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Abstract: Cellular senescence is a cellular condition that involves significant changes in gene expres-
sion and the arrest of cell proliferation. Recently, it has been suggested in experimental models that
the elimination of senescent cells with pharmacological methods delays, prevents, and improves
multiple adverse outcomes related to age. In this sense, the so-called senoylitic compounds are a
class of drugs that selectively eliminates senescent cells (SCs) and that could be used in order to
delay such adverse outcomes. Interestingly, the first senolytic drug (navitoclax) was discovered by
using chemoinformatic and network analyses. Thus, in the present study, we searched for novel
senolytic compounds through the use of chemoinformatic tools (fingerprinting and network phar-
macology) over different chemical databases (InflamNat and BIOFACQUIM) coming from natural
products (NPs) that have proven to be quite remarkable for drug development. As a result of
screening, we obtained three molecules (hinokitiol, preussomerin C, and tanshinone I) that could be
considered senolytic compound candidates since they share similarities in structure with senolytic
leads (tunicamycin, ginsenoside Rb1, ABT 737, rapamycin, navitoclax, timosaponin A-III, digoxin,
roxithromycin, and azithromycin) and targets involved in senescence pathways with potential use in
the treatment of age-related diseases.
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1. Introduction

Cellular senescence is a biological condition that involves significant changes in gene
expression and the loss of proliferative potential. Interestingly, during aging, immune clear-
ance defects lead to the accumulation of senescent cells, which are thought to limit tissue by
releasing the so-called senescence-associated secretory phenotype (SASP), thus creating a
mild but chronic proinflammatory microenvironment that may impair the normal function
of surrounding tissue [1]. Such an environment has been associated with several diseases
such as cancer, cardiovascular disease, obesity, type 2 diabetes, sarcopenia, pulmonary
fibrosis, osteoarthritis, atherosclerosis, and neurological disorders [1]. Moreover, senescent
cells have upregulated pro-survival/antiapoptotic mechanisms such as the PI3K/Akt and
Bcl2 pathways [2]. Studies in experimental models have shown that targeting senescent
cells through different genetic or pharmacological methods may delay, prevent, and/or
improve multiple adverse outcomes related to age [3].

Senolytics are a class of drugs that are distinguished by selectively killing senes-
cent cells (SCs). The first reported compounds with senolytic properties were dasatinib,
quercetin, fisetin, and navitoclax; however, over the years, this group of drugs has been
slowly growing larger. It should be noted that in different preclinical models, treatment
with senolytics allows the pro-survival Senescent Cell Anti-Apoptotic Pathways (SCAPs)
to be temporarily deactivated, thereby causing the apoptosis of SCs in damaged tissues [4].
Moreover, in different preclinical studies, senolytics appear to restore progenitor dysfunc-
tion, attenuate tissue inflammation, and alleviate age-related metabolism and disease
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dysfunction in all cell and tissue types [5]. Senolytics have been shown to delay, prevent,
or alleviate frailty, cancers, and cardiovascular, neuropsychiatric, liver, kidney, muscu-
loskeletal, and pulmonary diseases and disorders, among others. The first pilot trials of
senolytics suggest that they decrease senescent cells, reduce inflammation, and improve
human frailty deficits [4,6]. Moreover, early trials with two senolytic compounds (quercetin
and dasatinib) have demonstrated positive effects on clinical assessments of patients with
idiopathic pulmonary fibrosis [7].

Natural products (NPs) have played an essential role in drug discovery; it is estimated
that around 30% of the drugs currently used in clinics for the last 39 years are NP-derived
or NP botanicals [8,9]. Additionally, different NPs have been shown to be quite helpful in
therapeutics since they are known to possess exceptional selectivity for different cell targets
such as quercetin [10]. Additionally, computational analyses have been very valuable for
drug discovery and screening, improving the drug discovery success rate, and diminishing
the number of experimental approaches needed. In this sense, the first senolytic drug
(navitoclax) was discovered using chemoinformatic and network analyses [11]. Therefore,
in the present work, we searched the literature for reported senolytic compounds in
order to determine their physicochemical properties and use them, employing different
methodologies based on fingerprinting and network pharmacology. The aim was to search
for novel senolytic compounds in natural products across two databases: InflamNat (657
molecules from https://pubs.acs.org/doi/10.1021/acs.jcim.8b00560, Accessed on 8 June
2020) [12], and BIOFACQUIM, (422 molecules from https://biofacquim.herokuapp.com/).
Accessed on 6 July 2020 [13].

2. Materials and Methods
2.1. Creation of a Senolytic Lead Dataset
2.1.1. Collection of Senolytic Compounds

Review of the bibliography published in Pubmed and Scopus up to September 2020
concerning compounds reported as senolytic drugs to create a dataset.

2.1.2. Selection of Senolytic Leads from the Dataset Based on Hierarchical Analysis and
Chemical Space Analysis

The Simplified Molecule Input Line Entry System (SMILES) of the compounds from
the dataset was searched in Pubchem, accessed on 3 August 2018 to 30 September 2020
(https://pubchem.ncbi.nlm.nih.gov/) [14] and the SwissADME server, accessed on 30
September 2020 (http://www.swissadme.ch) [15]. Osiris Data Warrior software V5.2.1
was used in order to analyze the physicochemical properties and molecular descriptors
such as G protein-coupled receptors (GPCR) ligand (GPCR. Ligand), ion channel modu-
lator (ion.channel.modulator), kinase inhibitor (kinase.inhibitor), nuclear receptor ligand
(nuclear.receptor.ligand), protease inhibitor (protease.inhibitor), enzyme inhibitor (en-
zyme.inhibitor), number of violations (nviolations), number of atoms (natoms), log k p
values in [cm/s] (log.Kp..cm.s.), Lipinski’s Rule violations (Lipinski..violations), Ghose
Filter violations (Ghose..violations), Veber Rule violations (Veber..violations), Egan Rule
violations (Egan..violations), Muegge’s Rule violations (Muegge..violations), bioavailabil-
ity score (bioavailability.score), molecular weight (molweight), P: conc (octanol)/conc
(water) (cLogP), S: water solubility in mol/L (cLogS), hydrogen acceptor (H.acceptors),
hydrogen donors (H.donors), total surface area (total.surface.area), polar surface area
(polar.surface.area), druglikeness (druglikeness), shape index (shape.index), molecular flex-
ibility (molecular.flexibility), electronegative atoms (electronegative.atoms), rotatable bonds
(rotatable.bonds), aromatic rings (aromatic.rings), aromatic atoms (aromatic.atoms), sp3
atoms (sp3 atoms), and symmetric atoms (symmetric.atoms) of the compounds previously
obtained from the created dataset [16].

First, we performed a cluster analysis of all physicochemical and molecular descriptors
using the K-means algorithm and a distance matrix from senolytic compounds. Such
analysis was performed with the complexheatmap package [17] with R-studio (RStudio

https://pubs.acs.org/doi/10.1021/acs.jcim.8b00560
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PBC250, Boston, MA, USA), version 3.4. Next, the chemical space and the distribution of the
data were analyzed using Principal Component Analysis (PCA) to evaluate whether any
of the parameters (molecular descriptors) were more critical in distributing the chemical
space on the cluster analysis. PCA is defined as an orthogonal linear transformation
technique that can transform the data into a new coordinate system. We used a two-
dimensional system in our analysis [18]. Briefly, the variance of the data maximized
on the first coordinate was called the first principal component. The second variance
was maximized on the second coordinate; we used the factoextra package with R-Studio
version 3.4.

2.2. Selection of Drug-Likeness of NPs from the BIOFACQUIM Database and the InflamNat
Dataset Based on the Quantitative Estimate of Drug-Likeness (QED)
2.2.1. Data Collection for NPs

We obtained a drug-likeness estimator based on the Quantitative Estimate of Druglik-
ness (QED) for compounds from the InflamNat and BIOFACQUIM databases [12,13] by
using DruLito software (http://www.niper.gov.in/pi_dev_tools/DruLiToWeb/DruLiTo_
index.html), accessed on 7 December 2020 [19]. The Spatial Data File (SDF) files required for
this software were obtained from the PubChem (https://pubchem.ncbi.nlm.nih.gov/) [14]
and ZINC15 [20] servers, accessed on 11 January 2021. We analyzed only those molecules
available on both servers.

2.2.2. Determination of the Drug-Likeness of NPs

To determine drug-likeness, we used the Quantitative Estimate of Drug-likeness
(QED), an integrated score, to evaluate the compounds’ preference to be considered a hit.
QED is a method for the quantification of drug-likeness, considering the main molecular
properties together. The QED score uses the molecular descriptors: molecular weight (Da),
Ghose-Crippen-Viswanadhan octanol-water partition coefficient (AlogP), the number of H-
acceptors (HBA), the number of H-donors (HBD), the number of rotatable bonds, total polar
surface area (TPSA), and aromatic bond count. A histogram and boxplot were performed
to compare the distribution of the molecular descriptors, both senolytic compounds and
NP properties. We selected the NPs with high QED scores (over 0.5).

2.3. The Selection of Putative Senolytic Compounds Is Based on a Comparison of the Fingerprints
of the Drug-Like NPs and Senolytic Leads
Fingerprints of Drug-Like NPs and Senolytic Leads

To determine their fingerprints and perform a comparison, we used ChemmineR and
rcdk in R-Studio version 3.4 [21]. We used the extended value with a default length of 1024
(number of bits), taking rings and atomic properties of the senolytic compound dataset as
leads and the NPs obtained from databases as tested compounds. Then, we performed
a cluster analysis by using the Tanimoto coefficient [21] to compare the drug-likeness
of NPs versus the senolytic compounds. The molecules were then classified into three
groups using as a parameter the molecular distances by Ward’s clustering method, which
are the most popular hierarchical clustering algorithms used in drug discovery [22]. To
confirm the clustering results, the Dunn index and the silhouette coefficient were used [21].
After the different clustering methods were performed, the cluster containing the senolytic
lead was analyzed in order to obtain the putative senolytic molecules and construct a
compound-target network.

2.4. Selection of the Best Putative Senolytic Molecules through Their Multitarget Capacity
Compound-Target Network Generation

To explore the possible interaction of the drug-like molecules with targets involved in
the senescence processes, we generated a compound-target network (by using Compound
Spring Embedder (CoSE) layout based on the Cytoscape software, (National Institute
of General Medical Sciences of the National Institutes of Health, Bethesda, MD, USA),

http://www.niper.gov.in/pi_dev_tools/DruLiToWeb/DruLiTo_index.html
http://www.niper.gov.in/pi_dev_tools/DruLiToWeb/DruLiTo_index.html
https://pubchem.ncbi.nlm.nih.gov/
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3.8.2 version [23]) with information on targets obtained from the BindingDB database
(https://www.bindingdb.org/bind/index.jsp) [24], accessed on 12 January 2021. This
database of measured binding affinities focuses on the interactions of proteins considered
to be drug targets with small drug-like molecules [24]. Interestingly, this database has been
previously used in search of anti-inflammatory drugs from NPs [18]. The network was
constructed from several pathways involved in senescence present in Wikipathways such as
DNA damage/telomere stress-induced senescence (DD/TSIS), pentose phosphate pathway
and glycolysis in senescent cells (PPPsc), oncogene-induced senescence (OIS), DNA damage
response (DDR), oxidative stress-induced senescence (OSIS), glycolysis in senescence (Gis),
senescence-associated secretory phenotype (SASP), intrinsic pathways for apoptosis (IPFA)
and the cell cycle (CC) [25,26] and information on BindingDB with compounds to select the
multitarget putative senolytic molecules. For more details concerning the data on targets
and respective pharmacological functions and the genes from the senolytic network, see
the Supplementary Materials. The methodology of this work is summarized in Figure 1.
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Figure 1. The workflow of the methodology for identifying putative senolytic molecules. (A) Phase 1: Creating a senolytic
lead dataset from Pubmed and Scopus databases from the information obtained up to September 2020. The leads were
determined by hierarchical structural clustering using the complexheatmap (K-means) with R-Studio through their molecular
descriptors. (B) Phase 2: Selection of drug-like natural products (NPs) from the BIOFACQUIM and Inflamnat datasets based
on the Quantitative Estimate of Drug-likeness (QED). The molecules were searched in the Pubchem server to obtain their
structural information. Data filtering of NPs to obtain drug-like molecules by QED was searched for the reported targets
in BindingDB. (C) Phase 3: Selection of putative senolytic compounds based on a comparison of the fingerprints of the
drug-like NPs and senolytic leads employing the Tanimoto coefficient and the Silhouette clustering (used to corroborate
the drug-like molecules from NPs). (D) Phase 4: Selection of the best putative senolytic molecules by creating networks
with Compound Spring Embedder (CoSE) layout using Cytoscape software. The selected drug-like molecules, their
pharmacological targets, and the network that contained targets involved in senescence were used in order to construct a
compound-target senescence network.

https://www.bindingdb.org/bind/index.jsp
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3. Results
3.1. Creation of a Senolytic Lead Dataset

The search for senolytic compounds in Scopus and Pubmed showed 79 compounds
with senolytic activity. Hierarchical clustering and PCA analysis performed with molecular
descriptors can be seen in Figure 2 and Supplementary Figure S1. Interestingly, we found
two main clusters of senolytic compounds according to their 1-D and 2-D molecular de-
scriptors focused on molecular.flexibility, H.Donors, Veber..violations, Muegge..violations,
Lipinski..violations, nviolations, H.Acceptors, polar.surface.area, electronegative.atoms,
sp3.atoms, molweight, natoms, total.surface.area, rotatable.bonds, Egan..violations, and
Ghose..violations. The cluster with the greatest similarity between the molecules was
cluster one (marked in yellow in Figure 2). This cluster includes navitoclax, ABT-737,
tunicamycin A, B, C, and D, digoxin, rapamycin, ginsenoside Rb1, roxithromycin, timo-
saponin A-III, and azithromycin. We used these compounds as senolytic leads for the rest
of the study. Table 1 summarizes the main characteristics of the compounds in cluster one,
including their pharmacological activity.

Table 1. Main characteristics of the molecules of cluster one.

Senolytics Pubchem Compound
ID(CID) Pharmacological Activity K-Means

Coefficient References

Navitoclax 24978538 Inhibitor of Bcl-2 and Bcl-xL 0.44 [11,27]

ABT 737 11228183 Inhibitor of Bcl-2 and Bcl-xL 0.58 [28]

Tunicamycin 56927848

Disturbs the endoplasmic reticulum (ER)
homeostasis and causes the accumulation of

misfolded or unfolded proteins in the ER, inducing
cell death

0.34 [29]

Ginsenoside
Rb1 9898279

Affects the Wnt/β-catenin signalling pathway by
downregulating β-catenin/T-cell factor-dependent

transcription and expression of its target genes
ATP-binding cassette G2 and P-glycoprotein

0.31 [30]

Azithromycin 447043

Enhances autophagosome formation of T cells by
suppressing S6RP phosphorylation, which is a
downstream target of the mammalian target of

rapamycin (mTOR) pathway

0.32 [31]

Roxithromycin 6915744 Inhibitor of TGF-β1-induced activation of ERK and
AKT and down-regulation of caveolin-1 0.23 [32]

Timosaponin
A-III 15953793

The inductor of selective cytotoxic activity that
involves inhibition of mTOR, induction of ER stress,

and protective autophagy
0.29 [33]

Digoxin 2724385 Positive inotropic and negative chronotropic agent 0.21 [34]

Rapamycin 5284616

Inhibitor of mTOR complex 1 (mTORC1), which
phosphorylates substrates including S6 kinase 1

(S6K1), eIF4E-binding protein 1 (4E-BP1),
transcription factor EB (TFEB), unc-51-like

autophagy-activating kinase 1 (Ulk1), and growth
factor receptor-bound protein 10 (GRB-10)

−0.2 [35]
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Figure 2. Hierarchical structural clustering of the previously reported senolytic compounds. A heatmap of hierarchical
clustering was generated employing the complexheatmap package in R-Studio separated by K-means. The histogram at
the top represents a frequency distribution of each molecular descriptor (turquoise). Density plots at the top represent the
distribution of each molecular descriptor (blue). Violin plots on the right show the molecular descriptors’ distribution for
each senolytic compound and their probability density. Boxplots on the right show the distribution of numerical data from
molecular descriptors in each senolytic compound. As seen in the dendrogram at the left of the figure, there are two main
clusters; we focus on the first, framed in red lines due to its similarity coefficient.
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3.2. Selection of Drug-Like NPs Based on QED

From 1079 NP molecules obtained from the InflamNat (657 molecules) and BIO-
FACQUIM (422 molecules) datasets, we only used 562 molecules analyzed in DruLito
software to obtain the physicochemical parameters required for QED. The comparison of
the physicochemical parameters and the whole senolyitic dataset (79 molecules) is shown
in Figures 3 and 4. In both figures, the molecular descriptor values of the NPs and senolytic
compounds are distributed within a similar range.
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Figure 3. Distribution of molecular descriptors for senolytic compounds and NPs: molecular weight (Da), Ghose-Crippen-
Viswanadhan octanol-water partition coefficient (AlogP), the number of H-acceptors (HBA), the number of H-donors
(HBD), the number of rotatable bonds, total polar surface area (TPSA), aromatic bond count, and Quantitative Estimate of
Drug-likeness (wQED). Vertical lines represent frequency values, while horizontal lines represent the intervals of the data.
The abscissa axis represents the calculated values for each compound and each molecular descriptor, and the ordinate axis
represents the frequency of the values. NPs (n = 562) and senolytic compounds (n = 79).
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Figure 4. Boxplots showing the distribution and summary statistics of the molecular descriptors of NPs and senolytic
compounds: molecular weight range (Da), Ghose-Crippen-Viswanadhan octanol-water partition coefficient (AlogP), the
number of H-acceptors (HBA), the number of H-donors (HBD), the number of rotatable bonds, total polar surface area
(TPSA), aromatic bond count of senolytic compounds and NPs. The abscissa axis represents the calculated values for each
compound and each molecular descriptor, and the ordinate axis represents the frequency of the values. NPs (n = 562) and
senolytic compounds (n = 79).

After QED, molecules with a score greater than 0.5 were considered drug-like, pro-
ducing only 345 molecules (61.39%) of the 562 NPs, from which we obtained Total Num-
ber of NP Molecules that Violated the Rule (weighted Quantitative Estimate of Drug-
likeness (wQED) < 0.5) = 217 and Total Number of NP Molecules that Passed the Rule
(wQED > 0.5) = 345.

3.3. Selection of Putative Senolytic Compounds

From 345 drug-like molecules obtained by QED, only 53 molecules were considered
in BindingDB; they showed reported targets. We performed a comparison of the 53
molecules with each of the 17 senolytic leads obtained from cluster one (Figure 2) through
fingerprints, the Tanimoto coefficient, and Ward’s method. Figure 5 is an example of this
analysis with rapamycin. The optimal number of clusters was determined by the Elbow
method (Figure 5A), resulting in three clusters as an optimal number for cluster analysis.
The Dunn index and the silhouette coefficient (Sc) corroborate the cluster analysis for the 53
drug-like molecules and the senolytic leads from group 1 (Figure 5D). The number of drug-
like molecules clustered with senolytic leads from group 1 is 17 for navitoclax (Sc: 0.23),
16 for ABT 737 (Sc: 0.23), 17 for tunicamycin (Sc: 0.24), 14 for ginsenoside (Sc: 0.29), 16 for
azithromycin (Sc: 0.27) and roxithromycin (Sc: 0.27), 14 for timosaponin A-III (Sc: 0.29),
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11 for digoxin (Sc: 0.39), and 11 for rapamycin (Sc: 0.38). The mean of Sc was highest
in three clusters, reflecting a better similarity between the drug-like molecules and the
senolytic leads (Figure 5D). Supplementary Figure S2 shows the complete analysis for each
of the 17 senolytic leads from group 1. Finally, the mean of the Sc of the cluster analysis
performed with the 17 senolytic leads from group 1 was 0.27. Table 2 shows the results
after eliminating repeated molecules.

Biomolecules 2021, 11, x  9 of 17 
 

16 for azithromycin (Sc: 0.27) and roxithromycin (Sc: 0.27), 14 for timosaponin A-III (Sc: 

0.29), 11 for digoxin (Sc: 0.39), and 11 for rapamycin (Sc: 0.38). The mean of Sc was highest 

in three clusters, reflecting a better similarity between the drug-like molecules and the 

senolytic leads (Figure 5D). Supplementary Figure 2 shows the complete analysis for each 

of the 17 senolytic leads from group 1. Finally, the mean of the Sc of the cluster analysis 

performed with the 17 senolytic leads from group 1 was 0.27. Table 2 shows the results 

after eliminating repeated molecules. 

 

Figure 5. Steps in the selection of putative senolytics comparing 53 drug-like NPs with the senolytic lead rapamycin. (A) 

The dashed line represents the suitable number of clusters determined by the Elbow method. (B) Cluster analysis of 

Ward’s method, the senolytic cluster is shaped in red and the senolytic molecule as 1. (C) Cluster plot using Kmeans 

showed the same molecules in the senolytic cluster marked in blue. (D) Silhouette cluster representation to corroborate 

the previously described cluster analysis methods. * means matrix of distances used in clustering by Ward’s method in 

subfigure B. 

Table 2. Drug-like molecules obtained by fingerprint analysis and their pharmacological activity. 

Compound Resulting from 

Fingerprint Analysis 
ZINC ID 

Pharmacological Activity Re-

ported 

References 

Cacospongionolide B ZINC26966472 Anti-inflammatory agent  [36] 

Carnosol ZINC3871891 Antineoplastic agent [37] 

Dihydrotanshinone I ZINC2585546 
Antiviral, anti-mutagenic, anti-

cancer agent 

[38–40] 

Epoxyazadiradione ZINC58576553 Anti-inflammatory agent [41] 

Farnesiferol B ZINC29134693 Anti-oxidant agent [42] 

Figure 5. Steps in the selection of putative senolytics comparing 53 drug-like NPs with the senolytic lead rapamycin. (A)
The dashed line represents the suitable number of clusters determined by the Elbow method. (B) Cluster analysis of Ward’s
method, the senolytic cluster is shaped in red and the senolytic molecule as 1. (C) Cluster plot using Kmeans showed the
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Table 2. Drug-like molecules obtained by fingerprint analysis and their pharmacological activity.

Compound Resulting from
Fingerprint Analysis ZINC ID Pharmacological Activity Reported References

Cacospongionolide B ZINC26966472 Anti-inflammatory agent [36]

Carnosol ZINC3871891 Antineoplastic agent [37]

Dihydrotanshinone I ZINC2585546 Antiviral, anti-mutagenic, anti-cancer
agent [38–40]

Epoxyazadiradione ZINC58576553 Anti-inflammatory agent [41]

Farnesiferol B ZINC29134693 Anti-oxidant agent [42]

Friedelin ZINC4097720 Anti-inflammatory and
antipyretic agent [43]

Fuscoside B ZINC72123265 Anti-inflammatory agent [44,45]

Gibberellic acid ZINC3860467 Anti-inflammatory agent [46]

Gliotoxin ZINC3875454 Anti-inflammatory agent [47]

Hinokitiol ZINC95911093 Anti-cancer agent [48]

Neurolenin B ZINC100090140 Anti-inflammatory agent [49]

Penicillic acid ZINC3874657 Antibiotic [50]

Preussomerin C ZINC34383300 Cytotoxic and anti-nematodal agent [51,52]

Tanshinone I ZINC2558154 Anti-oxidant and
anti-inflammatory agent [40,53]

Tanshinone IIA ZINC1650576 Anti-oxidant and
anti-inflammatory agent [54]

Triptolide ZINC6483512 Anti-cancer, anti-inflammation,
anti-obesity, and anti-diabetic [55]

Ursolic acid ZINC31356858 Anti-inflammatory and
antihyperlipidemic agent [56]

3.4. Network Analysis to Obtain the Best Putative Senolytic Molecules through Their
Multitarget Capacity

We obtained a compound-target network (Figure 6) related to senescence that shows
861 nodes and 1227 edges (or links), where 17 nodes represent the drug-like molecules
obtained by QED analysis. It should be noted that three molecules have the most signifi-
cant number of targets involved in any of the senescence pathways used. These putative
senolytic molecules are represented in Figure 6 as yellow nodes and their cellular targets as
red nodes. The putative senolytic molecule hinokitiol showed a connection to the senes-
cence network through the inhibition of histone deacetylase 4 and 5 (HDCA4 and 5) [57],
targets involved in the cell cycle (CC). Preussomerin C inhibits JUN protein, a target in-
volved in oxidative stress-induced senescence (OSIS) [58], and tanshinone I modulates the
target RAD51, which is involved in DNA damage response (DDR) [59] (Figure 6). Table 3
summarizes the main characteristics of these putative senolytic compounds obtained from
this analysis.
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Figure 6. A network of putative senolytic compounds with their biological targets. (A) Interactions of tanshinone I with
its phamarcological targets: TOP1, CA1,CES1, ACHE, PTPN6 and RAD51. (B) Interactions of preussomerin C with its
phamarcological targets: CCR1,CCR2,CCR3,CCR6,CCR7,CCR8, CCR9, CXCL10, FOS and JUN. (C) Interactions of hinokitiol
with its phamarcological targets: HDAC1, HDAC2, HDAC4, HDAC5,HDAC6, HDAC8, and TYR. The compound-target
network was generated with CoSE Layout in Cytoscape software, version 3.8.2 [23]. The network was constructed with
several pathways involved in senescence represented with the nodes of different colors and compounds (Methods): Nodes
represent compounds or targets related to senescence according to their color. An edge represents a relation obtained
from BindingDB. Abbreviations: DNA topoisomerase 1 (TOP1), carbonic anhydrase 1 (CA1), liver carboxylesterase 1
(CES1), acetylcholinesterase (ACHE), tyrosine-protein phosphatase non-receptor type 6 (PTPN6), DNA repair protein
RAD51 homolog 1 (RAD51), CC chemokine receptor 1–3,6–9 (CCR1–3, 6–9), C-X-C motif chemokine ligand 10 (CXCL10),
Jun Proto-Oncogene, AP-1 Transcription Factor Subunit (JUN), Fos Proto-Oncogene, AP-1 Transcription Factor Subunit
(FOS), histone deacetylase 1,2,4–6,8 (HDAC1,2,4–6,8), tyrosine-protein phosphatase non-receptor type 6 (TYR), DNA
damage/telomere stress-induced senescence (DD/TSIS), pentose phosphate pathway and glycolysis in senescent cells
(PPPsc), oncogene-induced senescence (OIS), DNA damage response (DDR), oxidative stress-induced senescence (OSIS),
glycolysis in senescence (Gis), senescence-associated secretory phenotype (SASP), intrinsic pathways for apoptosis (IPFA)
and the cell cycle (CC).
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Table 3. Main characteristics of the best putative senolytic compounds obtained by multitarget capacity.

Senolytic
Candidate Structure Source Pharmacological

Activity

Targets of
Senolytic

Compound
Network

References

Hinokitiol
ZINC95911093
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The putative senolytic molecules with the most significant number of targets were
hinokitiol, preussomerin C, and tanshinone. Hinokitiol showed a connection to the senes-
cence network through the targets; hinokitiol inhibits histone deacetylase 4 (HDCA4) and 5 [58],
which are involved in the cell cycle (CC). Preussomerin C showed a connection to oxidative
stress-induced senescence (OSIS) through the target JUN, acting as an inhibitor [59], and
tanshinone I was linked to DNA damage response (DDR) through the target RAD51 as a
modulator [59] (Figure 6). Hinokitiol is a monoterpenoid proven to be helpful as an an-
timicrobial, antifungal, antiviral, antiproliferative, anti-inflammatory, and antiplasmodial
agent [60,61]. It can be isolated from the roots of the Hinoki tree, Hiba arboruitae (Japanese
cypress) [62,63]. Preussomerin C belongs to the Preussomerins family and exhibits a wide
range of bioactivities, such as antibacterial, antifungal, nematicidal, and cytotoxic activ-
ity [63–66]. Finally, tanshinones are the main bioactive compounds from Salvia miltiorrhiza
Bunge (Danshen) roots. They are extensively used in traditional Chinese medicine and
have been reported to inhibit migration, invasion, and gelatinase activity in lung cancer
cell line CL1-5 [53]. Table 3 summarizes some characteristics of the three putative senolytic
compounds obtained from the compound-target network.

4. Discussion

Drug discovery based on natural products has a long and successful history. Inter-
estingly, when natural product research is combined with computer-aided drug design
techniques, an actual amount of success becomes evident, mainly when we explore natural
products’ chemical spaces in order to identify bioactive compounds, emphasizing drug
discovery [67]. In this context, the first senolytics were discovered using bioinformatics
approaches to identify agents that transiently disable the SCAP networks that allow senes-
cent cells to survive the hostile microenvironment they create and kill the non-senescent
cells around them [4].
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In this study, we identified 79 compounds in Pubmed and Scopus reported as senolyt-
ics, and once we performed the cluster analysis, we found two groups with similarities
in their molecular descriptors. The most representative cluster, by similarities, included
the following drugs: navitoclax, ABT-737, ginsenoside Rb1, tunicamycin A, B, C and D,
timosaponin AIII, digoxin, rapamycin, azithromycin, and roxithromycin. These drugs are
involved in cellular senescence [2,25,26]. This cluster was corroborated with PCA analysis.
It is important to mention that all of them have different senolytic action mechanisms. For
instance, navitoclax and ABT-737 can inhibit Bcl-2 and Bcl-xL, triggering the activation
of caspases and exposure to phosphatidylserine in a Bak/Bax-dependent manner [68],
and they share a similar sulfonylbenzamide structure. Tunicamycin binds irreversibly
to the translocase enzyme [69]. Ginsenoside Rb1 is a glycosylated triterpenoid saponin
that affects the Wnt/β-catenin signalling pathway by downregulating β-catenin/T-cell
factor-dependent transcription and the expression of its target genes (ATP-binding cassette
G2 and P-glycoprotein) [30,70]. Macrolides (azithromycin and roxithromycin) are inhibitors
of protein synthesis via binding to the 50S ribosomal subunit of bacteria at the peptidyl
transferase center, which enhances autophagosome formation of T cells by suppressing
S6RP phosphorylation, thereby protecting against chronic inflammation [31,32,71,72]. Tim-
osaponin AIII is a steroidal saponin with a selective cytotoxic activity that involves the
inhibition of mTOR, the induction of ER stress, and protective autophagy [34]. Digoxin is a
cardiac glycoside with a steroid-like structure used in order to treat cardiac arrhythmias and
congestive heart failure [73], and rapamycin, a multitarget drug, is an inhibitor of mTOR
complex 1 (mTORC1), which phosphorylates substrates including S6 kinase 1 (S6K1),
eIF4E-binding protein 1 (4E-BP1), transcription factor EB (TFEB), unc-51-like autophagy-
activating kinase 1 (Ulk1), and growth factor receptor-bound protein 10 (GRB-10). These
substrates are involved in several processes including autophagy, cancer, neurological
diseases, and aging [19,35].

To evaluate whether a compound is drug-like, Lipinski’s rule of five is traditionally
used. However, the rule does not apply to substrates of biological transporters or natural
products [74] which do not necessarily fall into Lipinski’s rule, and many approved drugs
are a clear example of that (16% of oral drugs violate at least one of the criteria and 6% fail
two or more) [74]. For this reason, Lipinski’s rule of five was replaced by the Quantitative
Estimate of Drug-likeness (QED) as criteria for evaluating the drug-likeness of an NP [74].
This estimation allowed us to refine our search for NPs that could be candidates for drugs.
In this context, the selection criteria were more tolerant in the QED, despite the fact that
with other criteria, the molecular properties of some NPs could be outside the selection
parameters, as occurs with Lipinski’s rule. QED allowed us to avoid bias and enrich our
selection of NPs, obtaining a more realistic and graduated result. In reality, many approved
drugs violate the criteria of this rule [74]. The distribution of the molecular descriptors
between both datasets was similar, even though the senolytic dataset contained molecules
of different natures, ranging from natural to synthetic products. Thus, these data indicate
that natural products can be used as a reliable source for drug discovery.

Although there are many clustering methods, only some are used in practice; two were
used in this study: hierarchical grouping and the K-means method. They have been used
successfully in fingerprint analysis [21]. In this study, fingerprint analysis allowed us to
obtain 17 molecules due to their similarity with lead molecules from cluster one, indicating
that the physicochemical properties of the 17 compounds have a greater similarity with
the properties of senolytics. Different clustering methods validated these analyses. The
construction of a compound-target network helped us to select which compounds might
be better senolytic candidates due to their therapeutic targets. All these data helped
us to verify that the similarity in chemical structure may exhibit a similar function at
the biological level, avoiding high costs in experiments, because some NPs (hinokitiol,
preussomerin C, and tanshinone I) showed targets involved in some pathways related to
senescence such as the cell cycle, oxidative stress-induced senescence (OSIS), and DNA
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damage response (DDR), which are linked to several conditions, disorders, and age-related
diseases [4,75].

It ought to be noted, however, that these three remaining molecules may still need
experimental validation to demonstrate their properties as senolytics. We should not
overlook that many of these drugs’ targets have not yet been fully explored, so many
putative senolytics obtained from fingerprint analysis may also show senolytic activity
due to their structural similarity. However, the criterion we used in our work was to
consider those NPs that showed similarity with senolytic leads and had targets reported
and involved in senescence. This study helped us to identify which compounds of those
previously selected by fingerprints possess multitarget capacity, in agreement with those
proposed by Kirkland et al. (2020), who indicate that a senolytic is a compound that can
interact with different nodes in different ways, increasing the specificity for senescent
cells [4]. The present study identified three compounds by evaluating the multitarget
structure and functionality, which increases the possibility of selective action on senescent
cells. These new molecules open a field of pre-clinical study of great interest, which is why
the use of computational tools is necessary to expand knowledge through the discovery of
new candidates from NPs, and their evaluation in pre-clinical studies.

5. Conclusions

Our results show that the compounds hinokitiol, preussomerin C, and tanshinone-I
can be used as senolytics due to their multitarget potential and their chemical characteristics
of similarity. Therefore, they may be used in medicine to delay some age-related conditions
such as cancer or neurodegenerative diseases. Nevertheless, further experimental analysis
must be performed to validate such activities and demonstrate effectiveness and low
toxicity. These agents may lead to the delay, prevention, or treatment of senescence and
age-related conditions in humans, if clinical trials continue. Additionally, compounds from
cluster one (tunicamycin, ginsenoside Rb1, ABT 737, rapamycin, navitoclax, rimosaponin
A-III, digoxin, roxithromycin, and azithromycin) may be used as lead compounds for
future chemoinformatic analysis due to the similarity in their molecular descriptors.

Supplementary Materials: The following are available online at https://www.mdpi.com/2218-273
X/11/3/467/s1: Figure S1. Principal component analysis of senolytic compounds. Figure S2. Results
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