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Abstract: Histamine is a highly pleiotropic biogenic amine involved in key physiological processes
including neurotransmission, immune response, nutrition, and cell growth and differentiation. Its
effects, sometimes contradictory, are mediated by at least four different G-protein coupled receptors,
which expression and signalling pathways are tissue-specific. Histamine metabolism conforms a
very complex network that connect many metabolic processes important for homeostasis, including
nitrogen and energy metabolism. This review brings together and analyses the current information
on the relationships of the “histamine system” with other important metabolic modules in human
physiology, aiming to bridge current information gaps. In this regard, the molecular characterization
of the role of histamine in the modulation of angiogenesis-mediated processes, such as cancer, makes
a promising research field for future biomedical advances.

Keywords: metabolic remodelling; angiogenesis; systems biology

1. Histamine Metabolism and its Connections to Other Metabolic Modules

Histamine (2-(1H-Imidazol-4-yl) ethanamine) is the product of the alpha decarboxyla-
tion of the essential amino acid histidine (2-Amino-3-(1H-imidazol-4-yl) propanoic acid) by
the enzyme histidine decarboxylase (HDC). Histidine is required in early embryonic stages
and during childhood as an exogenous source of histamine, as well as in adults with certain
health conditions, such as those caused by the impairment of nitrogen metabolism (i.e.,
malnutrition, cachexia, hepatic or renal problems, among others). Its synthetic pathway is
well known in bacteria [1], hence both dietary proteins and microbiota catalytic activity
are the main source for histidine availability. Histidine is also an antioxidant precursor,
and its deficiency translates into low levels of histamine, which critically alters the normal
functioning of the nervous and immune systems [2–4]. The imidazole ring in histidine
acts as electron acceptor/donor in many enzymatic basic-acid reactions, and it is essen-
tial in electron transfer systems, oxygen transport, and the function of Zn2+-dependent
enzymes and transcription factors, thanks to its ability to form complexes with bivalent
metal ions, such as Fe2+, Cu2+, Co2+, Ni2+, Cd2+, and Zn2+. See the review by Holeček [5]
for further information.
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Histamine is not only a key player in allergic reactions but also in vascular perme-
ability, circadian cycle regulation and other neurological and gastric functions, epithelium
proliferation, immune cell differentiation, other cardiovascular functions, angiogenesis,
and neoplastic progression (Figure 1). Histamine can modify the proteome by degradation-
derived reactive oxygen species (ROS) that oxidize Cys and Tyr residues, promoting
functional alterations that depend on the protein and the physiological status of the cell.
Proteins involved in cytoskeleton organization, muscle contraction, inflammation, and cell
signalling [6], including G protein-coupled receptors (GPCRs) [7] can also be modified
covalently by transglutaminase 2 (TG2), which uses histamine as a substrate [8]. Exper-
iments with HDC KO mice have shown that histamine plays a central role in multiple
human pathologies [9,10], although it is still unknown how the elements in the metabolism
of histamine are linked to those involved in the development of these conditions.

Figure 1. Relationships between histamine and other amines with different physiological and cellular processes. The
processes are depicted in green boxes. Abbreviations (by alphabetical order): Aas, amino acids; Arg/Orn, arginine/ornithine;
CA, catecholamines; E-PLP, pyridoxal phosphate dependent enzyme; GABA, gamma aminobutyric acid; H1R, histamine
receptor 1; H2R, histamine receptor 2; H3R, histamine receptor 3; H4R, histamine receptor 4; Hia, histamine; His, histidine;
NMDAR, N-Methyl-D-aspartic acid receptor; NO, nitric oxide; PAs, polyamines; ROS, reactive oxygen species; SAM,
S-adenosyl methionine; Sert, serotonin.

At the metabolic level, L-His and histamine are key molecules of nitrogen homeostasis.
Histamine metabolism shares metabolites (pyridoxal 5-phosphate, PLP, and S-adenosine
methionine, SAM), enzymatic activities (diamine oxidase, DAO, monoamine oxidase,
MAO, aldehyde dehydrogenase, and transglutaminase 2) and membrane transporters with
the metabolic pathways of other biogenic amines (the diamine putrescine, the polyamines
(PA) spermidine and spermine, dopamine and serotonin), and all of them depend on
protein intake and endogenous protein synthesis rates (Figure 1). Multiple evidence
show that these metabolic pathways also share regulatory mechanisms. Antagonistic time
courses of histamine and PA metabolisms have been observed in several pathophysiological
scenarios such as in murine mast cells differentiation and basophilic leukemia cells [11–14].
This evidence has been recently reviewed in the context of different pathophysiological
scenarios [15,16]. The role of biogenic amines in pathologies affecting the neurological
and immune systems, mucosa and epithelium renewal and permeability, and fertility
(i.e., neurodegenerative diseases, mental retardation, psychiatric disorders, inflammatory
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reactions, food allergies, cancer progression and several rare diseases) should be considered
to fully characterize these diseases. We will discuss several links between these metabolic
and pathophysiological networks in the context of metabolic remodelling and angiogenesis-
related diseases.

Histamine metabolism is also connected to enzymes of the vitamin B6-dependent
family, which use PLP as their cofactor. Among these, there are decarboxylases (including
those responsible of other biogenic amines such as dopamine, serotonin, GABA, among oth-
ers), amino transferases, and other transferases, synthases and lyases [17]. PLP-dependent
enzymes are key participants in nitrogen metabolism, including nitrogen homeostasis,
the synthesis of neurotransmitters, hormones and neuroendocrine mediators, folate and
1-carbon metabolism, protein and polyamine synthesis, carbohydrate and lipid metabolism,
mitochondrial function and erythropoiesis [15]. Hence, vitamin B6 deficit could affect his-
tamine synthesis, as well as other catalytic products of PLP-dependent enzymes, therefore,
histamine deficit is a factor to be considered to explain diverse disease phenotypes [18].

Histamine binds to four known G protein-coupled receptors (GPCRs), H1 to H4
receptors, that modulate different signalling pathways [19]. The physiological effects of
histamine are dependent on the receptor expressed by each cell type in each physiological
context, oftentimes inducing opposite effects on different cell types or cellular status. These
facts add further complexity to the analysis and discussion of experimental results. The
signalling pathways activated by the four histamine receptors have been reviewed in
several recent publications [15,19] and are also summarized in Table 1.

Table 1. Molecular and functional properties of human histamine receptors.

H1 Receptor H2 Receptor H3 Receptor H4 Receptor

HGNC HRH1 HRH2 HRH3 HRH4

UniprotKB P35367 P25021 Q9Y5N1 Q9H3N8

Mass (kDa) 55.7 40.1–44.5
(2 isoforms)

36.4–49.6
(7 isoforms)

34.5–44.5
(2 isoforms)

Binding affinity Low (2.5 × 10−5 M) Low (7.9 × 10−6 M) High (6.3 × 10−9 M) High (7.9 × 10−9 M)

Cell/tissue
expression

Ubiquitous, brain, smooth
muscle, epithelial and

endothelial cells, immune
cells, hepatocytes and

chondrocytes

Ubiquitous, gastric-mucosa
parietal cells, smooth

muscle, heart, epithelial
and endothelial cells,

immune cells, hepatocytes
and chondrocytes

High expression on
histaminergic neurons

High expression on
bone marrow and

peripheral
hematopoietic cells

Gα protein
coupling Gαq/11 Gαs Gαi/o Gαi/o

Signalling
pathways

PLC activation, increase of
Ca2+, PKC activation, NOS

activation, increase of
cGMP, cAMP accumulation

(via Gβγ subunits)

PKA activation, increase of
cAMP, PLC activation,

increase of Ca2+

Decrease of cAMP,
inhibition of Ca2+

channels, stimulation
of MAP kinase

phosphorylation

Decrease of cAMP,
inhibition of Ca2+

channels, stimulation
of MAP kinase

phosphorylation

Primary
functions

Immediate allergic
response. Inflammatory

response

Gastric acid secretion.
Suppression of immune

cells. Inflammatory
response

Regulation of arousal
and cognition. Control

of inflammatory
response

Allergic and
inflammatory

responses. Immune cell
chemotaxis

Data from references [15,19–23].

The rate-limiting step in histamine synthesis is the decarboxylation reaction by HDC,
a very instable, short-lived PLP-dependent enzyme homologous to L-aromatic amino acid
decarboxylase. In rat stomach, the half-life of HDC activity was 55 min in controls [24]. The
maturation of HDC involves trafficking through the endoplasmic reticulum in a process
still not fully characterized, and several proteolytic systems, such as proteasome, m-calpain
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and caspase-9, may be involved in its maturation or degradation [25–29]. The first model of
the quaternary structure for the N-terminus of rat HDC (first 512 residues) was obtained by
homology modelling and further validated by direct-mutagenesis experiments [27,30,31].
The enzyme kinetics and molecular properties were extensively reviewed in 2005 [32].
More recently, the structure of a stable double mutant of the human HDC in complex
with the inhibitor histidine methyl esther was solved by X-ray crystallography at 1.8 Å
resolution [33]. Both the X-ray structure and computational model are rather coherent in
terms of global folding. As of today, the structure of the wild type enzyme has not been
solved by any experimental method. A recombinant human fragment (512-N-terminus)
of the native rat homodimer—with the maximum activity assayed in vitro [31]—is very
instable and exhibit an extremely low Vmax [25,34], which suggest that an uncharacterized
element could be stabilizing the native dimer conformation in vivo. In addition, further
evidence indicates that HDC polypeptide length and the location where it performs is
activity in the cell are key factors in the physiology of histamine-producing cells. In fact, the
overexpression of an active recombinant version of rat HDC in a human cell-type unable to
store histamine, such as HEK or COS cells, alters their proteome with lethal consequences
in cell cultures, including increased expression of apoptotic caspases and α-synuclein in
the case of HK cells [35].

HDC expression is limited to a few cell types: histamine-storing cells (i.e., mast cells,
basophils, parietal gastric cells and neurons) and cells that synthetize histamine but cannot
store it in specialized vesicles—that is other immune cells such as macrophages, eosinophils
and platelets, and several types of cancer cells) [4]. By analysing the HDC expression in
different tissues, we observed that the major histamine-producing cells (mast cells, gastric
enterochromaffin-like cells and histaminergic neurons) are surrounded by other cell types,
promoting a tight relationship with physiological relevance [36–38]. These cells maintain
a complex communication that depends on the expression of the histamine receptors, as
well as on the own signalling proteome expressed by the histamine-producing cells. For
instance, production and secretion of histamine in mast cells is also regulated by PA [39] as
well as by the ornithine decarboxylase antizyme inhibitor 2, which is also an activator of
PA synthesis and uptake expressed in mast cells [14,40,41].

Histamine synthesis rate depends on the HDC expression regulation, a process which
seems to have a strong cell-specific component. Yatsunami et al. [42] located promoter
fragments involved in HDC induction by TPA plus dexamethasone and cAMP plus Ca2+

in basophilic cells. HDC regulation in basophilic cells seems to involve several cis-elements
such as a TATA-like sequence, a GC box, four CACC boxes, four GATA sequences and
6 leader-binding protein-1 binding motifs, as well as a c-Myb motif, and other positive and
negative motifs located in the promoter between positions -497 and -855 in the gene. In
ECLC, gastrin is an important HDC inducer [43], involving 3 gastrin-responsive elements.
Helicobacter pylori infection activates a MEK1-2/ERK1-2 cascade resulting in gastric HDC
induction. However, Kruppel-like factor, Ying-yang and SREBP act as repressors of HDC
expression [44,45]. Promoter methylation also seems to play an important role in regulation
of HDC expression in different cell types, a mechanism that seems to be dependent of
specific cell differentiation programs and cell metabolic status [46,47]. In differentiated
histamine-producing cells, HDC expression is regulated by different signalling pathways,
which coordinates histamine production with its physiological function (immune response,
gastric acid secretion, neurotransmission, cancer progression) in differentiated cell types.
Current information on the regulatory mechanisms of histamine synthesis in inflammatory
and gastric cells has been provided by Wang and collaborators. Nevertheless, knowledge
on HDC transcriptional regulation in differentiated human cell types still is an open subject
of study with important gaps in tissue-specific information [15,48].

Histamine can be degraded by two different pathways in mammalian cells. On one
hand, N-methyl transferase (HNMT) carries out the intracellular N-methylation of the
imidazole group, using SAM as the methyl donor [49]. HNMT is a 33kDa monomeric
protein, A human recombinant version being solved by X-ray chrystallography, Its ac-
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tivity is sensible to SH-group reagents [50,51]. Its gene is poorly characterized and lacks
canonical promoter cis-elements such as TATA and CAAT boxes [52]. The activity links
histamine degradation to the availability of SAM, and to the synthesis of polyamines, and
folates/methionine recycling [53,54], which is involved in the methylation of proteins and
nucleic acids, being therefore relevant for the regulation of gene expression and epigenetics.
HNMT is mainly expressed in liver and seems to be the major histamine degradation path-
way in the brain [15]. The product N-tele methyl-histamine is a substrate of MAO-B, which
produces oxygen peroxide and N-methylimidazole acetaldehyde. MAO-B is a member of
the flavin monoamine oxidase family, located in the mitochondrial outer membrane. It
is expressed mainly in liver and other tissues in a minor extent [55]. In regulation of its
transcription, the complex Sp1/Egr1/CREB, as well as microRNAs miR-1224 and miR-300,
seem to be involved [56]. In other tissues, such as the gastrointestinal tract, histamine
is oxidized by DAO, a cytosolic membrane-associated protein that produces imidazole
acetaldehyde and oxygen peroxide [49]. This enzyme has also be detected in body flu-
ids [57,58]. It is worth mentioning that mucosal mono- and polyamine oxidase activities
are distributed complementary to diamine oxidase in digestive tract [59]. Whatever the
degradation pathway is, histamine is a source of reactive oxygen species (ROS) that can
cause macromolecular damage and aging, especially if the microenvironment is poor in an-
tioxidant molecules. In other cases, reversible protein oxidation by ROS can have beneficial
effects for certain cell types; for instance, preconditioning neurons to ischemia [60].

2. Histamine and Vessel Dynamics

It is well known that alterations in vessel dynamics and vascular permeability are
tightly connected with angiogenesis [61]. As early as 1948, histamine was seen to increase
the vascular permeability at the haemato-ocular barrier [62], and just three years later, Miles
showed that histamine increases the permeability of skin capillaries in guinea pigs [63].
Several studies published in the following years confirmed and reinforced these find-
ings [64–67], and shed light into the molecular mechanisms, including the roles of protein
kinases, cytosolic calcium, cAMP and actin cytoskeleton [68,69]. Guo et al. showed that
histamine causes a transient and reversible disruption of the VE-cadherin/beta-catenin
binding during the hyperpermeability response induced by histamine on endothelial
cells [70]. The increase in vascular permeability induced by histamine through histamine
H1 receptor had a direct effect on vascular permeability for low-density lipoproteins, thus
promoting the formation of atherosclerotic lesions [71].

H3 and H4 receptors are also expressed by endothelial cells, so there might be other po-
tential effects of histamine on vascular permeability and vessel dynamics still unknown [72].
The role of histamine in vascular leakage and dysfunction is mediated by RhoA and
ROCK [73–75]. RhoA activation induced by histamine is associated to a fast Ca2+ influx
and the breakdown of microvascular endothelial cell barriers [76]. In lymphatic endothelial
cells, this movement of Ca2+ is mediated by Ca2+ release-activated Ca2+ channels (CRAC),
suggesting that CRAC could be a target for inhibitors able to relieve histamine-triggered
vascular leakage [77].

Recently, Grimsey et al. [78] have shown that histamine induce a robust p38 autophos-
phorylation in endothelial cells, acting through H1R/H2R. This involves the non-canonical
TAB1-TAB2/3 dependent pathway, thus promoting endothelial inflammatory responses.
This agrees with our previous observations on the anti-inflammatory effects of epigallocat-
echin gallate (EGCG), an inhibitor of HDC, on mast cells and monocytes [79,80].

3. Histamine, Metabolic Reprogramming and Angiogenesis: Pathophysiological
Implications

Cell proliferation and differentiation in different pathophysiological scenarios, such
as gestation or cancer progression, are the most relevant processes subject to metabolic
reprogramming induced by histamine. Only the cells able to adapt their metabolic networks
to the pressure posed in such processes can keep its own homeostasis and survive.
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3.1. Histamine and Angiogenesis in Gestation

Biogenic amines have regulatory roles in the metabolic changes and complex cellular
communication events that occur during gestation, i.e., energy and nitrogen metabolism
remodelling, adaptation to hypoxia, extracellular matrix remodelling, endothelial and
immune cell differentiation, and the production, secretion, and reception of mast cells
mediators [12,81–83].

Histamine levels modulate embryo-uterine interactions, so either low or excessively
high levels might lead to gestational complications [84,85]. Histamine seems to have a
regulatory role in trophoblast differentiation—a process that involves the expression of
integrin aV-b3 and trophoblastic H1R, which seems to be involved in vascular invasion
and placenta neovascularization [86]. Further research suggests that histamine-induced
tissues remodelling favours embryo implantation, assisted by several molecular mediators
released by infiltrated mast cells [87]. Those infiltrated mast cells present in the placental
bed are involved in immune regulatory functions, the regulation of trophoblast invasion,
in angiogenesis and in vessel remodelling [88].

3.2. Histamine in Cancer

The involvement of histamine in different cancer types has been extensively re-
viewed [89,90]. Histamine can participate in several of the hallmarks of cancer introduced
by Hanahan and Weinberg [91]. Histamine can induce cancer cell proliferation or cell death
depending on the receptors expressed by the target cells. This includes autocrine effects,
since some cancer cells are also histamine-producing cells (as for instance, malignant masto-
cytosis [92], breast cancer [93], or gastric cancer [94]), and paracrine effects between cancer
cells and the histamine-producing immune cells—including those that produce histamine—
in the tumour microenvironment [37]. H1R-elicited signals have been considered mainly
as antiproliferative stimuli; the opposite role has been proposed by histamine when acting
through H2R, however some controversial results were obtained in vivo [93,95,96]. The
latest discovered histamine receptor (H4R) also seems to be an important element for
modulation of carcinogenesis and/or cancer progression. Working with breast cancer,
H4R agonists reduce several markers of tumour progression in vivo [97]. It is interesting
that both tumour and immune cells can express H4R, suggesting that histamine acting
through H4R could be a coordinator of the crosstalk between immune and breast cancer
cells in vivo. Similar results were obtained for H4R working with melanoma cell lines [98].
The results could indeed have translational potential, but further characterization of the
signalling at molecular level is still needed [90]. This complex intercellular interactome
must plays very important roles in the development of several hallmarks of cancer different
from those related with cancer growth (sustaining proliferative signalling and evading
growth suppressors). For instance, histamine enables the tumour to suppress the immune
response from the tumour environment and promotes inflammation, leading to invasion,
metastasis, and angiogenesis with the participation of cytokines and proteases [99,100].

3.3. Histamine and Angiogenesis

A deregulated angiogenesis is casually involved in many diseases, including cancer,
ophthalmic diseases, arthritis, psoriasis and almost 200 rare diseases [101,102]. The role of
histamine in angiogenesis, was first suggested in 1983 when Fraser and Simpson showed
that histamine produced by mast cells induces neovascularization in a chorioallantoic
membrane model; however, this induction was not replicated by Barnhill and Ryan who
reported negative results with histamine 0.1 mM [103,104]. Further research supported
the indirect inductive effect of histamine on angiogenesis [105,106], mediated by H1R
and H2R [107]. The effect of histamine and serotonin in angiogenesis is biphasic: mi-
cromolar concentrations of histamine give rise to a quick pro-angiogenic response via
TR3/NUR77, but induce a negative feed-back loop after 10 days by upregulating the potent
anti-angiogenic endogenous compound thrombospondin-1 [108].
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Endogenous histamine has a dual role (activation/inhibition) in the regulation of
angiogenesis [109]. The effects of histamine produced by mast cells have been reviewed
in depth [110–112] and they are dependent on the activity of several transcription factors,
including NR4A1, MYCN and RCAN1, [113]. The role of H1R and H2R is also well estab-
lished, where the synergistic effect of histamine and bFGF mediated by H1R increases VEGF
levels and thus induces angiogenesis [114]. Furthermore, the H2R antagonist cimetidine
inhibits angiogenesis [115].

4. A Systems Biology Approach to Histamine as a Modulator of Metabolic
Reprogramming

The large amount of evidence gathered from traditional biochemical and cellular
biology experiments together with the latest generalized use of -omics techniques have
revealed that molecular functions and phenotypes can be no longer understood as isolated
events. The intricate reality of human pathophysiology has prompted the use of systemic
approaches to study the intertwined molecular mechanisms underlying health and dis-
ease [116]. Contrary to classic pharmacology approaches, the tools in Systems Biology
allow us to move past the traditional paradigm of “one gene–one protein (target)–one
drug”. Systems Biology explores the complex networks of molecular interactions and
signaling controlling the biological functions, and by extension, Systems Pharmacology
will assess what elements in these networks need to be modulated to regulate precisely
and effectively the outcome of such functions. Systems Biology is then essential in the
development of successful personalized therapies, especially in multifactorial conditions
that have large variability between individuals.

In previous sections, histamine has been shown to have a potential role in the metabolic
remodelling of cancer cells. Through histamine receptors, histamine can influence several
hallmarks of cancer, and participate in important processes underlying tumour progression
and metastasis, such as angiogenesis and inflammation. However, the many molecular
pathways by which histamine operates often branch and crosstalk, making up an intri-
cate network of molecular interactions. The complexity of such interactions makes the
characterisation of histamine pathways a challenging task that can be tackled by Systems
biology approaches.

We have modelled the network of signalling interactions between the histamine recep-
tors and the key metabolic modulators in the tumour microenvironment (compiled and
reviewed in [117]) to gain insight of the potential role of histamine in tumour metabolic
reprogramming. We compiled the signalling interactions from well-regarded data repos-
itories: the Atlas of Cancer Signalling Networks [118], the Cancer Cell Map [119], Phos-
phoSite [120], the Signalling Network Open Resource [121], the Human Cancer Signalling
Network [122], and OmniPath [123]; from which we modelled the network of signalling
interactions between the histamine receptors and the genes involved in reprogramming
cancer metabolism, so we obtained a general view of how histamine participates in re-
programming tumour metabolism. Table 2 and Figure 2 show that histamine receptors
are connected through signalling interactions with genes involved in disparate signalling
pathways that regulate the cellular metabolism, glycolysis, the TCA cycle and oxidative
phosphorylation, the synthesis of lipids and nucleic acids, and in particular, the metabolism
of polyamines and amino acids.
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Table 2. A synthesis of biochemical characteristics of metabolic remodelling-related targets modified by histamine through
H1-H4 receptors.

Protein HGNC UniprotKB Biological Function Metabolism
Remodelling

hexokinase 1 HK1 P19367
Key glycolytic enzyme responsible of hexose
phosphorylation, also involved in release of

mitochondrial pro-apoptosis elements.

hexokinase 2 HK2 P52789 Key glycolytic enzyme responsible of hexose
phosphorylation Glycolysis

6-phosphofructo-2-
kinase/fructose-2,6-

biphosphatase 3
PFKFB3 Q16875

Key enzyme for glycolysis regulation. Proposed as a
marker to distinguish between induced-pluripotent stem

cells and cancer stem cells. Its expression is modified
by hypoxia

pyruvate
dehydrogenase kinase

1
PDK1 O15530

It activates by phosphorylation targets such as AKT1,
PRKACA, involved in glucose and nitrogen uptake y

storage. It can inhibit TGF-β signalling, as well as
activate NF-kB in macrophages and calcium movements

in mast cells. Regulator of key nutrient receptor in
thymocytes, and essential for mobility of vascular

endothelial cells.

TCA cycle

cytochrome c CYCS P99999 Electron carrier protein that plays a role in the
mitochondrial-associated mechanism of apoptosis OXPHOS

phosphoglycerate
mutase 1 PGAM1 P18669 Glycolytic enzyme described as a promising target for

diagnosis and therapy of cancer

Pentose
phosphate
pathway

SLC7A8 amino acid
transporter light chain,

L system
LAT2 Q9UHI5

Neutral amino acid cytosolic exchanger. It is involved in
glutamine-dependent mTOR activation to promote

glycolysis in cancer cells.
Amino acid
metabolismsolute carrier family 38

member 2 SLC38A2 Q96QD8
It has glutamine as a ligand, and is involved in cellular

response to starvation, regulation of gene expression and
splicing, and cellular response to stress.

solute carrier family 7
member 1 SLC7A1 P30825 It accepts L-Arg, L-ornithine, L- His and L- Lys

as substrates.

potassium inwardly
rectifying channel

subfamily J member 11
KCNJ11 Q14654

It acts as a transmembrane transport system and an
ankyrin-binding protein. It is Involved in cardiac muscle

function, ischemia response and glucose homeostasis.
Polyamine
metabolism

spermidine/spermine
N1-acetyltransferase 1 SAT1 P21673 Key enzyme for polyamine degradation.

Highly regulated.

spermine synthase SMS P52788

Enzyme responsible of spermine synthesis from
spermidine and decarboxylated S-adenosylmethionine.

Diminished activity is related to
Snyder-Robinson syndrome.

Fas cell surface
death receptor FAS P25445 Key element for extrinsic apoptosis pathway. Related to

regulation of immune response. Lipid synthesis

amyloid beta precursor
protein binding family

B member 1
APBB1 PO00213

Transcription coregulator related to histone
postranslational modifications, and regulation of many

key elements for cell division and apoptosis. Nucleic acid
metabolism

dihydrofolate reductase DHFR P00374
Key element for biomolecular methylations important
for DNA synthesis and gene expression, among many

other processes.
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Table 2. Cont.

Protein HGNC UniprotKB Biological Function Metabolism
Remodelling

ankyrin 1 ANK1 P16157 Structural protein related to cytoskeletal remodelling,
and organelle organization.

Metabolic-
signaling
pathways

eukaryotic translation
initiation factor 2 alpha

kinase 2
EIF2AK2 P19525

Protein kinase acting as an inhibitor of viral infection via
the integrated stress response. Also involved in

regulation of apoptosis and cell proliferation, and
inflammatory response.

hypoxia inducible
factor 1 subunit alpha HIF1A Q16665

Under hypoxia, it activates a plethora of genes, involved
in embryonic vascularization and tumour angiogenesis.
Also related to response to virus infections, including

SARS-CoV-2.

mechanistic target of
rapamycin kinase MTOR P42345

Central regulator of cellular metabolism, growth and
survival in response to hormones, growth factors,

nutrients, energy and stress signals.

Endonuclease 8-like 1 NEIL1 Q96F14 Involved in base excision repair of DNA damaged by
oxidation or by mutagenic agents.

Plasminogen PLG P00747

Plasmin precursor. Plasmin acts as a proteolytic factor in
a variety of other processes including ovulation,

embryonic development, tissue remodelling, tumour
invasion, and inflammation.

protein kinase
cAMP-activated

catalytic subunit alpha
PRKACA P17612

This kinase is involved in many processes related to fuel
(glucose and lipid) metabolism, cell differentiation of

different cell-types, and immune cells responses,
including inflammation. When activated inhibits the

antiproliferative and antiinvasive effect of
difluoromethylornithine (an inhibitor of

polyamine synthesis).
protein kinase

cAMP-dependent type
I regulatory

subunit alpha

PRKAR1A P10644
Subunit responsible of the regulation of

cAMP-dependent protein kinase, whose properties are
briefly described above.

von Hippel-Lindau
tumor suppressor VHL P40337

Involved in the ubiquitination and subsequent
proteasomal degradation of proteins. It is involved in
transcriptional repression through interactions with

H1F1A, HIF1AN and histone deacetylases.

Data from UniProt Knowledgebase and reference [117].

As expected, some of the targets of signalling interactions from histamine receptors
are involved in immune response: ANK1, EIF2AK2, HIF1A, PDK1, PRKACA, PRKAR1A
and VHL. We postulate that the signalling exerted by histamine would be relevant in
the crosstalk between proliferating cancer cells and immune cells present in the tumour
microenvironment. We observe that histamine can influence the shift from aerobic to anaer-
obic glucose metabolism that cancer cells deploy in response to proliferation stimuli [124],
by influencing key regulators of glucose metabolism such as HK1, HK2, PDK1, PRKACA
and PFKFB3. Histamine could mediate signalling effects on the mitochondria function and
integrity through CYCS, hexokinase isozymes, and mTOR.

The metabolism of histamine and the biogenic polyamines are related to each other in
some cell types. We have modelled their interactions—including the crosstalk with sulphur
metabolism—that provided deeper insights on the connections of polyamines with energy
metabolism [47,53,125]. In our network models, it can be observed how histamine connects
with polyamines metabolism through spermine synthase (SMS) and spermidine/spermine
acetyl transferase (SAT1) and the cationic amino acid transporter (SLC7A1), which have
been described previously in cancer cell models [16,126].
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Figure 2. Network of signaling interactions between the histamine receptors and the genes involved in reprogramming
cancer metabolism. Abbreviations used as in Table 2.

Furthermore, our network analysis supports previous evidence that histamine can
sway the metabolism of both polyamines and amino acids, including those essential for
cancer cell growth such as glutamine, arginine, methionine and ornithine [127]. However,
the signalling effect of histamine on polyamines and amino acid metabolism comes up
mainly by histamine influencing polyamines and amino acids transporters (see Table 2).
This observation remarks the importance of the metabolic compartments for understanding
biochemical and physiological processes [128].

Our histamine signalling network provides further details on the ambiguous role
histamine plays on regulating both cell proliferation and cell death. On the one hand,
histamine participates in the regulation of apoptosis acting upon CYCS, FAS, and hex-
okinases. On the other hand, histamine can influence cell survival and cell proliferation
pathways by way of key elements such as mTOR, HIF1A, SMS, and VHL, together with
elements of cancer progression hallmarks—ANK1, involved in cytoskeleton remodelling,
DHFR in genome methylation, NEIL1 in genome edition, APBB1 and VHL in chromatin
covalent modification, and the remarkable role of HIF1A as coordinator of different cancer
hallmarks [129].

5. Concluding Remarks and Future Prospects

The complex system we termed the histamine influence network has several remark-
able features. Its basic metabolism (synthesis and degradation) consists of simple pathways
composed by a few reactions. However, the expression of key enzymes is cell type specific,
and their regulation is not well characterised in the different cell types. These metabolic
reactions share elements with other biochemical pathways and can therefore take part in
processes such as SAM-dependent methylation of amino acids and amines, and posttrans-
lational protein covalent modification, thus expanding the histamine metabolic network.

Besides synthesis and degradation, metabolism also includes intercellular signalling,
adding further complexity to the histamine network. Since histamine receptors are ex-
pressed in different cell types, activate different G proteins and show different affinity for
histamine (Table 1), histamine can conform an extremely complex metabolic network that
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modulates the key physiological processes at the organism level. The greater advances in
biomedicine and pharmacology regarding histamine-mediated pathologies focus almost
exclusively on allergic and immune reactions, neurotransmission and digestion. However,
the many data and information gaps that remain on this complex system hampers the
development of efficient intervention strategies in many other diseases.

In this work, we have outlined the current perspective on different layers of the
network where the role of histamine is clear, with our focus on unveiling further details on
cell proliferation, tissue growth and cancer progression.

Tumour development requires distinct metabolic phenotypes to support their prolifer-
ation and progression, especially in both nitrogen and energy metabolism. Cell signalling
is fundamental to understand this metabolic reprogramming, but a full view combining the
known individual signalling pathways is still missing. We have provided a glance of how
histamine is involved in the coordination of some signalling processes. That is, our network
analysis brings an interesting starting point to get further insights in the reprogramming of
the metabolism needed for the processes we have discussed in this review.

We propose that Systems Biology approaches are essential to fill the gaps of infor-
mation about histamine signalling in different pathophysiological scenarios, and to assist
the diagnosis and to locate intervention targets of multiple human syndromes and dis-
eases [130]. Our work provides a general picture on how histamine can influence angiogen-
esis and cancer metabolic reprogramming, though the actual role of histamine will depend
on its local concentrations, and the sets of these genes expressed in each cell type involved—
in particular the histamine receptors. Experimental approaches using co-cultures or genetic
modified organisms, together with transcriptomic, proteomic, metabolomics, and biochem-
ical and biophysical analyses, will also be essential and complementary to understand the
effects of histamine in different cell types and physiological conditions.
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