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Abstract: Chalcones belong to the flavonoid class of phenolic compounds. They form one of the
largest groups of bioactive natural products. The potential anticancer, anti-inflammatory, antimi-
crobial, antioxidant, and antiparasitic properties of naturally occurring chalcones, and their unique
chemical structural features inspired the synthesis of numerous chalcone derivatives. In fact, struc-
tural features of chalcones are easy to construct from simple aromatic compounds, and it is convenient
to perform structural modifications to generate functionalized chalcone derivatives. Many of these
synthetic analogs were shown to possess similar bioactivities as their natural counterparts, but
often with an enhanced potency and reduced toxicity. This review article aims to demonstrate how
bioinspired synthesis of chalcone derivatives can potentially introduce a new chemical space for
exploitation for new drug discovery, justifying the title of this article. However, the focus remains on
critical appraisal of synthesized chalcones and their derivatives for their bioactivities, linking to their
interactions at the biomolecular level where appropriate, and revealing their possible mechanisms
of action.

Keywords: chalcones; biomolecular interactions; synthesis; natural products; bioactivities; mecha-
nisms; anticancer; antimicrobial; phenolics

1. Introduction

Chalcones are flavonoid-type phenolic phytochemicals, often referred to as ‘open-
chain flavonoids’, and biosynthesized via the shikimate pathway [1]. Chalcones are con-
sidered as the biosynthetic precursors of flavonoids. Chemically, chalcones are generally
α,β-unsaturated ketones consisting of two aromatic rings (rings A and B) linked through a
three-carbon alkenone unit (Figure 1), but these may also include some saturated ketones,
commonly known as dihydrochalcones, where instead of a three-carbon alkenone unit,
a three-carbon alkanone unit is present. Among the naturally occurring chalcones, the
presence of one or more phenolic hydroxyl functionalities is ubiquitous, and prenyl and
geranyl substitutions on the aromatic rings are also widely observed. There are several
thousand naturally occurring chalcones reported in the literature [2], and many of those
chalcones were shown to interact with various biomolecules and possess cytoprotective and
modulatory properties, making them potentially suitable candidates for therapeutic inter-
ventions in many human ailments. Several patents are also available for chalcones and their
derivatives for their activities as anticancer, anti-inflammatory, antimitotic, antioxidant,
and cytotoxic properties [3].
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Figure 1. General structure of chalcones. 

Because of structural simplicity and therapeutic potential, several bioinspired syn-
theses of chalcone derivatives and evaluation of their bioactivities were reported in the 
literature [2]. The first few attempts for the synthesis of chalcones began in the 1800′s and 
continued through the subsequent centuries [4]. In this review article, some of these syn-
thesized chalcones and their derivatives were critically appraised for their bioactivities, 
linking to their interactions at the biomolecular level where appropriate, and revealing 
their possible mechanisms of action. Moreover, this review article fundamentally aims to 
demonstrate how bioinspired synthesis of chalcone derivatives can potentially introduce 
a new chemical space for exploitation for new drug discovery, justifying the title of this 
article.  

2. Chalcone Synthesis 
Chalcones are considered privileged structures in the medicinal chemistry due to the 

relative ease with which they may be produced and modified, reflecting the similar ease 
with which they are produced in nature. From as early as the 19th century, many research-
ers have developed synthetic chalcones, with Kostanecki and Tambor being acknowl-
edged as the first to successfully prepare synthetic chalcones using a method involving 
treatment of o-acetoxychalcone dibromides with alcoholic alkali [5,6]. However, the cur-
rent methods of chalcone synthesis utilize an alkaline base and a polar solvent to couple 
two compounds with an aromatic ring each, e.g., acetophenone and benzaldehyde, and 
to produce the core chalcone nucleus (Scheme 1) [7–9]. Various aromatic compounds and 
different methods used in the synthesis of several chalcone derivatives (2–10) and chal-
cone itself (1) are summarized in Table 1. 
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Figure 1. General structure of chalcones.

Because of structural simplicity and therapeutic potential, several bioinspired syn-
theses of chalcone derivatives and evaluation of their bioactivities were reported in the
literature [2]. The first few attempts for the synthesis of chalcones began in the 1800s
and continued through the subsequent centuries [4]. In this review article, some of these
synthesized chalcones and their derivatives were critically appraised for their bioactivities,
linking to their interactions at the biomolecular level where appropriate, and revealing
their possible mechanisms of action. Moreover, this review article fundamentally aims
to demonstrate how bioinspired synthesis of chalcone derivatives can potentially intro-
duce a new chemical space for exploitation for new drug discovery, justifying the title of
this article.

2. Chalcone Synthesis

Chalcones are considered privileged structures in the medicinal chemistry due to the
relative ease with which they may be produced and modified, reflecting the similar ease
with which they are produced in nature. From as early as the 19th century, many researchers
have developed synthetic chalcones, with Kostanecki and Tambor being acknowledged as
the first to successfully prepare synthetic chalcones using a method involving treatment of
o-acetoxychalcone dibromides with alcoholic alkali [5,6]. However, the current methods of
chalcone synthesis utilize an alkaline base and a polar solvent to couple two compounds
with an aromatic ring each, e.g., acetophenone and benzaldehyde, and to produce the core
chalcone nucleus (Scheme 1) [7–9]. Various aromatic compounds and different methods
used in the synthesis of several chalcone derivatives (2–10) and chalcone itself (1) are
summarized in Table 1.
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Table 1. Synthesis of some chalcone and chalcone derivatives [7–9].

Approach Compound 1 Compound 2 Reaction
Conditions

Synthesize Chalcone and Its
Derivatives

Microwave
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Table 1. Cont.

Approach Compound 1 Compound 2 Reaction
Conditions

Synthesize Chalcone and Its
Derivatives

Claisen-Schmidt
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Approach Compound 1 Compound 2 Reaction
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3. Molecular Mechanisms of Chalcone Actions 
Various bioactivities of chalcones result from their interactions with several biomol-

ecules and different signaling pathways. Some of those molecular mechanisms of activi-
ties of chalcones are discussed in the following subsections. 

3.1. Activation of Nuclear Factor-Erythroid 2 p45 Subunit-Related Factor 2 Pathway and 
Cellular Defence Genes 

Nuclear factor-erythroid (NF-E2) p45-related factor 2 (Nrf2) is a transcription factor, 
which controls the expression of a battery of antioxidant genes, all of which have an anti-
oxidant response element (ARE) in their promoter which allows the binding of Nrf2 [10]. 
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3. Molecular Mechanisms of Chalcone Actions

Various bioactivities of chalcones result from their interactions with several biomolecules
and different signaling pathways. Some of those molecular mechanisms of activities of
chalcones are discussed in the following subsections.

3.1. Activation of Nuclear Factor-Erythroid 2 p45 Subunit-Related Factor 2 Pathway and Cellular
Defence Genes

Nuclear factor-erythroid (NF-E2) p45-related factor 2 (Nrf2) is a transcription factor,
which controls the expression of a battery of antioxidant genes, all of which have an
antioxidant response element (ARE) in their promoter which allows the binding of Nrf2 [10].
The ARE-Nrf2 complex leads to induction of cell expression of cell defense genes. such
as glutathione S-transferase (GST), hemoxygenase-1 (HO-1), and xenobiotic metabolizing
enzyme (NAD(P)H: quinone oxidoreductase 1) (NQO1) [11–13]. Kim et al. [14] synthesized
a series of chalcone derivatives, and among them, a new chalcone derivative (11) (Figure 2)
was found to possess the best Nrf2 activation properties and could induce Nrf2 nuclear
translocation. This chalcone salt (11) was shown to induce gene expression of antioxidant
enzymes and attenuate inflammatory responses in activated microglia. There has been
an increasing number of publications that detail the relationship between chalcones and
Nrf2, with several studies reporting the ability of chalcones to induce Nrf2. The ability
of synthetic and natural chalcones to activate the Nrf2 signaling pathway was reviewed
recently [15].
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Figure 2. A synthetic chalcone derivative as an Nrf2 activator.

Ajiboye et al. [16] reported that natural chalcones lophirones B (12) and C (13) could
induce Nrf2 (Figure 3). In addition, the natural chalcone, 3,4,2′,4′-tetrahydroxychalcone
4′-O-β-D-glucopyranoside (14), was noted to increase the level of NQO1 [NAD(P) H:
quinone oxidoreductase 1] in Hepa 1c1c7 cells [17]. Martinez et al. [18] reported that
chalcone (1) could increase glutathione (GSH), HO-1, and Nrf2 (Figure 3). Furthermore,
other researchers found 2-chloro-4′,6′-dimethoxy-2′-hydroxychalcone (15), a synthetic
chalcone, to increase GSH levels by enhancing its biosynthesis [19]. The ability to induce
activation of Nrf2 was exploited to assess potential cancer chemopreventive activity of
licorice samples collected from different geographical locations [20]. In fact, the structural
diversity that exists among synthetic and natural chalcones, ease of structural modification,
and the presence of α,β-unsaturated carbonyl functionality (pharmacophore) make these
compounds suitable drug candidates or can lead to targeting of Nrf2-dependent disease.

3.2. Activation of the Nuclear Factor-Kappa B (NF-κB) PI3K/Akt Signaling Pathway

The transcription factor, nuclear factor-kappa B PI3K/Akt (NF-κB), is a heterodimer
consisting of p50 and p65 subunits, and is central to the functioning of the immune system.
It has a role to play in the expression of immunoglobulin-k. NF-κB is activated by extra-
cellular promoters, such as growth factors and inflammatory cytokines. The extracellular
promoters switch on NF-κB signaling through dissolution and phosphorylation of the
inhibiting I-κB protein. Allowing NF-κB to enter the nucleus and regulate cell cycle and
apoptosis-related gene expression [21].
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Several studies have examined the effect of chalcones on NF-κB signaling as a plausi-
ble way to modulate inflammation and cancer, and found that several natural chalcones,
e.g., butein (16), calomelanone (17), flavokawain C (18), homobutein (19), 4-hydroxychalcone
(20), 4′-hydroxychalcone (21), isoliquiritigenin (22), 4-methoxychalcone (2), and phloretin
(23) (Figure 4) have the ability to suppress NF-κB signaling [22]. Similarly, NF-κB ac-
tivation could be stimulated by several synthetic chalcones, such as 2-hydroxy-3′,5,5′-
trimethoxychalcone (DK-139) (24) [23], (E)-2,6-difluoro-4′-methoxychalcone (L6H9) (25) [24],
and 3-(2,5-dimethoxyphenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one (DMPF-1) (26) [25]
(Figure 3).
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3.3. Effects on the Cell Cycle

Many researchers have investigated the effects of synthetic and natural chalcones
on the cell cycle [26–30]. Dimethyl-cardamonin (27) was shown to arrest cell cycle in the
G1 phase by decreased expression of cyclin D1, CDK4 (cyclin-dependent kinase 4), and
phospho-Rb [30], while Hseu et al. [29] reported that the chalcone flavokawain B (28) could
cause cell cycle arrest in the G2/M phase in human oral carcinoma cells.

Studies conducted by Maioral et al. [31] established the importance of chalcone (2E)-1-
(2,5-dimethoxy-phenyl)-3-(1-naphthyl)-2-propene-1-one (29) in blocking the G2/M phase
in human leukemia cell lines, i.e., NB4, K562, and Kasumi cell lines, and the G0/G1 phase
in the human T-cell leukemia cell line CEM, the human lung cancer cell line U937, and
the S phase in Jurkat cell lines. In addition, Kello et al. [32] found that the chalcones (E)-2-
(4′-methoxybenzylidene)-1-benzosuberone (30) and (E)-2-(3′,4′-dimethoxy-benzylidene)-
1-tetralone (31) could be responsible for cell cycle arrest at the G2/M phase in Caco-2
cells. Two synthetic chalcones, (E)-1-(4-aminophenyl)-3-(2,3-dimethoxyphenyl)-prop-2-en-
1-one (32) and (E)-1-(4-aminophenyl)-3-phenylprop-2-en-1-one) (33), were studied for their
effects on the cell cycle of the human erythroleukemic cell line K562 and it was observed
that both chalcones acted as inhibitors of the cell cycle [33]. The cell cycle distribution of
cervical cancer (HeLa) cells treated with the synthetic chalcone L1 (39) was analyzed by
flow cytometry, revealing its ability to induce cell cycle arrest in the G2/M phase after 24 h
of treatment [26], while chalcone (1) and licochalcone A (40) were found to induce the cell
cycle arrest in the G1 phase in the MCF-7 breast cancer cells [27]. A summary of the effects
of different chalcones on the cell cycle is shown in Figure 5, and the structures of chalones
that influence the cell cycle are presented in Figure 6.
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Figure 5. The effect of natural and synthetic chalcones on the cell cycle. Group A: Chalcones arrest
the cell cycle at the G1/S phase, i.e., dimethyl cardamonin (27) [30], tetramethoxychalcone (34) [28],
2′-hydroxy-2,3,4′,6′-tetramethoxychalcone (35) [34], and tetrahydro-[1,2,4]triazolo[3,4-a]isoquinoline
chalcones (36) [35]. Group B: Chalcones that arrest the cell cycle at the G2/M phase chalcone (1) [29],
isoliquiritigenin (22) [36], (2E)-3-(acridin-9-yl)-1-(2,6-dimethoxyphenyl)prop-2-en-1-one (37) [37], and
quinazolinone-chalcone (38) [38].
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3.4. Effects on Apoptosis

Apoptosis is a form of programmed cell death in multicellular organisms, governed by
a series of biochemical events [39]. Several studies have examined the effect of chalcones on
apoptosis to establish whether chalcones induce cell death through apoptosis or necrosis.
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One of the early studies reported that chalcones (1) could induce apoptosis through enhanc-
ing the pro-apoptotic molecules, Bax and Bak, whilst reducing anti-apoptotic Bcl proteins
(Figure 7) [40]. Chen et al. [41] demonstrated that the natural chalcone lonchocarpin (41)
decreased cell proliferation via activation of caspase-3, caspase-9, and Bax (Figure 7). The
synthetic chalcone, (2E)-3-(2-naphthyl)-1-(3′-methoxy-4′-hydroxy-phenyl)-2-propen-1-one
(42), could block the G2/M phase, in addition to increasing p53 and Bax expression, thus
bringing about caspase-3 activation and cell death [42].
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Furthermore, it was shown that a synthetic chalcone (2E)-1-(2,5-dimethoxy-phenyl)-
3-(1-naphthyl)-2-propene-1-one (29) could induce cell death in human acute leukemia
cell lines [31]. A recent study by Novilla et al., (2017) pointed out that synthetic chal-
cones (E)-1-(4-aminophenyl)-3-(2,3-dimethoxy-phenyl)-prop-2-en-1-one (32) and (E)-1-(4-
aminophenyl)-3-phenylprop-2-en-1-one) (33) could induce expression of caspase-3 in K562
cells. Additionally, another synthetic chalcone derivative, (E)-3-(4-methoxyphenyl)-2-
methyl-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (43), was proposed as useful against
prostate cancer as it was noted to cause cell cycle arrest and apoptosis (Figure 7) [43]. The
structures of chalones that can influence apoptosis are presented in Figure 8.
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3.5. Binding with the Estrogenic Receptor (ER)

Chalcones, especially several natural chalcones present in food plants, are known to
possess estrogenic properties, which are mediated by their interactions with the estrogenic
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receptor (ER) [44,45]. Isoliquiritigenin (22), a natural chalcone that is usually found in
licorice, was shown to have estrogen receptor α-dependent growth-promoting effects on
breast cancer cells [44]; its estrogenic effect was established using the hormone-sensitive
MCF-7 breast cancer and steroid-independent HeLa cells. This chalcone was found to
transactivate the endogenous estrogen receptor α in MCF-7 cells, supported by its ability
to induce the down-regulation of estrogen receptor α protein levels and the up-regulation
of pS2 mRNA. Furthermore, it was shown that this chalcone could exert agonistic effect
for both estrogen receptor isoforms. In silico studies performed with the chalcone 2′,4′-
dihydroxy-6-methoxy-3,5-dimethylchalcone (44) (Figure 9), a component of the leaves of
Eugenia aquea established its interaction with estrogen receptor α [45,46]. Another similar
virtual screening of 2′,3′,4′-trihydroxychalcone (45) showed that this chalcone acted as an
estrogen receptor ligand that could modulate the activity of 17β-estradiol [47].
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Branham et al. [48] used the estrogen receptor–ligand binding assay to assess the
relative binding affinity of five chalcones, i.e., chalcone (1), 4-hydroxychalcone (20), 4′-
hydroxychalcone (21), phloretin (23), and 4,2′,4′-trihydroxychalcone (46), and a significant
level of binding with the estrogen receptor α was observed with all these chalcones. In this
study, a preliminary attempt was made to describe possible structure–activity relationships
of the chalcones used in the study. Chalcone (1) was found to bind with the estrogen
receptor with a weaker affinity than that of the monohydroxylated chalcones 20 and 21,
whereas multiple hydroxylation, e.g., in chalcone 46, appeared to have decreased the
binding affinity. Several chalcone-phenylpyran-2-one derivatives bearing a N,N-dimethyl
ethylamine side chain, for example, chalcone 47, were synthesized as estrogen receptor
modulators [49]. All synthesized chalcone derivatives showed selectivity toward estrogen
receptor α, and among the compounds, the derivative with 2,6-dichloro functionalities (47)
showed the strongest affinity toward the receptor.

4. Bioactivity of Chalcones

Chalcones are known as biologically active molecules. Different studies with natural
and synthetic chalcones have demonstrated their bioactivities in vitro, in vivo, and most
recently in silico. Major bioactivities of chalcones include their activities as anticancer,
antidiabetic, antimicrobial, and antioxidant agents. Moreover, various chalcones were
shown to possess antiparasitic properties. Most of their activities, particularly their an-
ticancer potential, is associated with some of the biomolecular mechanisms outlined in
Table 1 in this article. Bioactivities of chalcones are described with specific examples in
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the following subsections. Figure 10 presents the chemical structures of those bioactive
chalcones, unless the structures are shown earlier in this article, whilst Table 2 summarizes
various bioactivities of naturally occurring chalcones [50–81].
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Table 2. Bioactivities of some naturally occurring chalcones.

Bioactivities Chalcones Sources References

Anti-acetylcholinesterase Isosalipurposide (66)
Naringenin chalcone (78) Acacia cyanophylla [50]

Anti-arthritic Cardamonin (48) Boesenbergia rotunda [51]
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Table 2. Cont.

Bioactivities Chalcones Sources References

Anticancer

Butein (16)
Toxicodendron vernicifluum [52]

Butea dahlia
[22,53]

Calomelanone (17) Stevia lucida

Deoxydihydroxanthoangelol H (49) Angelica keiskei [54]
2,6-Dihydroxy-4-methoxychalcone (52)

Dimethyl-cardamonin (27) Syzygium campanulatum [55]

Echinantin (59) Piper methysticum & Alpinia pricei

[56]Flavokawain A (60)
Piper methysticum

Flavokawain B (28)

Flavokawain B (28) Alpinia pricei [57]

Flavokawain C (18) Piper methysticum
[22,53]

Homobutein (19) Butea frondosa

2′-Hydroxy-4′,5′-dimethoxychalcone (61) Sarcandra hainanensis [58]

4-Hydroxychalcone (20)
Glycyrrhiza glabra [22,53]

4′-Hydroxychalcone (21)

4-Hydroxyderricin (62)
Angelica keiskei

[59]

Isobavachalcone (63) [54]

Isobavachalcone (63) Psoralea corylifolia [60]

Isoliquiritigenin (22)
Piper methysticum

[57]
Alpinia pricei

Glycyrrhiza glabra [22,53]

Isosalipurposide (66) Helichrysum maracandicum [61]

Lonchocarpin (41) Pongamia pinnata [41]

Marein (77)
Glycyrrhiza glabra [22,53]

4-Methoxychalcone (2)

Phloretin (23) Stevia lucida [22,53]

2,3,4-Trimethoxy-2′-hydroxychalcone (82) Piper methysticum [62]

Xanthoangelol (83)

Angelica keiskei

[59]

Xanthoangelol I (91)
[54]

Xanthoangelol J (92)

Antidiabetic

2′,6′-Dihydroxy-4′-methoxychalcone (54) Piper claussenianum [63]

4-Hydroxyderricin (62)
Angelica keiskei [64]

Xanthoangelol (83)

Anti-inflammatory

Flavokawain B (28)
Alpinia pricei [65]

Isoliquiritigenin (22)

Licoagrochalcone A (70)
Glycyrrhiza inflata [66]

Licochalcone B (68)

Licochalcone C (71) Glycyrrhiza glabra [67]

Mallotophilippens C (74)

Mallotus philippinensis [68]Mallotophilippens D (75)

Mallotophilippens E (76)
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Table 2. Cont.

Bioactivities Chalcones Sources References

Antimicrobial

Antibacterial

2′,4′-Dihydroxychalcone (51) Zuccagnia punctata [69]

3,2′-Dihydroxy-2,4,4′,6′-
tetramethoxychalcone (55) Piper hispidum [70]
2′-Hydroxy-2,4,4′,6′-
tetramethoxychalcone (56)

2′-Hydroxy-2,3,4,4′,6′-
pentamethoxychalcone (57)

Isoliquiritigenin (22) Apis mellifera [71]

Antifungal

1-(5,7-Dihydroxy-2,2,6-trimethyl-2H-1-
benzopyran-8-yl)-3-
phenyl-2-propen-1-one [58]

Mallotus philippinensis [72]

3,2′-Dihydroxy-2,4,4′,6′-
tetramethoxychalcone (55)

Piper hispidum [70]
2′-Hydroxy-2,4,4′,6′-
tetramethoxychalcone (56)

2′-Hydroxy-2,3,4,4′,6′-
pentamethoxychalcone (57)

4′-Hydroxyrottlerin (64) Mallotus philippinensis [72]

Isoliquiritigenin (22) Apis mellifera [71]

Kamalachalcone E (67)
Mallotus philippinensis [72]

Rottlerin (65)

2′,3,4,4′-Tetrahydroxy-3′-
geranylchalcone (85)

Artocarpus nobilis [73]

2′,3,4,4′-Tetrahydroxy-3′-(6-hydroxy-3,7-
dimethyl-7-octadienyl)chalcone (79)

2′,4′,4-Trihydroxy-3′-geranylchalcone (83)
[xanthoangelol]

2′,4′,4-Trihydroxy-3′-(6-hydroxy-3,7-
dimethyl-7-octadienyl)chalcone (80)

2′,4′,4-Trihydroxy-3′-[2-hydroxy-7-
methyl-3-
methylene-6-octenyl-chalcone] (81)

Antiviral

Dihydrochalcone diglycoside (50) Thalassodendrin ciliatum [74]

Echinantin (59)
Glycyrrhiza inflata [75]

Isoliquiritigenin (22)

Licochalcone A (40)
Quercus coccifera [76]

Glycyrrhiza inflata [75]

Licochalcone B (68) Quercus coccifera [76]

Licochalcone D (72)
Glycyrrhiza inflata
Quercus coccifera

[76]
Licochalcone G (73)

Tetrahydroxy-methoxychalcone (69) [76]

Xanthoangelol (83)

Angelica keiskei [77]
Xanthoangelol F (84)

Xanthoangelol D (89)

Xanthoangelol E (90)
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Table 2. Cont.

Bioactivities Chalcones Sources References

Xanthoangelol B (86)

Xanthoangelol G (87)

Xanthodeistal A (88)

Antioxidant
Licochalcone C (71) Glycyrrhiza glabra [67]

Isosalipurposide (66)
Naringenin chalcone (78) Acacia cyanophylla [50]

Antiparasitic

(E)-1-(2,4-Dihydroxy-3-(3-methylbut-2-
en-1-yl)phenyl)-3-
phenylprop-2-en-1-one (53)

Lonchocarpus sp. [78]

Flavokawain B (28) Polygonum ferrugineum [79]

Licochalcone C (71) Glycyrrhiza glabra [80]

Licoagrochalcone A (70) Erythrina abyssinica [81]

Immunoregulatory

Mallotophilippens C (74)

Mallotus philippinensis [68]Mallotophilippens D (75)

Mallotophilippens E (76)

4.1. Anticancer and Cancer Chemopreventive Activity

Several investigations have revealed the bioactivity of chalcones against cancer, either
as a cancer chemopreventive agent or as a potential cancer curative agent. However,
most of those investigations were in vitro or in silico. Both natural (Figure 10; Table 2) and
synthetic chalcones acted as anticancer agents through the mechanisms sated in Table 1, and
mainly the induction of cancer/tumor cell death, predominantly by apoptosis. Research
groups who are interested in the cytotoxicity of chalcones, such as Sumiyoshi et al. [59],
reported that two chalcone derivatives, xanthoangelol (83) and 4-hydroxyderricin (62),
isolated from Angelica keiskei roots could inhibit metastasis and the growth of a tumor.
In addition, twenty-one natural chalcones were investigated by Orlikova et al. [22] for
their ability to inhibit NF-κB in K562 cells. They found that butein (16), calomelanone (17),
flavokawain C (18), homobutein (19), 4-hydroxychalcone (20), 4′-hydroxychalcone (21),
isoliquiritigenin (22), marein (77), 4-methoxychalcone (2), and phloretin (23) had the ability
to inhibit histone deacetylase enzyme (HDAC), and NF-κB.

Inspired by the anticancer potential of naturally occurring chalcones, several synthetic
chalcone analogs were produced and assessed for their anticancer properties. For example,
Sakagami et al. [82] reported the synthesis of fifteen chalcones (Figure 11), and showed
their ability to act as selective anticancer agents in several human oral squamous cancer
cell lines, such as HSC-2, HSC-3, HSC-4, and Ca9-22.

Anticancer activity and possible mechanisms of action of 2′-hydroxy-4′,5′-dimethoxy-
chalcone (61), isolated from Sarcandra hainanensis, were investigated using the lung cancer
cell lines, e.g., H322M, H460, H358, H1792 and H157. It was shown that chalcone 61
could increase the level of cellular reactive oxygen species (ROS) and induce cell apoptosis.
Ramirez-Tagle et al. [62] used 3′-bromo-3,4-dimethoxychalcone (107) and 2,3,4-trimethoxy-
2′-hydroxychalcone (82) on mouse hepatocytes (HepM) and human hepatoma cells (HepG2
and Huh-7) and found that both chalcones could lead to cellular apoptosis and to an
increase ROS levels. Synthetic chalcone (E)-1-(2-hydroxyphenyl)-3-(4-methyl-phenyl)-prop-
2-en-1-one (108) was identified as a chemopreventive agent with the results indicating that
it could decrease the extent of DNA damage [83].
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4.2. Antidiabetic Activity

Some naturally occurring chalcones were shown to possess antidiabetic properties.
For example, 2′,6′-dihydroxy-4′-methoxychalcone (52), isolated from the flowers of Piper
claussenianum [63], and 4-hydroxyderricin (62), and xanthoangelol (83) from Angelica keiskei,
were found to have antidiabetic properties [64]. Chalcone 52 exhibited its antidiabetic prop-
erties through producing a hypoglycemic effect in streptozotocin-induced diabetes in rats.
It was observed that this compound could reduce blood glucose levels from 277.4 mg/dL
before treatment to 158.8 mg/dL after 12 days of treatment. Both 4-hydroxyderricin (62)
and xanthoangelol (83) displayed insulin-like behavior via a pathway that is not dependent
on the activation of peroxisome proliferator-activated receptor-γ [64], whereas chalcone 62
could prevent the progression of diabetes in genetically diabetic KK-Ay mice.

The antidiabetic effect of naturally occurring chalcones prompted several bioinspired
syntheses of chalcone analogs, which were subsequently tested for their antidiabetic poten-
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tial. For instance, synthetic chalcones, (E)-1,3-dip-tolylprop-2-en-1-one (114), 4,5-dihydro-3,5-
dip-tolylpyrazole-1-carbothioamide (110), 4,5-dihydro-3,5-dip-tolylpyrazole-1-carboxamide
(111), (4,5-dihydro-3,5-dip-tolylpyrazol-1-yl)(phenyl)methanone (112), 4,5-dihydro-1-phenyl-
3,5-dip-tolyl-1H-pyrazole (113), and 3,5-bis(4-methylphenyl)-1-(phenylsulfonyl)-4,5-dihydro-
1H-pyrazole (109), were shown to act as hypoglycemic agents by decreasing the level of
blood glucose in alloxan-induced diabetic rats [84]. Among these chalcone derivatives,
4,5-dihydro-1-phenyl-3,5-dip-tolyl-1H-pyrazole (113) produced the most prominent antidi-
abetic effect. In addition, Chinthala et al. [85] synthesized twenty chalcone derivatives,
three of which (115–117) (Figure 12) were found to exert α-glucosidase-inhibitory activity
(IC50 = 67.7–102.1 µM). Based on the obtained results with these chalcone derivatives, it was
assumed that the presence of aliphatic chain length up to five carbons (n-pentyl) attached to
the triazole ring might be optimum for generating α-glucosidase activity.
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4.3. Anti-Inflammatory Activity

Naturally occurring chalcones are phenolic compounds, and often possess one or
more phenolic hydroxyl functionality in their structures, which generally offer them with
the inherent free-radical-scavenging properties that can be useful against oxidative stress.
It is known that oxidative stress is associated with inflammatory responses. Thus, any
reduction in oxidative stress is expected to inhibit inflammatory responses. Chalcones
with free-radical-scavenging properties were shown to also possess anti-inflammatory
properties. The examples of naturally occurring anti-inflammatory chalcones could in-
clude flavokawain B (28) and isoliquirigenin (22) from Alpinia pricei [65], licoagrochal-
cone A (70) and licochalcone B (68) from Glycyrrhiza inflata [66], licochalcone C (71)
from Glycyrrhiza glabra [67], and mallotophilippens C-E (74–76) from Mallotus philippinen-
sis [68]. It was shown that flavokawain B (28) could inhibit the production of nitric oxide
(NO) and prostaglandin E2 (PGE2) in lipopolysaccharide (LPS)-induced murine leukemia
macrophage RAW 264.7 cells [65]. Furthermore, this chalone dose-dependently decreased
the secretion of TNF-R and inhibited the expression of iNOS (inducible nitric oxide syn-
thase) and COX2 (cyclooxygenase 2) proteins. Flavokawain B (28) was also found to block
the nuclear translocation NF-κB and thus decrease NF-κB protein levels in the nucleus.
Similar anti-inflammatory activity was observed with the chalcone 28 in vivo using a
mouse model, where the pre-administration of a 200 mg/kg compound could reduce
the NO concentration and significantly suppress LPS-induced iNOS, COX-2, and NF-κB
proteins expression in mouse liver. Licoagrochalcone A (70) and licochalcone B (68) showed
prominent anti-inflammatory activity with IC50 values of 9.35 and 8.78 µM, respectively,
on LPS-induced NO production. Additionally, chalcone 70 showed potent inhibitory ef-
fect on NF-κB transcription [66]. Mallotophilippens C-E (74–76) were found to inhibit
NO production in activated RAW 264.7 cells and the expression of iNOS, COX2, IL-6
(interleukin 6), and IL-1β mRNA [68], suggesting that these compounds might exert their
anti-inflammatory properties through inactivation of NF-κB.

Anti-inflammatory properties of naturally occurring chalcones, as exemplified above,
prompted bioinspired synthesis of several chalcone analogs as anti-inflammatory agents [86–89].
Over two decades ago, several 2′-hydroxychalcones and 2′,5′-dihydroxychalcones (Figure 13)
were synthesized and their anti-inflammatory properties were ascertained by observation
of their in vitro inhibitory effects on the activation of mast cells, neutrophils, microglial
cells, and macrophages [86]. Among these synthetic chalcones, 2,2′-hydroxychalcone (124)
emerged as the most potent anti-inflammatory agent that could inhibit the release of β-
glucuronidase (IC50 = 1.6 µM) and lysozyme (IC50 = 1.4 µM) from rat neutrophils. Later,
eleven chalcone derivatives (Figure 13) were synthesized by the Claisen–Schmidt condensa-
tion of acetophenones and aromatic aldehydes, or produced with suitable dihydrochalcone
and alkyl bromide, or prepared in one-pot synthesis involving acetophenone and aromatic
aldehyde under ultrasonication [87], and their anti-inflammatory potential was assessed.
Chalcone derivatives 125, 132, 133, and 136 showed a considerable level of inhibition
on the release of β-glucuronidase or lysozyme from rat neutrophils stimulated with ap-
propriate stimuli; chalcones 125 and 133 inhibited superoxide anion production in rat
neutrophils; and chalcones 123, 128, and 135 could inhibit NO production. Jantan et al. [88]
reported the synthesis of chalcone derivatives and showed their potential as inhibitors
of secretory phospholipase A2, cyclooxygenases, lipoxygenase, and pro-inflammatory cy-
tokines by a series of in vitro enzyme inhibition and in silico assays. Chalcone derivatives
with 4-methylamino-ethanol functionality appeared to be the most potent ones. Most
recently, a synthetic chalcone (139) (Figure 13) was demonstrated to possess antioxidant,
anti-inflammatory, and neuroprotective properties [89]. This chalcone could attenuate
LPS-induced inflammation in RAW 264.7 macrophages.
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4.4. Antimicrobial Activity

There are several reports available in the literature describing the antimicrobial activity
of natural and synthetic chalcones; these activities include their activity against several
pathogenic bacterial, fungal, and viral species. Figure 10 and Table 2 present some examples
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of naturally occurring antimicrobial chalcones. Here, the antimicrobial activity of chalcones
is discussed under three subsections: antibacterial, antifungal, and antiviral chalcones.

4.4.1. Antibacterial Activity

Antibacterial activity of naturally occurring chalcones is well-documented in the litera-
ture [69,70] (Table 2). For example, 2′,4′-dihydroxychalcone (51) isolated from Zuccagnia punc-
tata; 3,2′-dihydroxy-2,4,4′,6′-tetramethoxychalcone (55), 2′-hydroxy-2,4,4′,6′-tetramethoxychal-
cone (56), and 2′-hydroxy-2,3,4,4′,6′-pentamethoxychalcone (57) from Piper hispidum; and
isoliquiritigenin (22) from the Brazilian propolis (Apis melifera) were shown to possess an-
tibacterial properties [69–71]. 2′,4′-Dihydroxychalcone (51) was found active against the
Gram-positive and Gram-negative bacterial species, including Acinetobacter baumannii, Enter-
obacter cloacae, Morganella morganii, Proteus mirabilis, Pseudomonas aeruginosa, Serratia marcescens,
and Stenotrophomonas maltophilia, which have MIC values ranging between 0.10 µg/mL and
100 µg/mL [69]. 3,2′-Dihydroxy-2,4,4′,6′-tetramethoxychalcone (55), 2′-hydroxy-2,4,4′,6′-
tetramethoxychalcone (56) and 2′-hydroxy-2,3,4,4′,6′-pentamethoxychalcone (57) were shown
active against Staphylococcus aureus with MIC values in the range of 125–250 µg/mL [70],
whilst the antibacterial activity isoliquiritigenin (22) was observed against Actinomyces naes-
lundii, Staphylococcus aureus, and Streptococcus mutans (MIC = 15.6–62.5 µg/mL) [71].

The antibacterial activity of natural chalcones inspired synthetic chemists to at-
tempt bioinspired synthesis of antibacterial chalcone derivatives. For example, a decade
ago, Solankee et al. [90] investigated synthetic triazine-based chalcones (Figure 14) as
antibacterial agents, and reported inhibition of the growth of Bacillus cereus, Enterobac-
ter cloacae, Escherichia coli, Listeria monocytogenes, Micrococcus flavus, Pseudomonas aerug-
inosa, Salmonella typhimurium, and Staphylococcus aureus. However, except for the fu-
ranyl derivative (143), the activity of other compounds was rather weak. Chu et al. [91]
resynthesized 29 cationic chalcones with varying aryl substitutions, and diversity in
the N,N-dimethyl alkylamine length, and tested all compounds against Enterococcus
faecalis, Escherichia coli, Salmonella enterica and Staphylococcus aureus. Chalcone deriva-
tives, (E)-N-(2-((4-cinnamoylphenyl)amino)-2-oxoethyl)-N,N-dimethyloctan-1-aminium
chloride (145) and (E)-N-(2-((4-(3-(2-fluorophenyl)acryloyl)phenyl)amino)-2-oxoethyl)-N,N-
dimethyloctan-1-aminium chloride (146) (Figure 14), demonstrated a considerable level
of growth inhibitory activity against both Gram-negative and Gram-positive bacteria,
including the drug-resistant New Delhi metallo-β-lactamase-1 (NDM), Klebsiella pneumo-
niae carbapenemase (KPC), and methicillin-resistant Staphylococcus aureus (MRSA) strains.
While (E)-N-(2-((4-cinnamoylphenyl)amino)-2-oxoethyl)-N,N-dimethyloctan-1-aminium
chloride (145) was most active against E. coli (MIC = 2 µg/mL), derivative 146 showed the
most prominent activity against S. aureus (MIC = 0.5 µg/mL). This finding demonstrated the
potential applications of chalcone peptidomimetics as a new class of antibacterial agents.

Most recently, a series of β-chalcone derivatives (147–158) (Figure 14) was synthesized
using various substituted amines by the Claisen-Schmidt condensation reaction in basic
condition, and evaluated for antibacterial activity against different species of bacteria,
including Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa,
Salmonella enterica and Staphylococcus pneumoniae [92]. Among these synthetic chalcone
derivatives, compound 148 emerged as the most potent antibacterial agent which was
particularly effective against E. coli (MIC = 125 µg/mL). In silico studies established DNA
binding and molecular docking of these compounds. There are several other examples of
synthesis antibacterial chalcones and assessment of their modes of action available in the
literature [93–97].
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4.4.2. Antifungal Activity

Chalcones are known to possess antifungal properties. One of the early studies on an-
tifungal activities of naturally occurring chalcones was conducted by Jayasinghe et al. [73]
(Table 2). In that work, several chalcones (79–81, 83 and 85) were isolated from the leaves of
Artocarpus nobilis, and assessed for fungicidal activities against Cladosporium cladosporioides.
All those chalcones showed fungicidal activity (2–15 µg/spot) in the thin layer chromatog-
raphy (TLC) bio-authography method. 1-(5,7-Dihydroxy-2,2,6-trimethyl-2H-1-benzopyran-
8-yl)-3-phenyl-2-propen-1-one [58], 4′-hydroxyrottlerin (64), kamalachalcone E (67) and
rottlerin (65), isolated from the fruits of Mallotus philippinensis, were tested for antifungal ac-
tivity against several human pathogenic fungus [72]. Chalcone 58 and the chalcone dimer 67
showed significant antifungal properties (IC50 = 4–16 µg/mL) against Aspergillus fumigates
and Cryptococcus neoformans. Both compounds were particularly effective against Cryptococ-
cus neoformans (IC50 = 4 µg/mL). However, none of those chalcones displayed any notice-
able antifungal activity against Aspergillus flavus, A. niger, Candida albicans, C. glabrata, and
C. tropicalis [72]. 3,2′-Dihydroxy-2,4,4′,6′-tetramethoxychalcone (55), 2′-hydroxy-2,4,4′,6′-
tetramethoxychalcone (56), and 2′-hydroxy-2,3,4,4′,6′-pentamethoxychalcone (57) were
shown active against C. albicans with MIC values in the range of 250-500 µg/mL [70].

These initial findings on antifungal properties of natural chalcones led the way to
bioinspired synthesis of several other chalcone analogs with antifungal activities. Just
over two decades ago, Lopez et al. [98] synthesized 41 chalcone derivatives, 11 of which
(1, 159–168) (Figure 15) were found active against dermatophytes, e.g., Epidermophy-
ton floccosum, Microsporum canis, M. gypseum, Trichophyton mentagrophytes and T. rubrum
(MIC = 1.5–12.5 µg/mL) These chalcones (1, 159–168) showed inhibitory properties against
polymers of the fungal cell wall. However, none of these chalcones was active against
Aspergillus niger, A. fumigatyus, A. flavus, Candida albicans, Cryptococcus neoformans and
Saccharomyces cerevisiae. Antifungal activity of 12 further synthetic chalcones, albeit some of
them are actually natural chalcones, were tested against Penicillium chrsogenum, A. niger, A.
fluvus and Anthrobortys oligospora, and (E)-1-(4-hydroxyphenyl)-3-phenylprop-2-en-1-one
(21), were found active against P. chrsogenum and A. nigar, (E)-1-(4-hydroxyphenyl)-3-(4-
methoxyphenyl)prop-2-en-1-one (169) displayed fungicidal effect against P. chrsogenum
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and 1-(4-hydroxyphenyl)-3-(4-methoxyphenyl)propan-1-one (170) was active against A.
niger [99] (Figure 15).
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Gupta et al. [100] synthesized 10 chalcone derivatives (31, 171–177) (Figure 15) and
tested for their antifungal properties. None of these chalcones were active against A. niger
and C. albicans, but showed strong fungicidal activity (MIC = 1.5–50.0 µg/mL) against the
dermatophyte Microsporum gypseum. It is noteworthy that (E)-2-benzylidene-1-tetralone
(172) and (E)-2-(4′-chloro-benzylidene)-1-tetralone (175) exhibited better antifungal activity
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than the positive control ketoconazole, a well-known antifungal drug. It appeared that the
addition of a Cl functionality at C-4′ of these compounds could enhance the antifungal
potency. There are several other publications available to date that describe the synthesis
and antifungal activity of chalcone derivatives having versatile chemical features [101–104].

4.4.3. Antiviral Activity

Chalcones were demonstrated to possess antiviral properties, which is thought to
be exerted mainly by the disruption of the different stage of viral replication cycle, the
inhibition of viral or cell enzymes, and/or the induction of apoptosis. One of the earliest
studies on the antiviral activities of naturally occurring chalcones was conducted about two
decades ago by Ochiumi et al. [76] (Table 2). In that study, naturally occurring chalcones,
including licochalcone A (40), licochalcone B (68), and tetrahydroxy-methoxychalcone (69),
were found to suppress TPA (12-O-tetradecanoylphorbol-13-acetate)-induced HIV pro-
moter activity, and it was suggested that these chalcones could be used as templates for the
development of novel anti-HIV drugs. Later, licochalcone A (40), licochalcone D (72), and
licochalcone G (73), isolated from G. inflata, were reported to possess antiviral properties
against influenza virus [75]. Similarly, echinantin (59) and isoliquiritigenin (22) from the
same plant were also active against this virus. The antiviral activity was measured by their
noncompetitive neuraminidase inhibitory activity. Among these chalcones, echinantin
(59) was the most potent one with an IC50 value in the range of 2.19–5.80 µg/mL against
various strains of the influenza virus, e.g., H1N1, H9N2, novel H1N1 (WT), and oseltamivir-
resistant novel H1N1 (H274Y), expressed in 293T cells. In another study, dihydrochalcone
diglycoside (50), isolated from the seagrass Thalassodendrin ciliatum, showed antiviral activ-
ity against the influenza A virus [74], and is assumed to have resulted from the electronic
interactions between atomic charges within this compound in both aromatic rings and
pseudo-receptor structures in the cells which prevent the attachment and penetration of the
virus to the cell. Several alkylated chalcones, including xanthoangelol (83), xanthoangelols
B, D-G (84–87), and xanthodeistal (88), isolated from Angelica keiskei (Table 2), were shown
to possess significant antiviral properties [77], as evident from their inhibitory activity
against cysteine proteases of SARS-CoV viruses. Among these compounds, xanthoangelol
E (90), containing the perhydroxyl group, exhibited the most potent inhibitory activity
against SARS-CoV 3CLPRO and PLPRO with IC50 values of 11.4 and 1.2 µM.

Promising antiviral properties of various naturally occurring chalcones tempted syn-
thetic chemists to indulge in bioinspired synthesis of chalcone derivatives with potential
antiviral properties. Such efforts have recently been further intensified with the emergence
of various deadly respiratory viruses, and viral diseases including the current COVID-19
pandemic. Several studies have identified the activity of synthetic chalcones against differ-
ent viruses. For example, Cole et al. [105] synthesized several O-benzyl-substituted chal-
cones, e.g., 1-(2-benzyloxy-6-hydroxyphenyl)-3-(5-bromo-2-methoxyphenyl)-propenone)
(180), and determined their antiviral properties, suggesting that these compounds could be
used for the prevention or treatment of human immunodeficiency virus (HIV) infections,
whilst Mateeva et al. [106] investigated several synthetic chalcones (183–189) (Figure 16) as
antiviral agents, and showed that all chalcones at a concentration of 5 µM could inhibit,
albeit at variable potencies, the translation of hepatitis C virus. The inhibition of phos-
phorylated rsp6 (ribosomal protein S6) and S6K1 (ribosomal protein S6 kinase beta-1) by
these chalcones could dampen hepatitis C virus translation. This inhibition potentially
was mediated through inhibition of mTOR (mechanistic target of rapamycin), which is a
protein kinase that regulates cell growth, survival, and metabolism.
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1-(2-Benzyloxy-6-hydroxyphenyl)-3-(5-bromo-2-methoxyphenyl)-propenone (180) was
found to be the most potent as an antiviral agent, and could inhibit several clinical iso-
lates of HIV in a dose-dependent fashion with IC50 values of around 5 µM [105]. This
finding led to further modification of this structure (180) to enhance antiviral potency and
reduce toxicity towards normal human cells, which resulted in the synthesis of two more
antiviral chalcones (181) and (182). Both chalcones (181 and 182) at a concentration of
10 µM offered >92% inhibition of viral propagation without impacting host cell viability.
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It appeared that halogenation at C-5 is an essential requirement for the activity of these
benzoyloxychalcones. An ethoxy substituent in (181) and (182), instead of a methoxy in 180,
offered increased efficacy, and a balance between high antiviral potency and low toxicity to
host cells.

Most recently, Fu et al. [107] synthesized 28 chalcone derivatives containing a purine
ether functionality, and derivative (190) (Figure 16) emerged as the best candidate to
effectively inhibit the infectivity of tobacco mosaic virus in vivo with an EC50 value of
65.8 µg/mL. It was demonstrated that this chalcone derivative could destroy the integrity
of tobacco mosaic virus. A docking study suggested that the antiviral activity of (190) might
depend on its strong binding affinity to tobacco mosaic virus coat protein (TMV-CP). There
are several other reports on antiviral properties of synthetic chalcone derivatives available
in the literature to date, including a few excellent review articles on this topic [108–110].

4.5. Antioxidant Activity

Antioxidants are compounds that can stop or prevent oxidative processes. They can be
natural compounds as well as synthetic products. Antioxidants are effective in the manage-
ment of oxidative stress, which is considered as one of the major causes of several chronic
and life-threatening diseases. External supply of antioxidants is important for human
health, and often achieved through regular diets containing plenty of fruits and vegetables.
However, there are times when the additional supply of antioxidants in formulated forms
may become essential. Plants have long been known as a source of antioxidants, and the
phenolic and polyphenolic compounds are a major class of natural antioxidants. Most
of the naturally occurring chalcones are phenolic compounds, which possess significant
free-radical-scavenging and antioxidant properties. For example, lichochalcone C (71) [67]
from Glycyrrhiza glabra and naringenin chalcone (78) and its glucoside, isosalipurposide
(66), from Acacia cyanophylla [50] were shown to possess antioxidant properties (Table 2).
Similarly, several chalcones (79–81, 83, and 85) were isolated from the leaves of Artocarpus
nobilis, and were demonstrated to have antioxidant activity [73]. The antioxidant activity
of isosalipurposide (66) was established by the 1,1-diphenyl-2-hydrazyl (DPPH) assay, the
2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) cation radical-scavenging assay,
and the reducing power assay. The aglycone of glycoside 66, commonly known as narin-
genin chalcone (78), could have enhanced antioxidant potency because of the presence of
an additional phenolic hydroxyl group. Additionally, this chalcone (66) was shown active
against acetylcholinesterase with an IC50 value of 52.04 µg/mL [50]. Lichochalcone C (71)
at a concentration of 50 µM was found to significantly influence the antioxidant network
activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX)
activity [67]. The geranylated chalcones (79–81, 83, and 85) showed strong qualitative
radical-scavenging activity in the TLC-based DPPH assay [73].

Both the naturally occurring chalcones, and several synthetic chalcones, and their
derivatives, were shown to possess antioxidant properties of varied potencies based on
structural variations and diversity. Most recently, from a series of synthetic β-chalcone
derivatives, chalcone (148) (Figure 14) was studied for its antioxidant activity using the
DPPH and hydrogen-peroxide (H2O2) assays [92]; this chalcone showed significant an-
tioxidant (radical-scavenging) activity with the IC50 values of 298 and 530 µg/mL, re-
spectively, in the DPPH and H2O2 assays. Wang et al. [111] synthesized 41 chalcone
derivatives and assessed their dual antioxidant mechanisms. Among the compounds,
chalcone 191 (Figure 17) was found to be the most potent one, and showed cytoprotection
of H2O2-induced oxidative damage in phaeochromocytoma (PC12) cells through free-
radical-scavenging (as confirmed from the DPPH assay) and activation of the Nrf2/ARE
antioxidant pathway at the same time. This chalcone (191) also displayed a noticeable
effect against ischemia/reperfusion-related brain injury in animals. It was suggested that
2,5-dimethoxy-3′4′-dihydroxychalcone (191) could act through dual antioxidant mecha-
nisms, and could be considered as a direct and indirect antioxidant. A total of 26 chalcone
derivatives with alkyl-substituted pyrazine heterocycle were synthesized and assessed for
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their radical-scavenging as well as cellular antioxidant capacity, impacting the growth of
cells exposed to H2O2 [112]. Three of these synthetic chalcone analogs (192–194) (Figure 17)
exhibited DPPH-radical-scavenging activity (IC50 = 39–186 µM) through a single electron
transfer followed by a proton transfer mechanism, as revealed in the density functional
theory (DFT) modeling. Clearly, chalcone 193 was the most active free-radical-scavenger
with an IC50 value of 39 µM in the DPPH assay. Earlier, Lahsasni et al. [113] synthesized a
library of chalcone derivatives and chalcone 195 emerged as the most potent antioxidant
among the analogs, and the activity was better than that of the well-known antioxidant
ascorbic acid in the DPPH assay.
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2′-Hydroxy-4-methoxychalcone (139), a recently synthesized chalcone, showed a
considerable antioxidant activity [89]. It was found to be able to attenuate LPS-induced
oxidative stress and promote antioxidant defense in RAW264.7 macrophages. 2′-Hydroxy-
4-methoxychalcone pretreatment at a concentration range of 0.01—1.0 µM could augment
the nuclear expression of Nrf2 in a concentration-dependent manner. An increased level of
the downstream antioxidant protein heme oxygen SE-1 was also observed. Additionally,
this pretreatment was found to significantly increase the levels of non-enzymatic antioxi-
dant GSH (glutathione) in LPS-stimulated RAW 264.7 cells. Zahrani et al. [114] reported
the synthesis of several chalcone-based phenothiazine derivatives and their antioxidant po-
tentials based on the DPPH assay; seven of these compounds (196–202) showed promising
DPPH-radical-scavenging activity. There are several other reports depicting the synthesis
and antioxidant properties of chalcone derivatives available in the literature, most of which
possess DPPH-radical-scavenging properties [115–118].
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4.6. Antiparasitic Activity

Parasites are organisms that live and feed on another living being, e.g., animals, hu-
mans, insects, or plants, and most often cause harm to the host organism. Parasitic diseases,
such as like leishmaniasis and malaria, remain a major global health concern, and research
consequently continues in the search for effective and affordable drugs to combat various
parasitic diseases. Some naturally occurring chalcones were shown to possess antiparasitic
activities (Table 2). For example, flavokawain B (28), isolated from Polygonum ferrug-
ineum [79]; (E)-1-(2,4-dihydroxy-3-(3-methylbut-2-en-1-yl)phenyl)-3-phenylprop-2-en-1-
one (53) from Lonchocarpus sp. [78]; licoagrochalcone A (70) from Erythrina abyssinica [81];
and licochalcone C (71) isolated from Glycyrrhiza glabra [80] were found to possess signifi-
cant antiparasitic/antiprotozoal properties. A protozoa can be free-living or parasitic. Most
of the disease-causing protozoa are parasitic. Even free-living protozoa when entering
other cells and tissues of living being become parasitic. While licochalcone C (71) was
found active against malarial parasite Plasmodium falciparum, chalcone 53 showed activity
against Leishmania and Trypanosoma species. Flavokawain B (28) demonstrated trypanocidal
activity against Trypanosoma cruzi and T. bruceii, with IC50 values of 9.5 µM and 4.8 µM, re-
spectively [79], whereas licoagrochalcone A (70) was shown to have antiplasmodial activity
against chloroquine-sensitive and chloroquin-resistant strains of Plasmodium falciparum; the
IC50 values were determined as 12.7 and 12.0 µM, respectively [81]. Two other chalcones
from Erythrina abyssinica, homobutein (19) (IC50 = 15.0 and 16.1 µM, respectively) and
5-prenylated derivative of butein (16) (IC50 = 10.3 and 11.2 µM, respectively) were also
active against both strains for Plasmodium falciparum.

Inspired by the observed antiparasitic activity of naturally occurring chalcones, several
synthetic chalcones with potential antiparasitic activity were introduced. Ugwu et al. [119]
reported that several synthetic chalcone derivatives of the structural classes chromanochal-
cones, chromeno-dehydrochalcones, quinolinyl chalcones, morachalcones, prenylated
chalcones, chromenochalcones, quinoxaline chalcones, chalcone sulphonamides, and lic-
ochalcones could exhibit antimalarial activity, and some of them were even active against
chloroquin-resistant P. falciparaum. Structures of some of those antimalarial chalcone deriva-
tives (203–207) are presented in Figure 18. Yadav et al. [120] synthesized 27 antimalarial
chalcones, and from the antiplasmodial screening of these compounds, chalcone derivative
1-(4-benzimidazol-1-yl-phenyl)-3-(2, 4-dimethoxy-phenyl)-propen-1-one (208) appeared
as the most potent one with an IC50 value of 1.1 µg/mL against P. falciparum. Among
the 27 compounds tested, the presence of two methoxyl functionalities at positions 2 and
4 appeared to be optimum for antimalarial activity followed by 3,4-dimethoxy and 2,5-
dimethoxy with moderate activity. It was noted that 3,4,5-trimethoxy series of derivatives
displayed weak activity, probably because of the stearic hindrance at the binding site of
the enzyme. Several dimeric chalcone derivatives were synthesized and their antimalar-
ial potential was evaluated using in vitro globin hydrolysis, β-hematin formation, and
murine Plasmodium berghei [121]. Among the deimeric chalcone derivatives, 1,1-bis-[(3′,4′-
N-(urenylphenyl)-3-(3”,4”,5”-trimethoxyphenyl)]-2-propen-1-one (209) (Figure 18) was
found to be the most active antimalarial candidate.

Quinolinone-chalcone derivatives were synthesized and assessed for their antiparasitic
activity against the mammalian stages of Trypanosoma brucei and Leishmania infantum [122].
Among the compounds, quinolinone-chalcone derivative 210 exhibited the most prominent
activity against both parasites, particularly against Leishmania infantum (IC50 = 1.3 µM). An-
other derivative (211) (Figure 18) showed significant trypanocidal activity (IC50 = 2.6 µM).
These are just a few examples of antiparasitic synthetic chalcone derivatives, and there are
many more examples are available in the literature [123,124].
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4.7. Immunoregulatory Activity

Natural chalcones mallotophilippens (74–76) displayed immunoregulatory activ-
ity [68]. The immunomodulatory activity of synthetic sulfonamide chalcone derivatives
in mice infected with filarial parasites, including Brugia malayi, has recently been stud-
ied [125]. Lee et al. [126] reviewed the potential immunomodulatory effects of natural and
synthetic chalcones, and several synthetic chalcone derivatives were reported to possess
immunomodulatory properties, mediated through multiple mechanisms, e.g., actions on



Biomolecules 2021, 11, 1203 31 of 37

dendritic cells, neutrophils, basophils, innate lymphoid cells, microglial cells, and T cells.
Figure 19 shows some examples of synthetic immunomodulatory chalcone derivatives.
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Synthetic chalcone analogs, including 2′,5′-dihydroxy2-naphthylchalcone (211), could act
on neutrophil degranulation and superoxide anion generation, while heterocyclic chalcones,
namely (E)-1-[2-hydroxy-4-methoxy-3-(morpholinomethyl)phenyl]-3-(pyridin-2-yl)prop-2-
en-1-one (212) and (E)-1-[4-ethoxy-2-hydroxy-5-(morpholinomethyl)phenyl]-3-(pyridin-2-
yl)prop-2-en-1-one (213) (Figure 19), were found to inhibit the generation of superoxide
anion and elastases [126]. Similarly, 1-(2,3,4-trimethoxyphenyl)-3-(3-(2-chloroquinolinyl)-2-
propen-1-one (214) could suppress the production of elastase and superoxide anion, and LTB4-
(leukotriene B4) release in human neutrophils. The N-formylmethionyl-leucyl-phenylalanine
(fMLP)-stimulated respiratory burst in neutrophils was found to be inhibited by the synthetic
chalcone analog, 2′,5′-dihydroxy-2-furfurylchalcone (215). An unusual synthetic chalcone
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derivative, 3-phenyl-1-(2,4,6- tris(methoxymethoxy)phenyl)prop-2-yn-1-one (216), was
shown to possess immunomodulatory properties, whereas 2′,4-dihydroxy-6′-isopentyloxy-
chalcone (217) could modulate an innate immune response [126]. These are just a few
examples of synthetic chalcone derivatives that can modulate an immune response, and
there are many more similar examples available in the literature [127].

5. Conclusions

Over the years, thousands of chalcones and their derivatives were isolated from natu-
ral sources, and many of those were screened for potential bioactivities, mainly including
anticancer, anti-inflammatory, antimicrobial, antioxidant, and antiparasitic properties. The
d of bioactive naturally occurring chalcones has inspired total or partial synthesis of chal-
cone analogs as well as minor structural modifications of natural chalcones forming a
large collection of bioactive synthetic chalcone derivatives, some of which have enhanced
bioactivities and/or reduced toxicities compared to relevant natural chalcones. This review
article has demonstrated how bioinspired synthesis of chalcone derivatives can potentially
introduce a new chemical space for the exploitation for new drug discovery.
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