 μM 

Oxidative stress 
IL-8, RANTES, IL-6, TNF-α, CXCL-10, 

CCL4 secretion 
Virus replication 

[99] 

Hesperetin In vivo 
Adjuvant in combination with 
inactivated B16F10 melanoma 

cells vaccine 
2.65 μmol/mouse 

APC activation 
CTL response [106] 

LPS: Lipopolysaccharide. CTL: Cytotoxic T Lymphocytes. NK: Natural Killer Cells. SRBC: Forssman heterophilic glycolipid antigen occurring on sheep erythrocytes. DENV: Dengue 
virus. hMPV: Human metapneumovirus. APC: Antigen Presenting Cells. The compounds in the table are in the order in which the compounds are presented in the section 
Immunostimulatory Activities of Natural Phenolic Compounds. Increased ordecreased. 

 

NF-κB nuclear translocation
[119]

Scutellarin 100 µM RAW 264.7 pretreated with scutellarin 1h prior to LPS stimulation
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Table 2. Immunostimulatory effects of natural phenolic compounds. 

Compound Experimental Model Dose/Concentration Effect Reference 

Apigenin 
Luteolin In vitro 

LPS-stimulation of murine 
splenocytes 

Killing of target tumor cells 

10 μM 
1–10 μM 

  
CTL and NK cytotoxicity activity [90] 

Epigallocatechin 
gallate (EGCG) 

In vitro 
HCV JFH-1-infected Huh7 

treated with EGCG 1h prior to 
poly I:C stimulation 

1–10 μM Poly I:C induced expression of ISGs 
   [91] 

In vivo Murine leukemia model 10.91, 43.63 and 87.26 μmol/kg 
T and B cell proliferation 

NK activity 
Macrophage phagocytosis

[93] 

In vitro 
Human U937-DC-SIGN 

macrophages infected with 
DENV1 or DENV2 

100 μM DENV1 and DENV2 replication 
TNF-α and IL-6 secretion 

[96] 

Ex vivo 
LPS-stimulated proliferation of 

B cells 
SRBC-immunized mice 

215.1 μmol/kg in diet for 34 days B cells proliferation 
IgM-producing lymphocytes

[98] 

Quercetin 
Resveratrol In vitro 

hMPV-infected A549 airway 
epithelial cell line 

10 μM 
50 μM 

Oxidative stress 
IL-8, RANTES, IL-6, TNF-α, CXCL-10, 

CCL4 secretion 
Virus replication 

[99] 

Hesperetin In vivo 
Adjuvant in combination with 
inactivated B16F10 melanoma 

cells vaccine 
2.65 μmol/mouse 

APC activation 
CTL response [106] 

LPS: Lipopolysaccharide. CTL: Cytotoxic T Lymphocytes. NK: Natural Killer Cells. SRBC: Forssman heterophilic glycolipid antigen occurring on sheep erythrocytes. DENV: Dengue 
virus. hMPV: Human metapneumovirus. APC: Antigen Presenting Cells. The compounds in the table are in the order in which the compounds are presented in the section 
Immunostimulatory Activities of Natural Phenolic Compounds. Increased ordecreased. 

 

PGE2
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Table 2. Immunostimulatory effects of natural phenolic compounds. 

Compound Experimental Model Dose/Concentration Effect Reference 

Apigenin 
Luteolin In vitro 

LPS-stimulation of murine 
splenocytes 

Killing of target tumor cells 

10 μM 
1–10 μM 

  
CTL and NK cytotoxicity activity [90] 

Epigallocatechin 
gallate (EGCG) 

In vitro 
HCV JFH-1-infected Huh7 

treated with EGCG 1h prior to 
poly I:C stimulation 

1–10 μM Poly I:C induced expression of ISGs 
   [91] 

In vivo Murine leukemia model 10.91, 43.63 and 87.26 μmol/kg 
T and B cell proliferation 

NK activity 
Macrophage phagocytosis

[93] 

In vitro 
Human U937-DC-SIGN 

macrophages infected with 
DENV1 or DENV2 

100 μM DENV1 and DENV2 replication 
TNF-α and IL-6 secretion 

[96] 

Ex vivo 
LPS-stimulated proliferation of 

B cells 
SRBC-immunized mice 

215.1 μmol/kg in diet for 34 days B cells proliferation 
IgM-producing lymphocytes

[98] 

Quercetin 
Resveratrol In vitro 

hMPV-infected A549 airway 
epithelial cell line 

10 μM 
50 μM 

Oxidative stress 
IL-8, RANTES, IL-6, TNF-α, CXCL-10, 

CCL4 secretion 
Virus replication 

[99] 

Hesperetin In vivo 
Adjuvant in combination with 
inactivated B16F10 melanoma 

cells vaccine 
2.65 μmol/mouse 

APC activation 
CTL response [106] 

LPS: Lipopolysaccharide. CTL: Cytotoxic T Lymphocytes. NK: Natural Killer Cells. SRBC: Forssman heterophilic glycolipid antigen occurring on sheep erythrocytes. DENV: Dengue 
virus. hMPV: Human metapneumovirus. APC: Antigen Presenting Cells. The compounds in the table are in the order in which the compounds are presented in the section 
Immunostimulatory Activities of Natural Phenolic Compounds. Increased ordecreased. 

 

NO
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Table 2. Immunostimulatory effects of natural phenolic compounds. 

Compound Experimental Model Dose/Concentration Effect Reference 

Apigenin 
Luteolin In vitro 

LPS-stimulation of murine 
splenocytes 

Killing of target tumor cells 

10 μM 
1–10 μM 

  
CTL and NK cytotoxicity activity [90] 

Epigallocatechin 
gallate (EGCG) 

In vitro 
HCV JFH-1-infected Huh7 

treated with EGCG 1h prior to 
poly I:C stimulation 

1–10 μM Poly I:C induced expression of ISGs 
   [91] 

In vivo Murine leukemia model 10.91, 43.63 and 87.26 μmol/kg 
T and B cell proliferation 

NK activity 
Macrophage phagocytosis

[93] 

In vitro 
Human U937-DC-SIGN 

macrophages infected with 
DENV1 or DENV2 

100 μM DENV1 and DENV2 replication 
TNF-α and IL-6 secretion 

[96] 

Ex vivo 
LPS-stimulated proliferation of 

B cells 
SRBC-immunized mice 

215.1 μmol/kg in diet for 34 days B cells proliferation 
IgM-producing lymphocytes

[98] 

Quercetin 
Resveratrol In vitro 

hMPV-infected A549 airway 
epithelial cell line 

10 μM 
50 μM 

Oxidative stress 
IL-8, RANTES, IL-6, TNF-α, CXCL-10, 

CCL4 secretion 
Virus replication 

[99] 

Hesperetin In vivo 
Adjuvant in combination with 
inactivated B16F10 melanoma 

cells vaccine 
2.65 μmol/mouse 

APC activation 
CTL response [106] 

LPS: Lipopolysaccharide. CTL: Cytotoxic T Lymphocytes. NK: Natural Killer Cells. SRBC: Forssman heterophilic glycolipid antigen occurring on sheep erythrocytes. DENV: Dengue 
virus. hMPV: Human metapneumovirus. APC: Antigen Presenting Cells. The compounds in the table are in the order in which the compounds are presented in the section 
Immunostimulatory Activities of Natural Phenolic Compounds. Increased ordecreased. 

 

IL-6 and TNF-α expression
[120]

Hesperetin 40 µM LPS-stimulated RAW 264.7 in the presence of hesperetin treatment
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Table 2. Immunostimulatory effects of natural phenolic compounds. 

Compound Experimental Model Dose/Concentration Effect Reference 

Apigenin 
Luteolin In vitro 

LPS-stimulation of murine 
splenocytes 

Killing of target tumor cells 

10 μM 
1–10 μM 

  
CTL and NK cytotoxicity activity [90] 

Epigallocatechin 
gallate (EGCG) 

In vitro 
HCV JFH-1-infected Huh7 

treated with EGCG 1h prior to 
poly I:C stimulation 

1–10 μM Poly I:C induced expression of ISGs 
   [91] 

In vivo Murine leukemia model 10.91, 43.63 and 87.26 μmol/kg 
T and B cell proliferation 

NK activity 
Macrophage phagocytosis

[93] 

In vitro 
Human U937-DC-SIGN 

macrophages infected with 
DENV1 or DENV2 

100 μM DENV1 and DENV2 replication 
TNF-α and IL-6 secretion 

[96] 

Ex vivo 
LPS-stimulated proliferation of 

B cells 
SRBC-immunized mice 

215.1 μmol/kg in diet for 34 days B cells proliferation 
IgM-producing lymphocytes

[98] 

Quercetin 
Resveratrol In vitro 

hMPV-infected A549 airway 
epithelial cell line 

10 μM 
50 μM 

Oxidative stress 
IL-8, RANTES, IL-6, TNF-α, CXCL-10, 

CCL4 secretion 
Virus replication 

[99] 

Hesperetin In vivo 
Adjuvant in combination with 
inactivated B16F10 melanoma 

cells vaccine 
2.65 μmol/mouse 

APC activation 
CTL response [106] 

LPS: Lipopolysaccharide. CTL: Cytotoxic T Lymphocytes. NK: Natural Killer Cells. SRBC: Forssman heterophilic glycolipid antigen occurring on sheep erythrocytes. DENV: Dengue 
virus. hMPV: Human metapneumovirus. APC: Antigen Presenting Cells. The compounds in the table are in the order in which the compounds are presented in the section 
Immunostimulatory Activities of Natural Phenolic Compounds. Increased ordecreased. 

 

IL-6, IL-1β, TNF-α expression
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Table 2. Immunostimulatory effects of natural phenolic compounds. 

Compound Experimental Model Dose/Concentration Effect Reference 

Apigenin 
Luteolin In vitro 

LPS-stimulation of murine 
splenocytes 

Killing of target tumor cells 

10 μM 
1–10 μM 

  
CTL and NK cytotoxicity activity [90] 

Epigallocatechin 
gallate (EGCG) 

In vitro 
HCV JFH-1-infected Huh7 

treated with EGCG 1h prior to 
poly I:C stimulation 

1–10 μM Poly I:C induced expression of ISGs 
   [91] 

In vivo Murine leukemia model 10.91, 43.63 and 87.26 μmol/kg 
T and B cell proliferation 

NK activity 
Macrophage phagocytosis

[93] 

In vitro 
Human U937-DC-SIGN 

macrophages infected with 
DENV1 or DENV2 

100 μM DENV1 and DENV2 replication 
TNF-α and IL-6 secretion 

[96] 

Ex vivo 
LPS-stimulated proliferation of 

B cells 
SRBC-immunized mice 

215.1 μmol/kg in diet for 34 days B cells proliferation 
IgM-producing lymphocytes

[98] 

Quercetin 
Resveratrol In vitro 

hMPV-infected A549 airway 
epithelial cell line 

10 μM 
50 μM 

Oxidative stress 
IL-8, RANTES, IL-6, TNF-α, CXCL-10, 

CCL4 secretion 
Virus replication 

[99] 

Hesperetin In vivo 
Adjuvant in combination with 
inactivated B16F10 melanoma 

cells vaccine 
2.65 μmol/mouse 

APC activation 
CTL response [106] 

LPS: Lipopolysaccharide. CTL: Cytotoxic T Lymphocytes. NK: Natural Killer Cells. SRBC: Forssman heterophilic glycolipid antigen occurring on sheep erythrocytes. DENV: Dengue 
virus. hMPV: Human metapneumovirus. APC: Antigen Presenting Cells. The compounds in the table are in the order in which the compounds are presented in the section 
Immunostimulatory Activities of Natural Phenolic Compounds. Increased ordecreased. 

 

iNOS and COX-2 expression

Biomolecules 2021, 11 12 of 32 
 

Table 2. Immunostimulatory effects of natural phenolic compounds. 

Compound Experimental Model Dose/Concentration Effect Reference 

Apigenin 
Luteolin In vitro 

LPS-stimulation of murine 
splenocytes 

Killing of target tumor cells 

10 μM 
1–10 μM 

  
CTL and NK cytotoxicity activity [90] 

Epigallocatechin 
gallate (EGCG) 

In vitro 
HCV JFH-1-infected Huh7 

treated with EGCG 1h prior to 
poly I:C stimulation 

1–10 μM Poly I:C induced expression of ISGs 
   [91] 

In vivo Murine leukemia model 10.91, 43.63 and 87.26 μmol/kg 
T and B cell proliferation 

NK activity 
Macrophage phagocytosis

[93] 

In vitro 
Human U937-DC-SIGN 

macrophages infected with 
DENV1 or DENV2 

100 μM DENV1 and DENV2 replication 
TNF-α and IL-6 secretion 

[96] 

Ex vivo 
LPS-stimulated proliferation of 

B cells 
SRBC-immunized mice 

215.1 μmol/kg in diet for 34 days B cells proliferation 
IgM-producing lymphocytes

[98] 

Quercetin 
Resveratrol In vitro 

hMPV-infected A549 airway 
epithelial cell line 

10 μM 
50 μM 

Oxidative stress 
IL-8, RANTES, IL-6, TNF-α, CXCL-10, 

CCL4 secretion 
Virus replication 

[99] 

Hesperetin In vivo 
Adjuvant in combination with 
inactivated B16F10 melanoma 

cells vaccine 
2.65 μmol/mouse 

APC activation 
CTL response [106] 

LPS: Lipopolysaccharide. CTL: Cytotoxic T Lymphocytes. NK: Natural Killer Cells. SRBC: Forssman heterophilic glycolipid antigen occurring on sheep erythrocytes. DENV: Dengue 
virus. hMPV: Human metapneumovirus. APC: Antigen Presenting Cells. The compounds in the table are in the order in which the compounds are presented in the section 
Immunostimulatory Activities of Natural Phenolic Compounds. Increased ordecreased. 

 

HO-1 and Nrf2

[121]
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Table 3. Cont.

Compound Concentration In Vivo Models Using LPS-Stimulated Monocytes/Macrophages Effect Reference

Apigenin 10 µM
25 µM

LPS-stimulated human monocytes in the presence of apigenin treatment
Human THP-1-derived macrophage pretreated with apigenin 2h prior to

LPS stimulation

Biomolecules 2021, 11 12 of 32 
 

Table 2. Immunostimulatory effects of natural phenolic compounds. 

Compound Experimental Model Dose/Concentration Effect Reference 

Apigenin 
Luteolin In vitro 

LPS-stimulation of murine 
splenocytes 

Killing of target tumor cells 

10 μM 
1–10 μM 

  
CTL and NK cytotoxicity activity [90] 

Epigallocatechin 
gallate (EGCG) 

In vitro 
HCV JFH-1-infected Huh7 

treated with EGCG 1h prior to 
poly I:C stimulation 

1–10 μM Poly I:C induced expression of ISGs 
   [91] 

In vivo Murine leukemia model 10.91, 43.63 and 87.26 μmol/kg 
T and B cell proliferation 

NK activity 
Macrophage phagocytosis

[93] 

In vitro 
Human U937-DC-SIGN 

macrophages infected with 
DENV1 or DENV2 

100 μM DENV1 and DENV2 replication 
TNF-α and IL-6 secretion 

[96] 

Ex vivo 
LPS-stimulated proliferation of 

B cells 
SRBC-immunized mice 

215.1 μmol/kg in diet for 34 days B cells proliferation 
IgM-producing lymphocytes

[98] 

Quercetin 
Resveratrol In vitro 

hMPV-infected A549 airway 
epithelial cell line 

10 μM 
50 μM 

Oxidative stress 
IL-8, RANTES, IL-6, TNF-α, CXCL-10, 

CCL4 secretion 
Virus replication 

[99] 

Hesperetin In vivo 
Adjuvant in combination with 
inactivated B16F10 melanoma 

cells vaccine 
2.65 μmol/mouse 

APC activation 
CTL response [106] 

LPS: Lipopolysaccharide. CTL: Cytotoxic T Lymphocytes. NK: Natural Killer Cells. SRBC: Forssman heterophilic glycolipid antigen occurring on sheep erythrocytes. DENV: Dengue 
virus. hMPV: Human metapneumovirus. APC: Antigen Presenting Cells. The compounds in the table are in the order in which the compounds are presented in the section 
Immunostimulatory Activities of Natural Phenolic Compounds. Increased ordecreased. 

 

IL-8, IL-1β, TNF-α
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Table 2. Immunostimulatory effects of natural phenolic compounds. 

Compound Experimental Model Dose/Concentration Effect Reference 

Apigenin 
Luteolin In vitro 

LPS-stimulation of murine 
splenocytes 

Killing of target tumor cells 

10 μM 
1–10 μM 

  
CTL and NK cytotoxicity activity [90] 

Epigallocatechin 
gallate (EGCG) 

In vitro 
HCV JFH-1-infected Huh7 

treated with EGCG 1h prior to 
poly I:C stimulation 

1–10 μM Poly I:C induced expression of ISGs 
   [91] 

In vivo Murine leukemia model 10.91, 43.63 and 87.26 μmol/kg 
T and B cell proliferation 

NK activity 
Macrophage phagocytosis

[93] 

In vitro 
Human U937-DC-SIGN 

macrophages infected with 
DENV1 or DENV2 

100 μM DENV1 and DENV2 replication 
TNF-α and IL-6 secretion 

[96] 

Ex vivo 
LPS-stimulated proliferation of 

B cells 
SRBC-immunized mice 

215.1 μmol/kg in diet for 34 days B cells proliferation 
IgM-producing lymphocytes

[98] 

Quercetin 
Resveratrol In vitro 

hMPV-infected A549 airway 
epithelial cell line 

10 μM 
50 μM 

Oxidative stress 
IL-8, RANTES, IL-6, TNF-α, CXCL-10, 

CCL4 secretion 
Virus replication 

[99] 

Hesperetin In vivo 
Adjuvant in combination with 
inactivated B16F10 melanoma 

cells vaccine 
2.65 μmol/mouse 

APC activation 
CTL response [106] 

LPS: Lipopolysaccharide. CTL: Cytotoxic T Lymphocytes. NK: Natural Killer Cells. SRBC: Forssman heterophilic glycolipid antigen occurring on sheep erythrocytes. DENV: Dengue 
virus. hMPV: Human metapneumovirus. APC: Antigen Presenting Cells. The compounds in the table are in the order in which the compounds are presented in the section 
Immunostimulatory Activities of Natural Phenolic Compounds. Increased ordecreased. 

 

p65 phosphorylation
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Table 2. Immunostimulatory effects of natural phenolic compounds. 

Compound Experimental Model Dose/Concentration Effect Reference 

Apigenin 
Luteolin In vitro 

LPS-stimulation of murine 
splenocytes 

Killing of target tumor cells 

10 μM 
1–10 μM 

  
CTL and NK cytotoxicity activity [90] 

Epigallocatechin 
gallate (EGCG) 

In vitro 
HCV JFH-1-infected Huh7 

treated with EGCG 1h prior to 
poly I:C stimulation 

1–10 μM Poly I:C induced expression of ISGs 
   [91] 

In vivo Murine leukemia model 10.91, 43.63 and 87.26 μmol/kg 
T and B cell proliferation 

NK activity 
Macrophage phagocytosis

[93] 

In vitro 
Human U937-DC-SIGN 

macrophages infected with 
DENV1 or DENV2 

100 μM DENV1 and DENV2 replication 
TNF-α and IL-6 secretion 

[96] 

Ex vivo 
LPS-stimulated proliferation of 

B cells 
SRBC-immunized mice 

215.1 μmol/kg in diet for 34 days B cells proliferation 
IgM-producing lymphocytes

[98] 

Quercetin 
Resveratrol In vitro 

hMPV-infected A549 airway 
epithelial cell line 

10 μM 
50 μM 

Oxidative stress 
IL-8, RANTES, IL-6, TNF-α, CXCL-10, 

CCL4 secretion 
Virus replication 

[99] 

Hesperetin In vivo 
Adjuvant in combination with 
inactivated B16F10 melanoma 

cells vaccine 
2.65 μmol/mouse 

APC activation 
CTL response [106] 

LPS: Lipopolysaccharide. CTL: Cytotoxic T Lymphocytes. NK: Natural Killer Cells. SRBC: Forssman heterophilic glycolipid antigen occurring on sheep erythrocytes. DENV: Dengue 
virus. hMPV: Human metapneumovirus. APC: Antigen Presenting Cells. The compounds in the table are in the order in which the compounds are presented in the section 
Immunostimulatory Activities of Natural Phenolic Compounds. Increased ordecreased. 

 

ERK1/2 phosphorylation
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Table 2. Immunostimulatory effects of natural phenolic compounds. 

Compound Experimental Model Dose/Concentration Effect Reference 

Apigenin 
Luteolin In vitro 

LPS-stimulation of murine 
splenocytes 

Killing of target tumor cells 

10 μM 
1–10 μM 

  
CTL and NK cytotoxicity activity [90] 

Epigallocatechin 
gallate (EGCG) 

In vitro 
HCV JFH-1-infected Huh7 

treated with EGCG 1h prior to 
poly I:C stimulation 

1–10 μM Poly I:C induced expression of ISGs 
   [91] 

In vivo Murine leukemia model 10.91, 43.63 and 87.26 μmol/kg 
T and B cell proliferation 

NK activity 
Macrophage phagocytosis

[93] 

In vitro 
Human U937-DC-SIGN 

macrophages infected with 
DENV1 or DENV2 

100 μM DENV1 and DENV2 replication 
TNF-α and IL-6 secretion 

[96] 

Ex vivo 
LPS-stimulated proliferation of 

B cells 
SRBC-immunized mice 

215.1 μmol/kg in diet for 34 days B cells proliferation 
IgM-producing lymphocytes

[98] 

Quercetin 
Resveratrol In vitro 

hMPV-infected A549 airway 
epithelial cell line 

10 μM 
50 μM 

Oxidative stress 
IL-8, RANTES, IL-6, TNF-α, CXCL-10, 

CCL4 secretion 
Virus replication 

[99] 

Hesperetin In vivo 
Adjuvant in combination with 
inactivated B16F10 melanoma 

cells vaccine 
2.65 μmol/mouse 

APC activation 
CTL response [106] 

LPS: Lipopolysaccharide. CTL: Cytotoxic T Lymphocytes. NK: Natural Killer Cells. SRBC: Forssman heterophilic glycolipid antigen occurring on sheep erythrocytes. DENV: Dengue 
virus. hMPV: Human metapneumovirus. APC: Antigen Presenting Cells. The compounds in the table are in the order in which the compounds are presented in the section 
Immunostimulatory Activities of Natural Phenolic Compounds. Increased ordecreased. 
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Table 2. Immunostimulatory effects of natural phenolic compounds. 

Compound Experimental Model Dose/Concentration Effect Reference 

Apigenin 
Luteolin In vitro 

LPS-stimulation of murine 
splenocytes 

Killing of target tumor cells 

10 μM 
1–10 μM 

  
CTL and NK cytotoxicity activity [90] 

Epigallocatechin 
gallate (EGCG) 

In vitro 
HCV JFH-1-infected Huh7 

treated with EGCG 1h prior to 
poly I:C stimulation 

1–10 μM Poly I:C induced expression of ISGs 
   [91] 

In vivo Murine leukemia model 10.91, 43.63 and 87.26 μmol/kg 
T and B cell proliferation 

NK activity 
Macrophage phagocytosis

[93] 

In vitro 
Human U937-DC-SIGN 

macrophages infected with 
DENV1 or DENV2 

100 μM DENV1 and DENV2 replication 
TNF-α and IL-6 secretion 

[96] 

Ex vivo 
LPS-stimulated proliferation of 

B cells 
SRBC-immunized mice 

215.1 μmol/kg in diet for 34 days B cells proliferation 
IgM-producing lymphocytes

[98] 

Quercetin 
Resveratrol In vitro 

hMPV-infected A549 airway 
epithelial cell line 

10 μM 
50 μM 

Oxidative stress 
IL-8, RANTES, IL-6, TNF-α, CXCL-10, 

CCL4 secretion 
Virus replication 

[99] 

Hesperetin In vivo 
Adjuvant in combination with 
inactivated B16F10 melanoma 

cells vaccine 
2.65 μmol/mouse 

APC activation 
CTL response [106] 

LPS: Lipopolysaccharide. CTL: Cytotoxic T Lymphocytes. NK: Natural Killer Cells. SRBC: Forssman heterophilic glycolipid antigen occurring on sheep erythrocytes. DENV: Dengue 
virus. hMPV: Human metapneumovirus. APC: Antigen Presenting Cells. The compounds in the table are in the order in which the compounds are presented in the section 
Immunostimulatory Activities of Natural Phenolic Compounds. Increased ordecreased. 

 

IL-6 and IL-1β expression

[122]
[123]

Catechin 40 µM Human THP-1-derived macrophage pretreated with catechin 4h prior to
Porphyromonas gingivalis infection
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Table 2. Immunostimulatory effects of natural phenolic compounds. 

Compound Experimental Model Dose/Concentration Effect Reference 

Apigenin 
Luteolin In vitro 

LPS-stimulation of murine 
splenocytes 

Killing of target tumor cells 

10 μM 
1–10 μM 

  
CTL and NK cytotoxicity activity [90] 

Epigallocatechin 
gallate (EGCG) 

In vitro 
HCV JFH-1-infected Huh7 

treated with EGCG 1h prior to 
poly I:C stimulation 

1–10 μM Poly I:C induced expression of ISGs 
   [91] 

In vivo Murine leukemia model 10.91, 43.63 and 87.26 μmol/kg 
T and B cell proliferation 

NK activity 
Macrophage phagocytosis

[93] 

In vitro 
Human U937-DC-SIGN 

macrophages infected with 
DENV1 or DENV2 

100 μM DENV1 and DENV2 replication 
TNF-α and IL-6 secretion 

[96] 

Ex vivo 
LPS-stimulated proliferation of 

B cells 
SRBC-immunized mice 

215.1 μmol/kg in diet for 34 days B cells proliferation 
IgM-producing lymphocytes

[98] 

Quercetin 
Resveratrol In vitro 

hMPV-infected A549 airway 
epithelial cell line 

10 μM 
50 μM 

Oxidative stress 
IL-8, RANTES, IL-6, TNF-α, CXCL-10, 

CCL4 secretion 
Virus replication 

[99] 

Hesperetin In vivo 
Adjuvant in combination with 
inactivated B16F10 melanoma 

cells vaccine 
2.65 μmol/mouse 

APC activation 
CTL response [106] 

LPS: Lipopolysaccharide. CTL: Cytotoxic T Lymphocytes. NK: Natural Killer Cells. SRBC: Forssman heterophilic glycolipid antigen occurring on sheep erythrocytes. DENV: Dengue 
virus. hMPV: Human metapneumovirus. APC: Antigen Presenting Cells. The compounds in the table are in the order in which the compounds are presented in the section 
Immunostimulatory Activities of Natural Phenolic Compounds. Increased ordecreased. 
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Table 2. Immunostimulatory effects of natural phenolic compounds. 

Compound Experimental Model Dose/Concentration Effect Reference 

Apigenin 
Luteolin In vitro 

LPS-stimulation of murine 
splenocytes 

Killing of target tumor cells 

10 μM 
1–10 μM 

  
CTL and NK cytotoxicity activity [90] 

Epigallocatechin 
gallate (EGCG) 

In vitro 
HCV JFH-1-infected Huh7 

treated with EGCG 1h prior to 
poly I:C stimulation 

1–10 μM Poly I:C induced expression of ISGs 
   [91] 

In vivo Murine leukemia model 10.91, 43.63 and 87.26 μmol/kg 
T and B cell proliferation 

NK activity 
Macrophage phagocytosis

[93] 

In vitro 
Human U937-DC-SIGN 

macrophages infected with 
DENV1 or DENV2 

100 μM DENV1 and DENV2 replication 
TNF-α and IL-6 secretion 

[96] 

Ex vivo 
LPS-stimulated proliferation of 

B cells 
SRBC-immunized mice 

215.1 μmol/kg in diet for 34 days B cells proliferation 
IgM-producing lymphocytes

[98] 

Quercetin 
Resveratrol In vitro 

hMPV-infected A549 airway 
epithelial cell line 

10 μM 
50 μM 

Oxidative stress 
IL-8, RANTES, IL-6, TNF-α, CXCL-10, 

CCL4 secretion 
Virus replication 

[99] 

Hesperetin In vivo 
Adjuvant in combination with 
inactivated B16F10 melanoma 

cells vaccine 
2.65 μmol/mouse 

APC activation 
CTL response [106] 

LPS: Lipopolysaccharide. CTL: Cytotoxic T Lymphocytes. NK: Natural Killer Cells. SRBC: Forssman heterophilic glycolipid antigen occurring on sheep erythrocytes. DENV: Dengue 
virus. hMPV: Human metapneumovirus. APC: Antigen Presenting Cells. The compounds in the table are in the order in which the compounds are presented in the section 
Immunostimulatory Activities of Natural Phenolic Compounds. Increased ordecreased. 

 

TNF-α and IL-1β production
[124]

EGCG
GCG 0.3–30 µM Murine peritoneal macrophages and J774.1 macrophages pretreated with

EGCG or GCG 24h prior to LPS stimulation
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Table 2. Immunostimulatory effects of natural phenolic compounds. 

Compound Experimental Model Dose/Concentration Effect Reference 

Apigenin 
Luteolin In vitro 

LPS-stimulation of murine 
splenocytes 

Killing of target tumor cells 

10 μM 
1–10 μM 

  
CTL and NK cytotoxicity activity [90] 

Epigallocatechin 
gallate (EGCG) 

In vitro 
HCV JFH-1-infected Huh7 

treated with EGCG 1h prior to 
poly I:C stimulation 

1–10 μM Poly I:C induced expression of ISGs 
   [91] 

In vivo Murine leukemia model 10.91, 43.63 and 87.26 μmol/kg 
T and B cell proliferation 

NK activity 
Macrophage phagocytosis

[93] 

In vitro 
Human U937-DC-SIGN 

macrophages infected with 
DENV1 or DENV2 

100 μM DENV1 and DENV2 replication 
TNF-α and IL-6 secretion 

[96] 

Ex vivo 
LPS-stimulated proliferation of 

B cells 
SRBC-immunized mice 

215.1 μmol/kg in diet for 34 days B cells proliferation 
IgM-producing lymphocytes

[98] 

Quercetin 
Resveratrol In vitro 

hMPV-infected A549 airway 
epithelial cell line 

10 μM 
50 μM 

Oxidative stress 
IL-8, RANTES, IL-6, TNF-α, CXCL-10, 

CCL4 secretion 
Virus replication 

[99] 

Hesperetin In vivo 
Adjuvant in combination with 
inactivated B16F10 melanoma 

cells vaccine 
2.65 μmol/mouse 

APC activation 
CTL response [106] 

LPS: Lipopolysaccharide. CTL: Cytotoxic T Lymphocytes. NK: Natural Killer Cells. SRBC: Forssman heterophilic glycolipid antigen occurring on sheep erythrocytes. DENV: Dengue 
virus. hMPV: Human metapneumovirus. APC: Antigen Presenting Cells. The compounds in the table are in the order in which the compounds are presented in the section 
Immunostimulatory Activities of Natural Phenolic Compounds. Increased ordecreased. 

 

IκBα degradation
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Table 2. Immunostimulatory effects of natural phenolic compounds. 

Compound Experimental Model Dose/Concentration Effect Reference 

Apigenin 
Luteolin In vitro 

LPS-stimulation of murine 
splenocytes 

Killing of target tumor cells 

10 μM 
1–10 μM 

  
CTL and NK cytotoxicity activity [90] 

Epigallocatechin 
gallate (EGCG) 

In vitro 
HCV JFH-1-infected Huh7 

treated with EGCG 1h prior to 
poly I:C stimulation 

1–10 μM Poly I:C induced expression of ISGs 
   [91] 

In vivo Murine leukemia model 10.91, 43.63 and 87.26 μmol/kg 
T and B cell proliferation 

NK activity 
Macrophage phagocytosis

[93] 

In vitro 
Human U937-DC-SIGN 

macrophages infected with 
DENV1 or DENV2 

100 μM DENV1 and DENV2 replication 
TNF-α and IL-6 secretion 

[96] 

Ex vivo 
LPS-stimulated proliferation of 

B cells 
SRBC-immunized mice 

215.1 μmol/kg in diet for 34 days B cells proliferation 
IgM-producing lymphocytes

[98] 

Quercetin 
Resveratrol In vitro 

hMPV-infected A549 airway 
epithelial cell line 

10 μM 
50 μM 

Oxidative stress 
IL-8, RANTES, IL-6, TNF-α, CXCL-10, 

CCL4 secretion 
Virus replication 

[99] 

Hesperetin In vivo 
Adjuvant in combination with 
inactivated B16F10 melanoma 

cells vaccine 
2.65 μmol/mouse 

APC activation 
CTL response [106] 

LPS: Lipopolysaccharide. CTL: Cytotoxic T Lymphocytes. NK: Natural Killer Cells. SRBC: Forssman heterophilic glycolipid antigen occurring on sheep erythrocytes. DENV: Dengue 
virus. hMPV: Human metapneumovirus. APC: Antigen Presenting Cells. The compounds in the table are in the order in which the compounds are presented in the section 
Immunostimulatory Activities of Natural Phenolic Compounds. Increased ordecreased. 

 

NF-κB activation
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Table 2. Immunostimulatory effects of natural phenolic compounds. 

Compound Experimental Model Dose/Concentration Effect Reference 

Apigenin 
Luteolin In vitro 

LPS-stimulation of murine 
splenocytes 

Killing of target tumor cells 

10 μM 
1–10 μM 

  
CTL and NK cytotoxicity activity [90] 

Epigallocatechin 
gallate (EGCG) 

In vitro 
HCV JFH-1-infected Huh7 

treated with EGCG 1h prior to 
poly I:C stimulation 

1–10 μM Poly I:C induced expression of ISGs 
   [91] 

In vivo Murine leukemia model 10.91, 43.63 and 87.26 μmol/kg 
T and B cell proliferation 

NK activity 
Macrophage phagocytosis

[93] 

In vitro 
Human U937-DC-SIGN 

macrophages infected with 
DENV1 or DENV2 

100 μM DENV1 and DENV2 replication 
TNF-α and IL-6 secretion 

[96] 

Ex vivo 
LPS-stimulated proliferation of 

B cells 
SRBC-immunized mice 

215.1 μmol/kg in diet for 34 days B cells proliferation 
IgM-producing lymphocytes

[98] 

Quercetin 
Resveratrol In vitro 

hMPV-infected A549 airway 
epithelial cell line 

10 μM 
50 μM 

Oxidative stress 
IL-8, RANTES, IL-6, TNF-α, CXCL-10, 

CCL4 secretion 
Virus replication 

[99] 

Hesperetin In vivo 
Adjuvant in combination with 
inactivated B16F10 melanoma 

cells vaccine 
2.65 μmol/mouse 

APC activation 
CTL response [106] 

LPS: Lipopolysaccharide. CTL: Cytotoxic T Lymphocytes. NK: Natural Killer Cells. SRBC: Forssman heterophilic glycolipid antigen occurring on sheep erythrocytes. DENV: Dengue 
virus. hMPV: Human metapneumovirus. APC: Antigen Presenting Cells. The compounds in the table are in the order in which the compounds are presented in the section 
Immunostimulatory Activities of Natural Phenolic Compounds. Increased ordecreased. 

 

IL-12p40 and TNF-α production
[127]

Quercetin 20 µM RAW 264.7 pretreated with quercetin 30min prior to LPS stimulation
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Table 2. Immunostimulatory effects of natural phenolic compounds. 

Compound Experimental Model Dose/Concentration Effect Reference 

Apigenin 
Luteolin In vitro 

LPS-stimulation of murine 
splenocytes 

Killing of target tumor cells 

10 μM 
1–10 μM 

  
CTL and NK cytotoxicity activity [90] 

Epigallocatechin 
gallate (EGCG) 

In vitro 
HCV JFH-1-infected Huh7 

treated with EGCG 1h prior to 
poly I:C stimulation 

1–10 μM Poly I:C induced expression of ISGs 
   [91] 

In vivo Murine leukemia model 10.91, 43.63 and 87.26 μmol/kg 
T and B cell proliferation 

NK activity 
Macrophage phagocytosis

[93] 

In vitro 
Human U937-DC-SIGN 

macrophages infected with 
DENV1 or DENV2 

100 μM DENV1 and DENV2 replication 
TNF-α and IL-6 secretion 

[96] 

Ex vivo 
LPS-stimulated proliferation of 

B cells 
SRBC-immunized mice 

215.1 μmol/kg in diet for 34 days B cells proliferation 
IgM-producing lymphocytes

[98] 

Quercetin 
Resveratrol In vitro 

hMPV-infected A549 airway 
epithelial cell line 

10 μM 
50 μM 

Oxidative stress 
IL-8, RANTES, IL-6, TNF-α, CXCL-10, 

CCL4 secretion 
Virus replication 

[99] 

Hesperetin In vivo 
Adjuvant in combination with 
inactivated B16F10 melanoma 

cells vaccine 
2.65 μmol/mouse 

APC activation 
CTL response [106] 

LPS: Lipopolysaccharide. CTL: Cytotoxic T Lymphocytes. NK: Natural Killer Cells. SRBC: Forssman heterophilic glycolipid antigen occurring on sheep erythrocytes. DENV: Dengue 
virus. hMPV: Human metapneumovirus. APC: Antigen Presenting Cells. The compounds in the table are in the order in which the compounds are presented in the section 
Immunostimulatory Activities of Natural Phenolic Compounds. Increased ordecreased. 

 

I-κB phosphorylation
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Table 2. Immunostimulatory effects of natural phenolic compounds. 

Compound Experimental Model Dose/Concentration Effect Reference 

Apigenin 
Luteolin In vitro 

LPS-stimulation of murine 
splenocytes 

Killing of target tumor cells 

10 μM 
1–10 μM 

  
CTL and NK cytotoxicity activity [90] 

Epigallocatechin 
gallate (EGCG) 

In vitro 
HCV JFH-1-infected Huh7 

treated with EGCG 1h prior to 
poly I:C stimulation 

1–10 μM Poly I:C induced expression of ISGs 
   [91] 

In vivo Murine leukemia model 10.91, 43.63 and 87.26 μmol/kg 
T and B cell proliferation 

NK activity 
Macrophage phagocytosis

[93] 

In vitro 
Human U937-DC-SIGN 

macrophages infected with 
DENV1 or DENV2 

100 μM DENV1 and DENV2 replication 
TNF-α and IL-6 secretion 

[96] 

Ex vivo 
LPS-stimulated proliferation of 

B cells 
SRBC-immunized mice 

215.1 μmol/kg in diet for 34 days B cells proliferation 
IgM-producing lymphocytes

[98] 

Quercetin 
Resveratrol In vitro 

hMPV-infected A549 airway 
epithelial cell line 

10 μM 
50 μM 

Oxidative stress 
IL-8, RANTES, IL-6, TNF-α, CXCL-10, 

CCL4 secretion 
Virus replication 

[99] 

Hesperetin In vivo 
Adjuvant in combination with 
inactivated B16F10 melanoma 

cells vaccine 
2.65 μmol/mouse 

APC activation 
CTL response [106] 

LPS: Lipopolysaccharide. CTL: Cytotoxic T Lymphocytes. NK: Natural Killer Cells. SRBC: Forssman heterophilic glycolipid antigen occurring on sheep erythrocytes. DENV: Dengue 
virus. hMPV: Human metapneumovirus. APC: Antigen Presenting Cells. The compounds in the table are in the order in which the compounds are presented in the section 
Immunostimulatory Activities of Natural Phenolic Compounds. Increased ordecreased. 

 

NF-κB nuclear translocation
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Table 2. Immunostimulatory effects of natural phenolic compounds. 

Compound Experimental Model Dose/Concentration Effect Reference 

Apigenin 
Luteolin In vitro 

LPS-stimulation of murine 
splenocytes 

Killing of target tumor cells 

10 μM 
1–10 μM 

  
CTL and NK cytotoxicity activity [90] 

Epigallocatechin 
gallate (EGCG) 

In vitro 
HCV JFH-1-infected Huh7 

treated with EGCG 1h prior to 
poly I:C stimulation 

1–10 μM Poly I:C induced expression of ISGs 
   [91] 

In vivo Murine leukemia model 10.91, 43.63 and 87.26 μmol/kg 
T and B cell proliferation 

NK activity 
Macrophage phagocytosis

[93] 

In vitro 
Human U937-DC-SIGN 

macrophages infected with 
DENV1 or DENV2 

100 μM DENV1 and DENV2 replication 
TNF-α and IL-6 secretion 

[96] 

Ex vivo 
LPS-stimulated proliferation of 

B cells 
SRBC-immunized mice 

215.1 μmol/kg in diet for 34 days B cells proliferation 
IgM-producing lymphocytes

[98] 

Quercetin 
Resveratrol In vitro 

hMPV-infected A549 airway 
epithelial cell line 

10 μM 
50 μM 

Oxidative stress 
IL-8, RANTES, IL-6, TNF-α, CXCL-10, 

CCL4 secretion 
Virus replication 

[99] 

Hesperetin In vivo 
Adjuvant in combination with 
inactivated B16F10 melanoma 

cells vaccine 
2.65 μmol/mouse 

APC activation 
CTL response [106] 

LPS: Lipopolysaccharide. CTL: Cytotoxic T Lymphocytes. NK: Natural Killer Cells. SRBC: Forssman heterophilic glycolipid antigen occurring on sheep erythrocytes. DENV: Dengue 
virus. hMPV: Human metapneumovirus. APC: Antigen Presenting Cells. The compounds in the table are in the order in which the compounds are presented in the section 
Immunostimulatory Activities of Natural Phenolic Compounds. Increased ordecreased. 

 

NO, PGE2, TNF-α, IL-6, IL-1β and
GM-CSF production
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Table 2. Immunostimulatory effects of natural phenolic compounds. 

Compound Experimental Model Dose/Concentration Effect Reference 

Apigenin 
Luteolin In vitro 

LPS-stimulation of murine 
splenocytes 

Killing of target tumor cells 

10 μM 
1–10 μM 

  
CTL and NK cytotoxicity activity [90] 

Epigallocatechin 
gallate (EGCG) 

In vitro 
HCV JFH-1-infected Huh7 

treated with EGCG 1h prior to 
poly I:C stimulation 

1–10 μM Poly I:C induced expression of ISGs 
   [91] 

In vivo Murine leukemia model 10.91, 43.63 and 87.26 μmol/kg 
T and B cell proliferation 

NK activity 
Macrophage phagocytosis

[93] 

In vitro 
Human U937-DC-SIGN 

macrophages infected with 
DENV1 or DENV2 

100 μM DENV1 and DENV2 replication 
TNF-α and IL-6 secretion 

[96] 

Ex vivo 
LPS-stimulated proliferation of 

B cells 
SRBC-immunized mice 

215.1 μmol/kg in diet for 34 days B cells proliferation 
IgM-producing lymphocytes

[98] 

Quercetin 
Resveratrol In vitro 

hMPV-infected A549 airway 
epithelial cell line 

10 μM 
50 μM 

Oxidative stress 
IL-8, RANTES, IL-6, TNF-α, CXCL-10, 

CCL4 secretion 
Virus replication 

[99] 

Hesperetin In vivo 
Adjuvant in combination with 
inactivated B16F10 melanoma 

cells vaccine 
2.65 μmol/mouse 

APC activation 
CTL response [106] 

LPS: Lipopolysaccharide. CTL: Cytotoxic T Lymphocytes. NK: Natural Killer Cells. SRBC: Forssman heterophilic glycolipid antigen occurring on sheep erythrocytes. DENV: Dengue 
virus. hMPV: Human metapneumovirus. APC: Antigen Presenting Cells. The compounds in the table are in the order in which the compounds are presented in the section 
Immunostimulatory Activities of Natural Phenolic Compounds. Increased ordecreased. 

 

HO-1

[134]

Quercetin
Catechin

3 µM
75 µM

LPS-stimulated RAW 264.7 in the presence of quercetin and catechin
treatment
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Table 2. Immunostimulatory effects of natural phenolic compounds. 

Compound Experimental Model Dose/Concentration Effect Reference 

Apigenin 
Luteolin In vitro 

LPS-stimulation of murine 
splenocytes 

Killing of target tumor cells 

10 μM 
1–10 μM 

  
CTL and NK cytotoxicity activity [90] 

Epigallocatechin 
gallate (EGCG) 

In vitro 
HCV JFH-1-infected Huh7 

treated with EGCG 1h prior to 
poly I:C stimulation 

1–10 μM Poly I:C induced expression of ISGs 
   [91] 

In vivo Murine leukemia model 10.91, 43.63 and 87.26 μmol/kg 
T and B cell proliferation 

NK activity 
Macrophage phagocytosis

[93] 

In vitro 
Human U937-DC-SIGN 

macrophages infected with 
DENV1 or DENV2 

100 μM DENV1 and DENV2 replication 
TNF-α and IL-6 secretion 

[96] 

Ex vivo 
LPS-stimulated proliferation of 

B cells 
SRBC-immunized mice 

215.1 μmol/kg in diet for 34 days B cells proliferation 
IgM-producing lymphocytes

[98] 

Quercetin 
Resveratrol In vitro 

hMPV-infected A549 airway 
epithelial cell line 

10 μM 
50 μM 

Oxidative stress 
IL-8, RANTES, IL-6, TNF-α, CXCL-10, 

CCL4 secretion 
Virus replication 

[99] 

Hesperetin In vivo 
Adjuvant in combination with 
inactivated B16F10 melanoma 

cells vaccine 
2.65 μmol/mouse 

APC activation 
CTL response [106] 

LPS: Lipopolysaccharide. CTL: Cytotoxic T Lymphocytes. NK: Natural Killer Cells. SRBC: Forssman heterophilic glycolipid antigen occurring on sheep erythrocytes. DENV: Dengue 
virus. hMPV: Human metapneumovirus. APC: Antigen Presenting Cells. The compounds in the table are in the order in which the compounds are presented in the section 
Immunostimulatory Activities of Natural Phenolic Compounds. Increased ordecreased. 

 

NF-κB p65 phosphorylation
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Table 2. Immunostimulatory effects of natural phenolic compounds. 
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10. Inhibitory Effects of Natural Phenolic Compounds on NLRP3 Inflammasome

Viral nucleic acids are recognized by PRRs, such as TLR 3,7,8 in the endosomes [145].
Recognition of viral proteins and nucleic acid by PRRs triggers myeloid differentiation
primary response 88 (MyD88) and TIR-domain-containing adapter-inducing interferon-β
(TRIF) signaling pathways culminating in the activation of interferon-regulatory factor
3/7 (IRF) and NF-κB transcription factors resulting in expression of pro-IL1β and pro-
IL-18 [107]. Moreover, activation of cytosolic NOD-like receptor (NLR) family pyrin
domain-containing 3 (NLRP3) inflammasome by pathogens, including viruses, results
in activation of caspase-1, and consequently the processing of pro- IL-1β and pro-IL-18
into mature IL-1β and IL-18 [146,147]. It is noteworthy to mention that the activation
of inflammatory caspases can induce a type of cell death called pyroptosis, which may
be involved in exacerbated production of inflammatory cytokines during acute phase of
COVID-19 [68,148]. Those events are important in the defense against infectious diseases
but could promote inflammation, death and tissue injury.

LDH is a marker for pyroptosis and is induced in severe COVID-19 patients [79]. Mod-
erate and severe COVID-19 patients showed enhanced NLRP3 activation in PBMCs and
lungs, which positively correlated with the severity of disease [149]. Treatments targeting
NLRP3 inflammasome have been suggested to mitigate COVID-19-associated inflamma-
tion and complications [150]. Natural inhibitors of NLRP3 activation have been described,
for example, amentoflavone [151], quercetin [152], apigenin [123], catechin [124], resvera-
trol [153], luteolin [154], scutellarin [155], epigallocatechin gallate [126], and myricetin [156]
(Figure 2).

Figure 2. Natural phenolic compounds target NF-κB and NLRP3 pathways. Some compounds inhibit the activation
or translocation of NF-κB to the nucleus, as well as inhibit NLRP3 inflammasome assembly. These actions impair the
expression of inflammatory cytokines and the secretion of mature IL-1β. The inhibitory activities of natural phenolic
compounds on NLRP3 inflammasome and NF-κB signaling pathways ameliorate exacerbated immune activation and
reduces proinflammatory cytokines production during infections (Dashed lines = Inhibition. Green, blue, pink and gray
balls represent inflammatory cytokines = IL-1β, IL-6, TNF-α and IL-12, respectively).

A study has shown that quercetin, at 100 µM, inhibited caspase-recruitment domain
(ASC) oligomerization and NLRP3 inflammasome activation resulting in decreased IL-1β
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production by in vitro-stimulated macrophages [152]. Moreover, in a Kawasaki disease
experimental model, treatment of mice with 100 mg/kg of quercetin prevented vascular
inflammation and IL-1β production [152]. It was also found that treatment of macrophages
with 25 µM apigenin blocked caspase-1 activation by targeting ASC and impairing NLRP3
inflammasome assembly [123]. Endoplasmic reticulum (ER) stress induced by palmitate
in EA.hy926 cells, a hybridoma line derived from human endothelium and A549/8 cells,
led to NLRP3 activation, IL-1β production and endothelial cell dysfunction. However,
treatment of EA.hy-926 cells with 10 µM of quercetin, luteolin or epigallocatechin gallate
reduced reactive oxygen species (ROS) production and thioredoxin-interacting protein
(TXNIP) and NLRP3 inflammasome activation, resulting in lower IL-1β expression [126].
Moreover, EGCG (25 µM) reduced nucleus pulposus cell inflammation and cell death,
induced by H2O2, by interfering with cGAS/Sting/NLRP3 pathway [157].

Resveratrol, at 5 µM, inhibited assembly and activation of NLRP3 inflammasome
in stimulated macrophages [153]. Also, resveratrol (30 µM) inhibited NLRP3 and IL-1β
expression in BV-2 cells, and protected septic mice from encephalopathy by targeting
NLPR3 at a concentration of 30 mg/kg [158].

Amentoflavone (10 µM) inhibited NLRP3 inflammasome activation in LPS-stimulated
BV-2 cells [151]. Luteolin at a low concentration (2 µM) impaired NLRP3, ASC and caspase-
1 expression by LPS-stimulated RAW 264.7 macrophages, and polarized macrophages
into M2 macrophages by enhancing the expression of Arg-1 and IL-10, and decreasing M1
markers expression, including TNF-α, IL-6 and iNOS [154]. In addition, myricetin (75 µM)
inhibited NLRP3 activation by blocking ASC oligomerization in macrophages [156].

Scutellarin has also been shown to inhibit NLRP3 inflammasome activation in differ-
ent experimental models [155,159–163]. Treatment of LPS-primed bone-marrow derived
macrophages (BMDMs) with 400 µM of scutellarin followed by ATP resulted in enhanced
PKA signaling, reduction of ASC oligomerization, impaired caspase-1 activation, and
lower IL-1β production compared to BMDMs that were not treated with scutellarin [155].
Figure 2 illustrates the anti-inflammatory activities of natural phenolic compounds by
targeting NF-κB and/or NLRP3 inflammasome.

11. Natural Phenolic Compounds in Sepsis and Lung Injury

Sepsis manifestations including cytokine storm, endothelial cell dysfunction, intravas-
cular coagulation, pulmonary, cardiovascular, and renal complications have all been re-
ported in COVID-19 patients [164,165]. Dysregulated immune response and cytokine
storm [166], with elevated levels of IL-6, IL-10, and TNF-α, and lymphopenia, corre-
lated with worse outcomes in COVID-19 patients [167]. Therefore, anti-inflammatory and
anti-coagulant drugs could be considered to reduce hyperinflammation and incidence of
thrombosis, multiple organ failure and death [168].

Experimental models to study sepsis include, for example, cecum ligation and punc-
ture (CLP) and LPS lethal dose, since LPS binds to TLR4 which activates NF-κB and
IRF3 pathways inducing the production of proinflammatory cytokines and cellular activa-
tion [169,170].

TLR4 is activated by Ebola virus (EBO), vesicular stomatitis virus (VSV), DENV,
and SARS-CoV-2 [171,172]. It has been shown that SARS-CoV-2′s spike protein activates
TLR4 and triggers IL-1β and IL-6 production by THP-1 cells [172]. In addition, lung
tissue injury, caused by SARS-CoV-2 infection, could induce danger associated molecular
patterns (DAMPs) which activate TLR-4 and potentiate inflammation [171]. Therefore,
the anti-inflammatory activities of natural phenolic compounds could be useful in severe
inflammation and lung injury associated with COVID-19.

EGCG is among the natural phenolic compounds that inhibit TLR signaling. EGCG
inhibited TLR4 signaling and ameliorated acute lung injury in mice infected with H9N2
influenza virus [173]. Resveratrol was also found to impairs TLR4 and TLR3 pathways
independent of MyD88 signaling [174]. In addition, resveratrol suppressed RSV replica-
tion, IL-6 secretion and TRIF-TBK1 pathway in 9HTEo cells; human epithelium tracheal
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cells, that are infected and treated with 100 µM of resveratrol [175]. In vivo, resveratrol
(30 mg/kg) reduced RSV titer in the lungs of infected mice, and impaired TLR3-TRIF
signaling pathway, alleviating airway hyperresponsiveness and inflammation [176].

Amentoflavone and apigenin were shown to reduce inflammation in sepsis models.
In CLP-induced sepsis, amentoflavone treatment (50 mg/kg) protected rats from acute
lung injury by decreasing TNF-α and IL-1β levels, impairing NF-κB activity and reducing
oxidative stress in the lung tissue [177]. Mice treated with 50 mg/kg of apigenin, 3h
before receiving a lethal dose of LPS, showed enhanced survival with decreased lung cell
death, and reduced TNF-α production and neutrophil infiltration into the lung tissue. In
addition, cardiac function and heart mitochondrial complex I activity were restored in
these mice [178].

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are also
described in COVID-19 patients, and correlated with worse outcome and higher mortal-
ity [179]. Hesperetin demonstrated the ability to suppress inflammatory cytokines produc-
tion, inflammatory cell infiltration into the lung tissue, and reduced myeloperoxidase and
LDH activities in different models of ALI [180–182].

Besides the importance of neutrophils in early responses to infections, they can dam-
age tissues and are also involved in sepsis-induced tissue injury [183]. It has been shown
that neutrophils accumulate in lungs of severe COVID-19 patients [184]. Neutrophil-
extracellular traps (NETs) were detected in high levels in the plasma and lung tissues of
COVID-19 patients [185], indicating that neutrophils activation is detrimental in COVID-
19 patients. A study has shown that luteolin (30 µM) inhibited oxidative stress, and
reduced NETs formation in human neutrophils that were activated with PMA [186].
Amentoflavone impaired oxidative burst in human neutrophils stimulated with PMA
and protected human erythrocytes from oxidative hemolysis. These effects were explained
by the ability of amentoflavone to inhibit NADPH oxidase and ROS production in human
neutrophils and to prevent membrane damage and lipid peroxidation in human erythro-
cytes [187]. However, more studies are needed to further understand the mechanism by
which amentoflavone inhibit neutrophil oxidative burst and erythrocyte lysis.

12. Natural Phenolic Compounds in Extrapulmonary Complications of COVID-19

Neurologic symptoms have been described in COVID-19 patients, including anosmia,
ageusia, encephalopathy, seizures, encephalitis, stroke, and cognitive disturbance [188,189].
SARS-CoV-2 have been shown to infect neurons and damage the central nervous system
(CNS) [190,191]. The detection of low or no viral copies in the brain tissue has been de-
scribed in a number of COVID-19 cases with neurologic complications [192], and it remains
unclear whether the CNS complications are caused by direct infection or inflammation.
Seizures are among the neurologic complications that have been reported during and
after recovery from SARS-CoV-2 infection [193–195]. Brain inflammation, genetic factors,
developmental dysfunction, environmental risk and neurological insults are involved in
epileptogenesis and seizures susceptibility [196]. Amentoflavone has been described as
neuroprotective in experimental models of epilepsy. Amentoflavone suppressed NF-κB
activation, decreased production of NO, PGE2, IL-1β, and IL-6, prevented hippocampus
neurons apoptosis, and decreased epileptic seizures in pilocarpine-treated mice [197]. More-
over, amentoflavone blocked apoptosis, impaired NLRP3 inflammasome activation, and
decreased production of IL-18, IL-1β, and TNF-α in brains of pentylenetetrazole-induced
kindling mice [151].

The anti-inflammatory, anti-oxidant and anti-apoptotic effects of hesperetin have been
related to its ability to protect neuronal [198,199], cardiac [200] and renal tissues [201]
in different injury models. Hesperetin ameliorated neuroinflammation, memory, and
impaired neuronal apoptosis in vivo [198]. Hesperetin interfered with the TLR4-NF-κB
signaling pathway. Accordingly, mice treated with LPS and hesperetin (50 mg/kg) showed
decreased brain levels of p-NF-κB, IL-1β and TNF-α compared to mice that received only
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LPS. The anti-inflammatory and cytoprotective effects of hesperetin were also confirmed
in vitro using BV-2, and HT-22 mouse hippocampal neuronal cell line [198].

Acute myocarditis is one of the extrapulmonary complications in COVID-19 pa-
tients [202], and is associated with inflammatory cell infiltration into the heart tissue [203].
It has been shown that apigenin prevented myocarditis in an experimental model of autoim-
mune myocarditis. Treatment with 200 mg/Kg (gavage) of apigenin reduced inflammatory
cell infiltration into the heart, decreased TNF-α, IL-2 and IFN-γ, and ameliorated cardiac
dysfunction compared to untreated mice [204]. Anti-apoptotic effects of 25 µM of hes-
peretin was also demonstrated in in vitro LPS-treated H9C2 cardiomyocytes [205], and in a
myocardial infarction (MI) model in vivo. Indeed MI mice, treated with 30 mg/kg/day of
hesperetin for 8 weeks, showed impaired NF-κB activation, reduced cardiac fibrosis and
inflammation compared to untreated MI-mice [200].

Kawasaki-like disease (KD) was also described in COVID-19 pediatric patients [206].
Proinflammatory cytokines are related to hyperinflammation, vasculitis and coronary artery
damage in KD patients. Increased TNF-α and IL-1β levels in KD patients result in endothe-
lial cell activation and expression of adhesion molecules which leads to leukocyte adherence
and endothelial injury, promoting vasculitis and coronary artery aneurysms [207]. Human
coronary arterial endothelial cells, activated with 10 ng/mL of TNF-α, showed enhanced
VCAM-1 and ICAM-1 expression, oxidative stress and proinflammatory cytokines pro-
duction. However, in the presence of 10 µM of resveratrol, expression of ICAM-1, iNOS,
and IL-1β were reduced which indicate that resveratrol has anti-inflammatory actions on
coronary arterial cells and could be promising in treatment of KD patients [208]. Moreover,
quercetin treatment (50 mg/kg) prevented cardiac injury, inflammation and oxidative stress
in the heart of streptozocin (STZ) and nicotinamide-induced diabetic rats [209]. Luteolin
(10 µM) protected H9C2 cardiomyocytes from inflammation and oxidative stress induced
by high glucose concentration. Additionally, reduced inflammation was observed in the
heart of STZ-diabetic mice that were treated with 20 mg/kg of luteolin for 15 weeks [210].
Figure 3 illustrates the main mechanisms of the immunomodulatory actions of phenolic
compounds discussed in this study.

Figure 3. Immunomodulatory actions of natural phenolic compounds for further investigation in SARS-CoV-2 infection
(Dashed lines = Inhibition).
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Most of the compounds discussed in this review are found in foods and beverages
of natural origin, such as resveratrol, which is commonly present in wine. However, it
is not possible to conclude that a diet based on these foods will result in prevention or
improvement of the clinical conditions of affected people by COVID-19. Discussion of
this possibility requires carrying out comprehensive studies in populations that have an
appropriate diet. For example, the high consumption of wine in France may contribute to
the low frequency of coronary heart disease, possibly due to the presence of resveratrol
in this drink. This evidence represents the French paradox [211]. However, countries
with high consumption of wine, such as France and Italy, had a high number of deaths
caused by COVID-19 [212,213]. Therefore, studies using standardized methods with these
phytoconstituents are needed to advance the knowledge of their therapeutic potential
against COVID-19.

13. Conclusions

Among natural phenolic compounds discussed, we highlighted the antiviral effects
of quercetin, luteolin, resveratrol, and amentoflavone against coronaviruses as well as
their ability to modulate immune response and inflammatory status in a variety of in vitro
and in vivo models. Despite the structural complexity of some bioactive compounds,
there are perspectives for the development of synthetic analogues with an anticoronavirus
and immunomodulator profile, but structurally simpler and easier to obtain using the
phytoconstituents in this review as prototypes. In addition, it is possible to manufacture
plant products containing a significant amount of these phenolic compounds and use
them as potentially therapeutic agents against COVID-19. So, further experimental studies
focusing on anti-SARS-CoV-2 and immunomodulatory activities of these compounds
are needed.
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Abbreviations

229E Human coronavirus-229E
(+ss) Positive single-stranded
3CLpro 3-Chymotrypsin-like protease
ACE2 Angiotensin converting enzyme 2
ALI Acute lung injury
APCs Antigen presenting cells
ARDS Acute respiratory distress syndrome
ASC Caspase-recruitment domain
BMDMs Bone-marrow derived macrophages
CCL5 Chemokine (C-C motif) ligand 5
CLP Cecum ligation and puncture
CNS Central nervous system
CoVs Coronaviruses
COVID-19 Coronavirus disease 2019
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CRP C-reactive protein
CTLs Cytotoxic T lymphocytes
DAMPs Danger associated molecular patterns
DENV Dengue virus
EBO Ebola virus
EGCG Epigallocatechin gallate
ER Endoplasmic reticulum
GCG Gallocatechin gallate
HCoVs Human coronaviruses
HCoV-OC43 Human coronavirus-OC43
HCV Hepatitis C virus
KD Kawasaki-like disease
HKU1 Human coronavirus-HKU1
Hmpv Human metapneumovirus
HO-1 Heme oxygenase-1
ICAM-1 Intercellular adhesion molecule-1
IFN Type I interferon
iNOS Inducible nitric oxide synthase
IRF Interferon-regulatory factor 3/7
ISGs IFN-stimulated genes
JNK Jun N-terminal kinase
LDH Lactate dehydrogenase
LPS Lipopolysaccharide
MARCO Macrophage receptor with collagenous structure
MCP-1 Chemokine monocyte chemotactic protein-1
MERS-CoV Middle east respiratory syndrome-coronavirus
MyD88 Myeloid differentiation primary response 88
NCDCV Neonatal calf diarrhea coronavirus
NETs Neutrophil-extracellular traps
NF-κB Nuclear factor kappa B
NK Natural killer
NL63 Human coronavirus-NL63
NLR NOD-like receptor
NLRP3 Pyrin domain-containing 3
NSP13 SARS-CoV nonstructural protein 13
NTHi Nontypeable Haemophilus influenza
OxLDL Oxidized low-density lipoprotein
PBMCs Peripheral blood mononuclear cells
PEDV Porcine epidemic diarrhoea coronavirus
PLpro Papain-like protease
PMA Phorbol myristate acetate
Poly I:C Polyinosinic–polycytidylic acid
PRR Patter recognition receptors
RIG-I Retinoic acid-inducible gene I
ROS Reactive oxygen species
RSV Respiratory syncytial virus
SARS-CoV Severe acute respiratory syndrome-coronavirus
SARS-CoV-2 Severe acute respiratory syndrome-coronavirus 2
VCAM-1 Vascular cell adhesion protein-1
VSV Vesicular stomatitis virus
TLR Toll-like receptors
TRIF TIR-domain-containing adapter-inducing interferon-β (TRIF)
TXNIP Thioredoxin-interacting protein
IC50 Concentration that results in 50% inhibition
CC50 Concentration that reduces cell viability by 50%
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