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Abstract: Diminished inhibitory control of spinal nociception is one of the major culprits of chronic
pain states. Restoring proper synaptic inhibition is a well-established rational therapeutic approach
explored by several pharmaceutical companies. A particular challenge arises from the need for
site-specific intervention to avoid deleterious side effects such as sedation, addiction, or impaired
motor control, which would arise from wide-range facilitation of inhibition. Specific targeting of
glycinergic inhibition, which dominates in the spinal cord and parts of the hindbrain, may help
reduce these side effects. Selective targeting of the a3 subtype of glycine receptors (GlyRs), which is
highly enriched in the superficial layers of the spinal dorsal horn, a key site of nociceptive processing,
may help to further narrow down pharmacological intervention on the nociceptive system and
increase tolerability. This review provides an update on the physiological properties and functions of
a3 subtype GlyRs and on the present state of related drug discovery programs.

Keywords: glycine; GABA; pain; inhibition; spinal cord; dorsal horn; hyperalgesia; allodynia;
circuit; mouse

1. Introduction

Inhibitory neurotransmission plays a crucial role in the maintenance of a physiolog-
ically meaningful state of pain sensitivity and helps separating innocuous and noxious
signal relay. Following injury and inflammation, reduced inhibition contributes to the
phenomena of hyperalgesia (an increased sensitivity to input from nociceptive fibers) and
allodynia, which describes a painful sensation elicited by input from non-nociceptive fibers.
While both phenomena may help protect injured tissue from further damage and may
foster its healing, under unfortunate conditions they outlast the healing process and may
then severely compromise the quality of life of affected patients. The spinal dorsal horn is
a key site for endogenous pain control and maladaptive plasticity which underlies many
chronic pain conditions. Various processes triggered by peripheral inflammation or nerve
damage compromise synaptic inhibition at this site and in corresponding brainstem areas.
Among these processes are alterations in the excitatory drive to inhibitory dorsal horn
neurons [1], a compromised electrochemical gradient of chloride ions [2,3], and altered
responsiveness of inhibitory neurotransmitter receptors [4]. While the first two mecha-
nisms are triggered by peripheral nerve damage and affect both GABAergic and glycinergic
inhibition, peripheral inflammation has a specific impact on the function of dorsal horn
GlyRs. General aspects of glycinergic neurotransmission are illustrated in Figure 1.
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Figure 1. Principles of glycinergic inhibition. (A) Schematic sagittal mouse brain section illustrating the distribution of
glycinergic innervation detected by GlyT2 staining (in red). High density innervation is found in the brainstem with
particularly dense expression in the medulla oblongata and pons, and generally weaker expression in the midbrain and
parts of the thalamus. Dense innervation is also found in the cerebellar cortex, the inferior colliculus, and the mesencephalic
trigeminal nucleus. Cortex and hippocampus are virtually devoid of glycinergic innervation. In the spinal cord, glycinergic
innervation is very widespread, with slightly less expression observed in the most dorsal laminae I and II. (B) Glycine
receptors are chloride permeable heteropentameric ion channels, composed from a repertoire of five (in humans four)
subunits each encoded by a separate gene (x4 is a pseudogene in humans). Each subunit is composed of a large extracellular
domain followed by 4 transmembrane segments connected by loop structures and a short extracellular C-terminus (see
also Figures 2A and 4). In the spinal cord, 1 subunit immunoreactivity (blue) is found throughout the grey matter, but «3
subunit expression (green) is highly and specifically enriched in lamina II. (C) Schematic representation of a glycinergic
synapse. Glycine is released from a glycinergic terminal and binds to postsynaptic o/ 3 heteromeric receptors anchored
to the postsynaptic scaffolding protein gephyrin. Their activation by synaptic release causes an inhibitory postsynaptic
potential. Glycine receptors are also found at extrasynaptic and presynaptic sites. Presynaptic glycine receptors lack (3
subunits and are not clustered by gephyrin. Activation of extrasynaptic glycine receptors cause a tonic inhibitory membrane

current, whereas the activation of presynaptic glycine receptors may enhance transmitter release.

2. GlyRs in Inflammatory Hyperalgesia and Allodynia

Cyclooxygenase-2 (COX-2) derived prostaglandin E2 (PGE,) is a pivotal mediator
of inflammation and inflammatory hyperalgesia. In response to peripheral inflammatory
insults, PGE; is not only produced in the periphery at the site of inflammation, but also
in the CNS, especially in the spinal dorsal horn, where it contributes to the phenomenon
of central sensitization. A series of reports published between 2002 and 2005 established
the critical role of o3 GlyRs in inflammation and PGE;-mediated central sensitization.
PGE,, but not other prostaglandins including PGD,, PGI,, or PGF;, reduces glycinergic
synaptic transmission in superficial dorsal horn neurons through a postsynaptic mechanism
involving the activation of EP2 receptors, production of cAMP, and subsequent activation of
protein kinase A (PKA) [5]. This inhibitory effect was lost in mice that lack a specific GlyR
subtype defined by the inclusion of the a3 subunit in the pentameric receptor complex
(GlyR «3) [6]. The expression of this subunit in the spinal cord is largely confined to
layer II of the dorsal horn, which is also known as the substantia gelatinosa. This site
constitutes the termination area of most nociceptive fibers arriving in the CNS from the
periphery. A systematic in silico screen of the GlyR «3 protein sequence revealed a strong
consensus site for PKA-dependent phosphorylation in the large intracellular loop between
transmembrane segments 3 and 4. This consensus site comprises the amino acid sequence
arginine-glutamate-serine-arginine (RESR), in which the serine at position 346 constitutes
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the actual site of phosphorylation. The critical role of this site for PGE, triggered GlyR
a3 phosphorylation was supported by results obtained in HEK293 cells. Heterologous
expression of EP2 and o3 GlyRs reconstituted the inhibition of glycinergic membrane
currents by PGE,. Replacing the serine residue at position 346 by an alanine, an amino
acid of similar size but lacking the OH group required for phosphorylation, prevented
inhibition by PGE, [6].

The availability of mice lacking a3 GlyRs allowed assessing the contribution of «3
GlyRs and their regulation by PKA to baseline nociception and different forms of hyperalge-
sia. GlyRa3 deficient mice behaved normally in tests of baseline nociception (noxious heat
or punctate mechanical stimulation with von Frey filaments). This lack of a pronociceptive
phenotype may be linked to unaltered baseline glycinergic neurotransmission in GlyR
a3 deficient mice and may hint at a compensatory up-regulation of other GlyR subunits.
Pronounced alterations in the development of hyperalgesia became apparent when the
mice were challenged with peripheral inflammation. In wild-type mice, subcutaneous
injection of complete Freund’s adjuvant or with the yeast extract zymosan A induces
thermal and mechanical hyperalgesia, which lasted for several days to weeks depending
on the amount injected. GlyR «3 deficient mice showed strongly reduced thermal and
mechanical hyperalgesia especially during the later phases of inflammation. A virtually
identical phenotype was observed in a side-by-side comparison of GlyR «3 deficient mice
and mice lacking prostaglandin EP2 receptors [7].

Although the reconstitution experiments in HEK293 cells supported the critical role of
a direct PKA-dependent phosphorylation of «3 GlyRs, unequivocal proof for its relevance
to in vivo hyperalgesia was still lacking. The recent generation of a genetically engineered
S346A point mutated mouse line allowed filling this gap (Figure 2). This mouse carries
a serine to alanine amino acid exchange at position 346 (5346A mutation) in the PKA
consensus sequence of the GlyR «3 subunit [8]. Electrophysiological recordings from
substantia gelatinosa neurons in spinal cord slices of these mice demonstrated not only that
the point-mutated «3GlyRs were resistant to inhibition by PGE; but also confirmed the
critical contribution of phosphorylation at this site to inflammatory hyperalgesia. Mice
carrying the S346A point mutation were resistant to the hyperalgesic effects of intrathecally
injected PGE; and developed much less hyperalgesia after injection of zymosan A into
one hindpaw.

Besides inflammation, neuropathy is another major source of chronic pain and hy-
peralgesia. A contribution of COX-2 or PGE, to neuropathic pain has been proposed [9]
but is still rather controversial. GlyR a3 deficient mice have previously been tested in
the constriction injury model of neuropathic pain [10]. Both wild-type mice and GlyR «3
deficient mice developed prolonged thermal and mechanical hyperalgesia following the
constriction injury of the sciatic nerve, suggesting that the phosphorylation of GlyR «3
subunits is dispensable for the development of hyperalgesia following peripheral nerve
injury. This finding was recently confirmed in experiments with S346A point mutated
mice, which also developed unaltered hyperalgesia following peripheral nerve injury [8].
It should be stressed that the normal development of neuropathic hyperalgesia in the GlyR
a3 deficient or S346A point mutated mice does not exclude that «3 GlyRs still control
neuropathic hyperalgesia; it only means that these receptors are not phosphorylated or
inhibited in the course of neuropathy. In fact, two relatively recently developed GlyR
modulators, AM-1488 [11] and 5-desoxy-THC/DH-CBD [12], reduce neuropathic pain in
rodents (for a more detailed discussion of the action of these molecules see Section 5).
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Figure 2. PKA-dependent phosphorylation on «3 GlyRs. (A) Left: Exon 7 (X7) of the Glra3 gene contains a DNA sequence
encoding for a strong consensus site for PKA-dependent phosphorylation. Middle: This site consisting of the four amino
acids RESR (positions 344-347) is located in the long intracellular loop of the «3 subunit. Mutation of serine at position 346
(5346) to an alanine prevents phosphorylation at this site. Left: CRISPR-Cas technology was used to introduce this mutation
(S346A) into the genome of mice. Pherograms showing the DNA sequencing results of the part of X7 that contains the PKA
consensus site in wild-type mice and homozygous S346A point mutated mice. (B) Top: Patch-clamp recordings were made

for excitatory neurons in spinal cord slices obtained from wild-type and homozygous S346A point mutated mice, which

both carried a channelrhodopsin-2 transgene expressed in inhibitory neurons for optogenetic activation. Brief pulses of

blue light evoke action potentials in inhibitory neurons and as a consequence inhibitory postsynaptic currents (IPSCs) in
synaptically connected neurons. Bottom left: Glycinergic IPSCs were inhibited by PGE, in wild-type but not S346A mice.
Right: Time course of the amplitudes of normalized glycinergic IPSCs before and during superfusion of the slices with

PGE,. (C) Top: Hyperalgesia evoked by intrathecal injection of PGE; was completely absent in S346A point mutated mice.

Bottom: Hyperalgesia triggered by subcutaneous injection of the yeast extract zymosan A was strongly reduced in the

point-mutated mice.

Additional insights have also been gained into the molecular mechanisms that link
phosphorylation at 5346 to decreased glycinergic currents [13]. In HEK293 cells cotrans-
fected with cDNAs encoding for GlyRa3 and EP2 receptors, application PGE; led to a
decrease in glycinergic membrane currents with no change in their inactivation kinetics
or plasma membrane expression. In single channel recording experiments, activation of
PKA progressively reduced single current amplitudes to about 66%, which is close to the
inhibition of glycinergic synaptic currents observed in mouse spinal cord slices [5,8,14].
Introducing the phospho-mimicking serine to glutamate (S—E) mutation reduced single
channel conductance to a similar degree with no effect on single channel open probabil-
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ity. Although previous work had suggested that 5346 phosphorylation elicits structural
changes in the o3 glycine-binding site [15], the introduction of the S346E mutation had no
effect on the potency (ECsp) of GlyR currents. Substituting S346 with phospho-deficient
alanine left the single channel amplitude and open probability almost unaffected.

3. Circuit Aspects of Glycinergic Control of Spinal Nociception

To fully understand of the role of o3 GlyRs in spinal control of nociception, precise
knowledge of the neural circuits controlled by these receptors is essential. On a very
gross scale, spinal hyperalgesia may be viewed as an imbalance of excitatory nociceptive
input and local inhibitory control. In reality, the situation is likely much more complex.
Figure 3 depicts some of the polysynaptic pathways of the spinal dorsal horn which become

functional in different pathological pain states.
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Figure 3. Simplified model of the dorsal horn neuronal circuits of allodynia recruited during inflammation and neuropathy.
Under healthy conditions, relay pathways for noxious stimuli (red) and innocuous tactile stimuli (yellow) are strictly
separated. Noxious stimuli enter the superficial layers of the dorsal horn via nociceptive C fibers, which activate neurokinin
1 receptor positive (NK1) projection neurons located in lamina I. Tactile input is conveyed by myelinated A fibers, which
activate spinothalamic projection neurons in the deep dorsal horn. Polysynaptic connections between both modalities
are preexisting (blue) but normally silenced by glycinergic and GABAergic input. In inflammation (left), the pathway
starts with cholecystokinin (CCK) positive excitatory interneurons that are activated by Ap fibers and project to calretinin
positive neurons (CR), which then excite NK1 projection neurons in lamina I. In neuropathy, the pathway also begins with
cholecystokinin (CCK) positive interneurons, which activate PKCy positive interneurons. The PKCy interneurons the
project to so-called vertical cells, which connect to lamina I NK1 projection neurons. PKCy positive neurons can also be
directly activated by Ap fiber input. Several types of inhibitory interneurons (green) silence these polysynaptic pathways,
among them are parvalbumin positive (PV) neurons, dynorphin positive interneurons (Dyn), and so-called islet cells. Dyn
and PV neurons evoke postsynaptic responses with a strong glycinergic component. About half of the more superficially
located islet cells release glycine in addition to GABA. Many of these inhibitory interneurons are activated by input from
nociceptors or non-nociceptive A fibers and thereby provide feed-forward inhibition. Schemes are based on [16,17].

The simplest mechanism by which GlyRs may contribute to spinal nociceptive control
might be the direct inhibition of nociceptive output from the spinal cord. This output occurs
mainly via projection neurons located in lamina I of the dorsal horn, which relay nociceptive
signals to the brainstem. These neurons receive direct excitatory drive from nociceptors
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and are controlled by GABAergic and glycinergic input [18]. The glycinergic input to
lamina I neurons is reduced in rats with inflamed paws [19]. Altered heat hyperalgesia in
the «3 GlyR-deficient mice [6] may reflect changes in the glycinergic control of superficial
dorsal horn neurons, as heat stimuli are primarily processed in this area.

However, compared to neurons of the deeper dorsal horn, projection neurons of
lamina I receive relatively little spontaneous inhibitory input [18], potentially suggesting
that GlyRs might primarily be relevant to sensory processing in the more complex circuits
of the deeper dorsal horn. Glycinergic neuron somata are in fact more prevalent in the
deeper dorsal horn layers (laminae III and deeper) than in lamina I and II [20]. Accordingly,
postsynaptic glycine responses are also larger and more prevalent in the deep than in the
superficial dorsal horn [21,22]. It should however be noted that even in lamina II, the
glycinergic component of inhibitory postsynaptic currents still outweighs the GABAergic
component [23]. This anatomical gradient likely bears functional implications, as the deep
dorsal horn receives mainly tactile (A3 fiber) input while the nociceptive (C and A? fiber)
input dominates in the superficial dorsal horn. Impaired segregation of signal relay in the
superficial versus deep dorsal horn is thought to underlie allodynia, the painful sensation
evoked by tactile stimuli. It is believed to result from the abnormal activation of lamina I
neurons by A fiber input. Lamina projection neurons normally become activated only in
response to noxious input. After blockade of GABA 5 receptors and GlyRs, these neurons
become excitable also by input from Af fibers through a polysynaptic pathway [24].

The first neuron type identified in this pathway were protein kinase Cy (PKCy)
expressing excitatory interneurons [25], which are located at the border between lamina
II and lamina III and hence at the interface of innocuous tactile and noxious input [26].
Subsequent work has identified several additional elements of this circuit (for a recent
review on allodynia circuits of the dorsal horn, see also [16]). Very recent work suggests
that several different pathways exist, which are differentially recruited in inflammatory
of neuropathic pain states [17]. For several of these neuron types, the presence of GlyRs
(as well as GABA 5 receptors) on their surface has been directly demonstrated [25,27,28].
These GlyRs become activated in a feed-forward mechanism initiated by input from
non-nociceptive tactile fibers [29]. It is believed that excitatory interneurons of these
allodynia circuits are normally under strong inhibitory control, leading to the gating
(closure) of the polysynaptic connection under normal conditions [30]. Consistent with this
model, ablation of dorsal horn glycinergic neurons induces behavioral signs of allodynia
and spontaneous discomfort in mice [23]. Similar phenotypes have also been observed
after ablation or silencing of genetically defined subsets of glycinergic neurons, such as
inhibitory parvalbumin and dynorphin neurons [31,32]. Despite these new insights, the
specific location of a3 GlyRs on particular types of dorsal horn neurons and the subtypes
of inhibitory interneurons that target o3 GlyRs are still unknown.

Inhibitory dorsal horn neurons do not only provide classical postsynaptic inhibition
to intrinsic dorsal horn neurons, but also target axon terminals of primary sensory afferent
nerve fibers. These terminals express GABA 4 receptors but no GlyRs. Accordingly, glycine
does not contribute to so-called primary afferent depolarization or presynaptic inhibition of
primary afferent input. However, GlyRs reside on presynaptic terminals of central neurons,
where they increase transmitter release. Such presynaptic GlyRs have first been found in
neurons of the auditory brainstem, where their activation increases glycine release [33]. A
similar action has later been reported for glycinergic input onto commissural neurons of the
spinal dorsal horn [34]. The subunit composition of these presynaptic GlyRs is unknown.
However, unlike postsynaptic GlyRs, presynaptic GlyRs may be homomeric receptors (i.e.,
lack 3 subunits) as presynaptic GlyRs are not clustered by gephyrin (see also Figure 1).
Whether a3 subunits contribute to presynaptic GlyRs in the dorsal horn is unknown but
experiments in hypoglossal motoneurons have shown that forskolin (cAMP)-induced
facilitation of transmitter release was reduced in mice lacking «3 GlyRs [35].
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4. Genetic Evidence of Glycinergic Pain Control in Humans

Direct evidence to support the presence of glycinergic pain control in humans is
difficult to obtain given the present lack of compounds suitable for clinical testing in
humans. A recent study in human patients suffering from inherited hyperekplexia provides
however supporting evidence [36]. Most hyperekplexia patients carry homozygous (or
compound heterozygous) loss-of-function mutations in GlyR genes (mainly 1 and 3) or in
the glycine transporter GlyT2, whose dysfunction leads to impaired loading of glycinergic
terminals with glycine. The main symptom in these patients is an exaggerated startle
response upon exposure to sudden sensory stimuli such as loud and abrupt noise or
unexpected touch. Using a quantitative sensory testing battery, the recent study revealed
in addition decreased pain thresholds in hyperekplexia patients.

While mutations in GLRA1 and GLRB as well as in SLC6A5 (encoding for GlyT2)
are well-established causes of hyperekplexia, GLRA3 has not been linked to any human
disease yet. This may suggest that pharmacological targeting of o3 GlyRs may be relatively
safe, but it also means that human genetic evidence supporting a specific role of «3
GlyRs is lacking. On a positive note, the PKA consensus site in the large intracellular
loop of a3 GlyRs is conserved in humans. It is also noteworthy that the phenotype
described in o3 GlyR deficient mice (reduced inflammatory pain) might not be easily
detectable in humans. Furthermore, a screening of the human genetic variation database
(www.ncbi.nlm.nih.gov /variation/) for loss of function (non-sense) variants revealed few
hits. All of which occurred with frequencies too low to allow systematic clinical trials in
such persons (for a discussion on this topic, see [8]).

5. Synthetic Glycine Receptor Modulators with Potential Analgesic Effects

The rather selective expression of a3 GlyRs at a site critical for nociceptive processing
and the phenotype of GlyR a3 deficient mice have sparked considerable interest in these
receptors as targets for novel analgesics. Unlike the closely related GABA4 receptors,
GlyRs have remained therapeutic orphans. Nevertheless, several drug companies (e.g.,
AMGEN [11,37,38] and Neusentis [39]) and academic groups [40-42] have recently reported
the synthesis or identification of small molecule potentiators of GlyRs. In addition, AMGEN
reported a series of pan (x1 and «3) and selective («1 or «3) GlyR antibodies with functional
(agonistic or antagonistic) activity profiles suggesting that selectivity within this receptor
family can be achieved [43]. Figure 4 provides an overview over different small molecule
GlyR activators and potentiators and their binding sites in the channel complex.

Recent drug screening efforts at AMGEN have led to the discovery of novel glycine
receptor potentiators [11,37,38]. Of particular interest, AM-1488, a highly selective positive
allosteric modulator of «1 and &3 GlyRs acts through a high affinity binding (in the
sub-micromolar range) to a newly discovered site in the large extracellular domain [11].
AM-1488 (20 mg/kg; p.o.) has been tested in a mouse spared nerve injury (SNI) model
of neuropathic pain, where it was as effective as the reference compound pregabalin
(30 mg/kg; p.o.), while its enantiomer was inactive at the same dose [11,37].

Other evidence supporting potential therapeutic benefit of GlyR potentiators comes
from cannabinoid derivatives. Ag—tetrahydrocannabinol (THC) modulates GlyR function, in
addition to activating G protein coupled CB; and CB, receptors. Chemical modification of
THC has led to the derivatives 5-desoxy-THC (identical to DH-CBD), 1-desoxy-THC, and di-
desoxy-THC. Further, 5-desoxy-THC/DH-CBD and di-desoxy-THC are devoid of activity
at CB; and CB, receptors but still bind to GlyRs. In addition, 5-desoxy-THC/DH-CBD
acts as a positive allosteric modulator and di-desoxy-THC as its competitive antagonist
of GlyRs [40]. In mouse inflammatory pain models, 5-desoxy-THC/DH-CBD exerted
antihyperalgesic effects that were absent in «3 GlyR deficient mice but retained in CB; and
CB; deficient mice [12].
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Figure 4. Modulators of &3 GlyRs. Structures of a3 GlyRs bound to the agonist glycine, the competitive antagonist
strychnine, or the exogenous modulators tropisetron, AM-3607 (whose chemical structure is very similar to that of AM-
1488), 2,6-di-tert-butylphenol (2,6-DTBP) and cannabidiol (CBD). To highlight the relevance of inter-subunit binding sites,
models showing the interface of two adjacent a3 subunits are also shown. The interaction of tropisetron with the orthosteric
site of a3 GlyRs was modeled according to [44]. The AM-3607 binding site was reconstructed as described in [11]. The
models showing the CBD and 2,6-DTBP interaction with «3 GlyRs were generated based on [12,14]. The «3 GlyR structural
coordinates (PDB ID: 5TIO and 5CFB) were taken from [11,45].

Propofol (2,6-diisopropylphenol) is an intravenous anesthetic that targets primarily
GABA receptors. At higher concentrations, it also acts as a GlyR modulator. The propofol
derivative 2,6-di-tert-butylphenol (2,6-DTBP) is devoid of activity at the major GABA 5
receptor subtypes [46] but retains activity at GlyRs [47] and possesses antihyperalgesic
activity in neuropathic mice at high doses [14]. Critical for the interaction of propofol
derivatives with GlyRs is a phenylalanine residue (F388 in the a3 subunit) in the large
intracellular loop and close to the S346 phosphorylation site [48]. Interestingly, potentiation
of synaptic GlyRs by 2,6-DTBP depends on the phosphorylation status of the GlyR «3
subunit. In mouse spinal cord slices, 2,6-DTBP prolonged the kinetics of glycinergic IPSCs
only when «3 GlyRs were phosphorylated (“primed”) with PGE; or when it was tested in
spinal cord slices prepared from animals with inflamed paws [14].

Molecules with positive allosteric activity at GlyRs have also been isolated from a
natural compound library generated from Australian and Antarctic marine invertebrates
and algae [42,49,50]. These compounds have highly complex chemical structures ham-
pering their artificial synthesis. Probably for this reason, in vivo activities have not been
tested yet. Interestingly, one of the compounds specifically modulates «3 GlyRs with no
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activity at ol GlyRs [49], suggesting that the development of «3 selective compounds is in
principle feasible.

6. Other Compounds with Modulatory Actions at Glycine Receptors

GlyRs are in addition modulated by a number of endogenous molecules or synthetic
compounds that either lack drug-like properties or activate primarily targets different
GlyRs. Although such compounds are unlikely to be used therapeutically, they have
led to the discovery of sites for allosteric modulation of different GlyRs. As such, they
may provide starting points for drug discovery programs. Below, we provide a relatively
short summary of this work. A more comprehensive coverage of this topic can be found
elsewhere [51-54].

Endocannabinoids are lipid signaling molecules that primarily activate the G protein
coupled cannabinoid CB; and CB, receptors. Arachidonoyl ethanolamide (AEA) and 2-
arachidonoyl glycerol (2-AG) are pivotal endogenous activators of these receptors. Related
arachidonoyl conjugates potentiate GlyR function with partially different effects on the
different GlyR subtypes [55,56]. While neutral compounds such as AEA, N-arachidonoyl-
serotonin, and N-arachidonoyl-dopamine potentiate «1, «2, and «3 GlyRs, the acidic
compounds N-arachidonoyl-glycine, N-arachidonoyl-serine, N-arachidonoyl-L-alanine,
arachidonic acid, and N-arachidonoyl-GABA potentiate o1 but inhibit 02 and o3 GlyRs [55].
Building on these differential effects has allowed the identification of relevant sites in the
GIyR protein through the generation and analysis of chimeric GlyR constructs. These
experiments revealed a relatively complex scenario with one relevant amino acid located in
the extracellular domain (alanine at position 52 in «1), two amino acids in transmembrane
segment 2 (glycine 254 in «1 and alanine 265 in «3), and in the large intracellular loop
(lysine 385 in oc1). Other work provides a detailed analysis of effects of the acyl chain length
and numbers and sites of double bonds within the acyl chain on the modulation of GlyRs
with different subunit combinations [57].

Tropeines are antiemetic drugs that act as antagonists at ionotropic serotonin (5-HT3)
receptors. Two tropeines, MDL-72222 and tropisetron, also potentiate GlyR activity at
nanomolar concentrations [58-60]. They bind to an interface between two « or one &
and a {3 subunit in the extracellular domain. The effects of tropeines have been mainly
explored on «1 GlyRs, and less in a3 GlyRs. A recent report explored the modulation of
homopentameric o3 GlyRs by tropeines [44]. Tropisetron did not potentiate o3 GlyRs, but
rather caused concentration-dependent inhibition in the low micromolar range. In silico
docking confirmed that tropeines may bind to the extracellular domain of «3 GlyRs. Since
tropisetron also displayed excusive inhibitory effects on «2 GlyRs [59], these data suggest
a subunit-specific effect on a1 GlyRs.

Zonisamide is an antiepileptic drug, which has recently been reported to facilitate ac-
tivation of recombinant and native a1, 2, and «3 GlyRs at therapeutic concentrations [61].
Zonisamide has many potential therapeutic targets including voltage gated Na* channels
and T-type Ca?* channels and it is unclear which target is responsible for its antiepileptic
effect. Some evidence suggests that zonisamide possesses antihyperalgesic activity in
different preclinical models [62]. This is, however, a common action also of anticonvulsant
drugs including the gabapentinoids, carbamazepine, and phenytoin and it is hence unclear
whether potential analgesia might originate from its modulatory activity at GlyRs. More
remarkable is the absence of the potential side effects of GlyR modulation discussed above
(muscle relaxation, respiratory dysfunction, addiction) [63].

Lastly, glycine receptor activity can also be modulated in a bidirectional fashion
by zinc, where sub-micromolar concentrations (20 nM-1 uM) lead to potentiation and
micromolar concentration (20-50 uM) to inhibition [64], reviewed in [65]). The biological
presence of zinc documented in synaptic vesicles in the brain, suggest indeed that it bears
unique neurotransmission modulation roles within the central nervous system [66—69];
reviewed in [65]). Thus, adding zinc chelators (such as compatible with the screening
platforms selected) is highly recommended in future HTS-type screens to reduce the rate
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of false-positive hits moving-forward (see [70] for a comprehensive list of zinc chelators
readily available).

7. Is Specificity for the «3 Subtype Preferred or Required?

This question cannot be answered yet [52]. GlyRs do not only control nociception
but several other physiological functions. Best known among them is the control of
motoneuron activity and hence muscle tone. In addition, GlyRs are abundant in the pre-
Botzinger complex, which controls respiration, in the ventral tegmental area (VTA) and
the nucleus accumbens (NAc), which form the brain’s reward system, the retina and the
auditory system. While pharmacological modulation of inhibitory transmission appears
to have little impact on visual or auditory perception, effects on motoneuron activity,
respiratory control, and addiction are areas of potential concern. Motoneurons virtually
lack a3 GlyRs, suggesting that a3 selective modulators should be devoid of undesired
muscle relaxation. In contrast, the pre-Botzinger complex, the VTA, and the NAc contain
al and o3 GlyRs [71-76]. Selectivity for the a3 subtype may protect from some of these
potential undesired drug effects but it may also reduce efficacy as most GlyRs even in
the substantia gelatinosa contain both a1 and &3 subunits [77]. While several lines of
evidence strongly support that GlyR potentiators will reduce pathological hyperalgesia, it
is currently uncertain whether subtype specific modulators should be preferred in drug
discovery programs. With the recent progress in identifying selective GlyRs small and large
molecules, it is only a question of time before highly selective and potent drug candidates
can allow the field to test whether selectivity is preferred or required.
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