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Abstract: This article aimed to identify and distinguish the various responses to silver nanoparticles
(NPs) of endothelial and epithelial cells. We also assessed the significantly increased gene expression
levels, as shown by microarray analysis. We evaluated the median lethal dose of NPs in each cell
line and found that each value was different. We also confirmed the toxicity of 5 nm silver NPs.
Meanwhile, cell death was not observed in cells exposed to 100 nm silver NPs at a high concentration.
We verified that 5 nm silver NPs affected the variation in gene expression in cells through microarray
analysis and observed a noticeable increase in interleukin (IL)-8 and IL-11 gene expression in early
stages. This study showed noticeable variation in the expression of oxidative stress-related genes
in early stages. Microarray results showed considerable variation in cell death-, apoptosis-, and
cell survival-related gene expression. Of note, IL-11 gene expression was particularly increased
following the exposure of endothelial and epithelial cells to 5 nm silver NPs. In conclusion, this study
demonstrated that intracellular genes specifically responded to silver NPs in respiratory epithelial
cells and endothelial cells. Among cytokine genes, IL-11 expression was noticeably increased.
Additionally, we confirmed that NP toxicity was affected by NP size and dose.

Keywords: silver nanoparticle; interleukin-11; oxidative stress; microarray

1. Introduction

The ultrafine particle size of nanomaterials is limited to approximately 100 nm, and
nanomaterials have been applied in various ways due to this small size [1]. Currently,
nanotechnology is one of the leading scientific fields, combining the fields of physics,
chemistry, biology, medicine, pharmaceutical science, informatics, and engineering [2].
Nanotechnology represents an emerging dynamic field with approximately 50,000 articles
being published each year, and according to the European Patent Office, >2500 patents
have been filed recently [3].

Particularly, metal nanoparticles (NPs) that contain gold, silver, iron, zinc, and metal
oxides have been widely used owing to their large surface-area-to-volume ratio and unique
physicochemical properties, including high electrical and thermal conductivity and optical,
magnetic, and catalytic activities [4,5]. However, silver NPs have been identified as a
cause of toxicity in the human body; therefore, they are considered dual-natured with
both positive and negative aspects. Consequently, many toxicity evaluations and risk
assessments of NPs are being conducted.
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The endothelium is the human body’s first internal layer of blood vessels and is
distributed throughout the body. Therefore, the endothelium allows molecules to move
to and circulate between various tissues through the blood. Moreover, the endothelium
controls certain pathways, such as lipid metabolism and vascular inflammation. When
these functions are lost, vascular diseases may be triggered [6]. These characteristics of the
endothelium are closely linked to the mechanism by which NPs infiltrate the human body
and enter various organs.

In this study, we evaluated the gene expression of endothelial cells and epithelial cells
when exposed to silver NPs. Among cytokine genes, the expression of interleukin (IL-11) as
well as IL-8 were noticeable. The increased IL-8 levels due to silver NPs has been reported
by us previously [7]; therefore, we focused on IL-11 in the present study. IL-11 is a member
of the IL-6 family of cytokines and performs various functions in various cells. The IL-6
family of cytokines includes not only IL-11, but also IL-6, IL-27, IL-31, leukemia inhibitory
factor, ciliary neurotrophic factor, oncostatin M, and cardiotrophin-1 [8]. IL-6 is associated
with chronic inflammatory diseases and is responsible for the progression of various types
of cancer. It activates the signal transducer and the activator of transcription 3 (STAT3) pro-
survival pathways. According to one study, IL-6 and IL-11 were responsible for advancing
gastrointestinal cancer, and during this process, IL-11 was found to be closely associated
with STAT3 activation [9]. IL-11 performs hematopoietic functions in many different areas
of the body, including the liver, gastrointestinal tract, lungs, heart, central nervous system,
bones, joints, and immune system [10]. Playing a protective role by accelerating platelet
recovery and reducing inflammatory responses, IL-11 was able to lower the mortality
rate among sepsis patients [11]. In other words, among the immune responses of IL-
11, anti-inflammatory properties have also been identified. Consequently, the various
functions and roles of IL-11 are drawing new attention. Other biological activities of IL-11
include the stimulation of erythropoiesis and activation of megakaryocytes. Moreover,
it controls the polarization of T cells and macrophages and promotes the maturation of
bone-resorbing osteoclasts [12]. It also plays a role in neurogenesis [13], adipogenesis [14],
and the promotion of stem cell development [15]. Additionally, it protects cells from graft
versus host disease [16] and blocks gastric acid secretion [17]. Finally, IL-11 performs a
variety of functions in various cells. IL-11 reduces proliferation and induces apoptosis
of epithelial cells. In endothelial cells, it plays a role in cell activation and expression of
surviving cell proliferation-related proteins [18]. IL-11 also affects mast cells, inducing
their proliferation. Moreover, in macrophages and osteoclasts, respectively, IL-11 reduces
the production of IL-1β, IL-12, NO, and NF-κB and decreases formation, increasing bone
resorption [17].

In this study, we assessed IL-11 production upon exposure to silver NPs in endothelial
cells and respiratory epithelial cells, because IL-11 has various important functions as
described above, and the roles can vary by cell types [18]. Therefore, our results will
provide important insights into better understanding the effects of IL-11 produced upon
exposure silver NPs.

2. Materials and Methods
2.1. Silver NPs

Silver NPs in water-based solutions were obtained from Dr. Koh (5 nm; PNM,
Hwaseong, Korea) or purchased from ABC Nanotech (100 nm; Daejeon, Korea). All
silver NPs were round and PVP-coated. For cell culture, silver NPs at different concen-
trations were prepared in high-glucose Dulbecco’s Modified Eagle’s Medium (DMEM;
Welgenen, Gyeongsan, Korea) and 2-mM L-glutamine-containing Minimum Essential
Medium (MEM; Welgenen) supplemented with 10% fetal bovine serum (FBS; Welgenen),
penicillin (100 U/mL), and streptomycin (100 µg/mL).
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2.2. Characterization of Silver NPs

The diameter of the silver NPs was determined using transmission electron microscopy
(TEM; model JEM-2010, JEOL Ltd., Tokyo, Japan). Agglomeration of NPs (0.5 mg/mL) in
DMEM with 10% FBS was examined by dynamic light scattering (DLS; Malvern Instru-
ments, Novato, CA, USA).

2.3. Cell Lines and Culture

EA.hy926 cells (human umbilical vein cell line; ATCC, Manassas, VA, USA) were cul-
tured in DMEM, and BEAS-2B cells (human bronchial epithelial cell line; ATCC) were cul-
tured in MEM containing 10% FBS and penicillin–streptomycin (100 U/mL and 100 µg/mL,
respectively) at 37 ◦C in a humidified 5% CO2 atmosphere in an incubator. Although en-
dotoxins were not detected in the silver NPs used in this study, polymyxin B (10 ng/mL;
InvivoGen, San Diego, CA, USA) was added as an endotoxin neutralizer.

2.4. Analysis of Cell Proliferation

Cell viability was assessed using the CCK-8 Kit (Dojindo Laboratories, Kyoto, Japan).
EA.hy926 (5× 104 cells/well) and BEAS-2B (6× 104 cells/well) cells were plated in 24-well
plates and incubated overnight at 37 ◦C in a 5% CO2 incubator. The medium was removed,
and then EA.hy926 cells were treated with silver NP solution (500 µL) diluted in the growth
medium, whereas BEAS-2B cells were treated with silver NP solution (500 µL) diluted
in 2% FBS-containing growth medium. After 24 h, CCK-8 reagent (15 µL) was added to
each well, followed by incubation at 37 ◦C for 2 h. After centrifugation at 13,000 rpm for
5 min, EA.hy926 (200 µL) and BEAS-2B (100 µL) supernatants were transferred to 96-well
microtiter plates, and optical density was measured at 450 nm with a spectrophotometer
(BioTek Instruments, Winooski, VT, USA) to ensure that no optical interference was induced
by the silver NPs.

2.5. Cytokine Detection

Enzyme-linked immunosorbent assay (ELISA) was performed to detect the presence
of cytokines IL-8 and IL-11. EA.hy926 cells (1.5 × 105 cells/well) were plated in DMEM
(2 mL) containing 10% FBS in 6-well plates. BEAS-2B cells (2 × 105 cells/well) were plated
in MEM (2 mL) containing 10% FBS in 6-well plates. The medium was then removed,
and silver NPs suspended in the growth medium and silver NPs suspended in 2% FBS-
containing growth medium were added to each well containing EA.hy926 and BEAS-2B
cells, respectively, to obtain a final volume of 1 mL per well. ELISA was performed using
Human Cytokine IL-8 (BD Biosciences, San Diego, CA, USA) and IL-11 (R&D Systems,
Minneapolis, MN, USA) Assay Kits. These kits use biotinylated anti-IL-8 or anti-IL-11
antibodies and streptavidin conjugated to horseradish–peroxidase. The OD was measured
at 450 nm.

2.6. Real-Time Reverse Transcription Polymerase Chain Reaction (RT-PCR)

cDNA was synthesized from total RNA via reverse transcription with random primers
(Invitrogen, San Diego, CA, USA). Primer pairs designed to amplify the cDNA encoding
the target genes were prepared using the Invitrogen Oligo Perfect Designer (Thermo Fisher
Scientific, Waltham, MA, USA). PCR reactions were performed using FastStart Universal
SYBR Green Master (ROX) reagent according to the manufacturer’s instructions (Roche
Applied Science, Mannheim, Germany) in a 7500 and StepOne Plus Real-Time PCR system
(Applied Biosystems, Foster City, CA, USA). The reaction parameters were as follows:
2 min at 50 ◦C, 10 min at 95 ◦C, 40 cycles of denaturation at 95 ◦C for 15 s, and 60 ◦C
for 1 min. Real-time RT-PCR data for each gene product were normalized against levels
of glyceraldehyde 3-phosphate dehydrogenase (GAPDH). All transcript levels were re-
ported as mean ± standard deviation (SD) relative to untreated controls from triplicate
analyses. Gene expression levels were analyzed using the comparative CT method with
the fold difference calculated based on the endogenous control (GAPDH) [19]. Primer se-
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quences were as follows: IL-8, forward: 5′-GTGCAGTTTTGCCAAGGAGT-3′ and reverse:
5′-CTCTGCACCCAGTTTTCCTT-3′; IL-11, forward: 5′-CTGAGCCTGTGGCCAGATA-3′

and reverse: 5′-AGCTGTAGAGCTCCCAGTGC-3′; hemeoxygenase-1 (HO-1), forward:
5′-ATGACACCAAGGACCAGAGC-3′ and reverse: 5′-GTGTAAGGACCCATCGGAGA-3′;
heat shock protein 70 kDa (HSP-70), forward: 5′-AGGCCAACAAGATCACCA-3′ and
reverse: 5′-TCGTCCTCCGCTTTGTACTT-3′; and glyceraldehyde-3-phosphate dehydroge-
nase (GAPDH), forward: 5′-GATCATCAATGCCTCCT-3′ and reverse: 5′-TGTGGTCATGA
GTCCTTCCA-3′.

2.7. Western Blotting

Cells were treated with 5 nm and 100 nm silver NPs for 24 h. Cells were harvested and
lysed using lysis buffer (200 µL; 150 mM NaCl, 1% NP-40, 0.1% sodium dodecyl sulfate
(SDS), 50 mM Tris (pH 8), 5 mM NaF, 1 mM Na3VO4, 1 mM PMSF, protease inhibitor
cocktail) at 4 ◦C for 2 h. Cell lysates were centrifuged at 13,000 rpm at 4 ◦C for 15 min, and
the supernatants were stored at−20 ◦C. Protein (30–40 µg) from each sample was boiled for
5 min and loaded on a 12% SDS–polyacrylamide gel. After electrophoresis, proteins in the
gel were transferred onto nitrocellulose membranes (Amersham, Glattbrugg, Switzerland).
After blocking with 5% skim milk (BD Biosciences, Franklin, NJ, USA), membranes were
reacted overnight with primary antibodies, including anti-HO-1 antibodies (Cell Signaling
Technology, Danvers, MA, USA) and anti-HSP-70 antibodies (Cell Signaling Technology),
at 1:1000 dilution in 5% bovine serum albumin (Affymetrix, Cleveland, OH, USA) at
4 ◦C. After washing, the membranes were further reacted with a secondary antibody
(peroxidase-conjugated AffiniPure goat anti-rabbit IgG; Jackson ImmunoResearch, West
Grove, PA, USA) at 1:2000 dilution in 5% skim milk at room temperature for 1 h. Anti-
GAPDH antibody (Cell Signaling Technology) was used to assess the transcription levels
of housekeeping genes.

2.8. TEM Analysis

TEM analysis was performed according to the procedure described by DaeHyoun et al.,
(2012) [18].

2.9. RNA Isolation and cDNA Microarray Analysis

Total RNA was extracted using the RNeasy® Mini Kit (Qiagen, Hilden, Germany),
according to the manufacturer’s guidelines. RNA quantity was measured using a Nan-
odrop ND-1000 spectrophotometer (Wilmington, DE, USA), and an RNA 260/280 ratio
of 1.8–2.1 was applied to all samples. Whole genome microarray analysis was performed
using an AffymetrixGeneChip® Human Gene 2.0 ST Array (Affymetrix, Santa Clara, CA,
USA). EA.hy926 cells (4.5 × 105 cells) were plated on 60-mm Petri dishes overnight and
then exposed to 5 nm or 100 nm silver NPs (1.5 and 2 µg/mL) for 6 h. BEAS-2B cells
(3.5 × 105 cells) were plated on 60-mm Petri dishes overnight and then exposed to 5 nm
or 100 nm silver NPs (0.25, 0.5 and 0.75 µg/mL) for 6 h. cDNA was synthesized from
total RNA (3 µg) in the presence of a random primer, and cDNA microarray results were
analyzed using independent t-tests.

2.10. Statistical Analysis

One-way analysis of variance (ANOVA) and two-way ANOVA with Bonferroni post-
tests were performed for statistical comparisons for two groups and more than two groups,
respectively. For cDNA microarray analysis, gene expression values were median-centered
and imported into the Expression Console 1.4 software. Principal component analysis
was performed to verify the consistency of the experiments and determine the presence of
any chip outliers. Transcripts with a 1.5-fold (EA.hy926) and 2-fold (BEAS-2B) or higher
change in their expression values were selected, and a t-test was performed to evaluate the
significance of the differences. p-values < 0.05 were considered statistically significant.
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3. Results
3.1. Characterization of Silver NPs

Characterization of silver NPs used in this experiment is shown in Figure 1. The 5 nm
silver NPs were comparatively consistent in size, whereas the 100 nm silver NPs varied in
size. Particle shape was round (Figure 1A). DLS analysis showed that the hydrodynamic
diameters of the 5 nm and 100 nm silver NPs were 5.3 nm and 104.7 nm, respectively
(Figure 1B).
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Figure 1. Analysis of silver nanoparticles (NPs). (A) Transmission electron microscopy images show that the 5 nm silver
NPs were relatively uniform in size, whereas the 100 nm silver NPs were varied in size. (B) For DLS analysis, silver NPs
were dispersed in DMEM containing 10% FBS.

3.2. Cytotoxicity in Endothelial and Epithelial Cells

As shown in Figure 2, cell viability was decreased with the increase in the concentra-
tion of 5 nm silver NPs. At silver NP concentrations of 1, 1.5, 2, 2.5, 2.75, 3, and 3.5 µg/mL,
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cell viability of EA.hy926 cells was reduced to 91%, 69%, 26%, 8%, 4%, 3%, and 1%, respec-
tively; viability was significantly lower in the silver NP-exposed cells than in the control
cells. The median lethal dose (LD50) of 5 nm silver NPs was approximately 1.72 µg/mL.
However, 100 nm silver NPs at up to 3.5 µg/mL did not show cytotoxicity (Figure 2A).
At silver NP concentrations of 0.5, 0.75, 1, 1.25, and 1.5 µg/mL, cell viability of BEAS-2B
cells was reduced to 77%, 33%, 19%, 11%, and 5%, respectively; viability was significantly
lower in the silver NP-exposed cells than in the control cells. The LD50 of 5 nm silver NPs
was approximately 0.65 µg/mL. In contrast, 100 nm silver NPs at up to 1.5 µg/mL did not
show cytotoxicity (Figure 2B). These results showed that silver NP toxicity was dependent
on size and dose.
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3.3. cDNA Microarray Analysis

Table 1 shows a summary of the differentially expressed gene count data 6 h post-silver
NP exposure. The Venn diagram shows the number of genes with increased expression
in EA.hy926 and BEAS-2B cells exposed to silver NPs at their approximate LD50 for 6 h
(Figure 3A,B, respectively). Genes with >2-fold positive change in their absolute expression
levels included oxidative stress- and cytokine production-related genes in 5 nm silver
NP-treated cells (Tables 2 and 3). Figure 4A,B show a heat map of the microarray results of
IL-11, HSP-70, metallothionein 1G (MT1G), and HO-1 in EA.hy926 cells. Figure 4C,D show
a heat map of the microarray results of IL-8, IL-11, HSP-70, MT1G, and HO (decycling)-1
expression changes in BEAS-2B cells.

Table 1. Summary of differentially expressed genes.

Group
EA. hy926 1 BEAS-2B 2

Up-Regulation Down-
Regulation

Total
Genes Up-Regulation Down-

Regulation Total Genes

Control vs. 5 nm 466 193 659 726 242 968

Control vs. 100 nm 27 20 47 39 55 94

100 nm vs. 5 nm 479 181 660 821 251 1072
1 Significant transcripts with expression values changed by 1.5-fold or greater were selected. 2 Significant transcripts with expression
values changed by 2.0-fold or greater were selected. A t-test was performed to evaluate the significance of the differences.
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Table 2. List of increased genes after silver NP exposure in EA.hy926 cells.

(A) Control vs. 5 nm

Genes Fold Change p-Value

metallothionein 1G 47.9 0.0008
long intergenic non-protein coding RNA 622 15.1 0.0079

heme oxygenase (decycling) 1 13.3 0.0001
putative novel transcript 11.3 0.0189

interleukin 11 10.4 0.0015
matrix metallopeptidase 10 (stromelysin 2) 8.7 0.0040

chemokine (C-X-C motif) ligand 8 6.1 0.0045
heat shock 70 kDa protein 1B 5.1 0.0004

heat shock 70 kDa protein 6 (HSP70B) 4.8 0.0027
metallothionein 1E 4.6 0.0008

interleukin 36, alpha 4.6 0.0292
heat shock 70 kDa protein 1A 4.0 0.0006

interleukin 13 receptor, alpha 2 3.8 0.0474
heat shock 70 kDa protein 9 (mortalin) 3.5 0.0082

interleukin 1 receptor-like 1 3.1 0.0080
interleukin 7 receptor 2.7 0.0143
interleukin 1, alpha 2.6 0.0215

vascular endothelial growth factor A 2.4 0.0283
metallothionein 1X 2.3 0.0019
metallothionein 1F 2.2 0.0379

(B) 100 nm vs. 5 nm

Genes Fold Change p-value

metallothionein 1G 44.3 0.0008
long intergenic non-protein coding RNA 622 18.1 0.0061

putative novel transcript 13.8 0.0140
heme oxygenase (decycling) 1 11.5 0.0001

interleukin 11 11.0 0.0013
nuclear receptor subfamily 4, group A, member 1 7.9 0.0003

matrix metallopeptidase 10 (stromelysin 2) 7.8 0.0028
chemokine (C-X-C motif) ligand 8 6.4 0.0008

heat shock 70 kDa protein 6 (HSP70B) 5.2 0.0026
heat shock 70 kDa protein 1B 5.0 0.0005

metallothionein 1E 4.3 0.0008
interleukin 36, alpha 4.0 0.0391

heat shock 70 kDa protein 9 (mortalin) 3.9 0.0042
heat shock 70 kDa protein 1A 3.9 0.0008

interleukin 13 receptor, alpha 2 3.5 0.0479
interleukin 1 receptor-like 1 2.8 0.0108

spermine oxidase 2.8 0.0069
vascular endothelial growth factor A 2.6 0.0228

interleukin 1, alpha 2.6 0.0191
metallothionein 1X 2.3 0.0010

Significant transcripts were selected when expression values changed by 2-fold or greater and while using a t-test with p-value < 0.05.

Table 3. List of increased genes after silver NP exposure in BEAS-2B cells.

(A) Control vs. 5 nm

Genes Fold Change

activity-regulated cytoskeleton-associated protein 46.1
heat shock 70 kDa protein 7 (HSP70B) 36.4

heme oxygenase (decycling) 1 18.1
metallothionein 1B 12.8
metallothionein 1E 12.7

heat shock 70 kDa protein 6 (HSP70B’) 11.1
interleukin 8 9.8
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Table 3. Cont.

(A) Control vs. 5 nm

Genes Fold Change

metallothionein 1G 6.8
interleukin 11 6.2

interleukin 1 receptor-like 1 5.4
metallothionein 1M 5.1

heat shock 70 kDa protein 1B 4.2
BCL2-associated athanogene 3 3.7
heat shock 70 kDa protein 1A 3.5

cytochrome P450, family 4, subfamily F, polypeptide 11 3.4
heat shock 70 kDa protein 9 (mortalin) 3.4

VGF nerve growth factor inducible 3.1
oxidative stress responsive serine-rich 1 2.7
heparin-binding EGF-like growth factor 2.6

Smad nuclear interacting protein 1 2.4

(B) 100 nm vs. 5 nm

Genes Fold Change

activity-regulated cytoskeleton-associated protein 48.0
heat shock 70 kDa protein 7 (HSP70B) 28.9

heme oxygenase (decycling) 1 12.6
interleukin 8 11.5

heat shock 70 kDa protein 6 (HSP70B’) 9.9
metallothionein 1G 6.0

interleukin 11 6.0
metallothionein 1B 5.4

interleukin 1 receptor-like 1 5.4
metallothionein 1E 4.7

heat shock 70 kDa protein 1-like 4.5
heat shock 70 kDa protein 1B 4.4

metallothionein 1M 3.8
heat shock 70 kDa protein 9 (mortalin) 3.7

BCL2-associated athanogene 3 3.6
heat shock 70 kDa protein 1A 3.4

VGF nerve growth factor inducible 3.1
BCL2-related protein A1 2.4

interleukin 6 receptor 2.2
heat shock 22 kDa protein 8 2.1

Significant transcripts were selected when expression values changed by 2-fold or greater.
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and (D) 100 nm NP-treated BEAS-2B cells vs. 5 nm NP-treated BEAS-2B cells is presented. Results were analyzed using a
t-test, and significance was set at p < 0.05.

3.4. Classification of Genes That Showed Increased Expression Following Treatment with
Silver NPs

Genes that showed increased gene counts in EA.hy926 and BEAS-2B cells were divided
into five categories based on the following gene ontology (GO) terms: cell death, cell
survival, inflammation, apoptosis, and reactive oxygen species (ROS). IL-11 was included
in the cell survival and inflammation categories. The results (Supplementary Tables S1–S10)
suggested that 5 nm silver NPs activated inflammation and ROS stimulated expression of
cell proliferation-related genes. Most of the stress-related genes were included in the cell
death, apoptosis, and ROS categories.

3.5. Effects of Silver NPs on Cytokine Production and Inflammatory Response

Cells were treated with silver NPs at different concentrations for 8 h (Figure 5A,B) and
24 h (Figure 5C,D). IL-8 and IL-11 were expressed at 1000 pg/mL or more in EA.hy926
cells treated with 5 nm silver NPs at 2.5 µg/mL. IL-8 production was found to be the
highest at 1413 pg/mL in cells treated with silver NPs at 0.5 µg/mL. IL-11 production was
found to be highest at 3733 pg/mL in BEAS-2B cells treated with silver NPs at 0.75 µg/mL.
As predicted, treatment with 100 nm silver NPs did not increase IL-8 or IL-11 release.
Thus, cytokine expression was increased in cells in response to silver NPs in a size- and
dose-dependent manner. Furthermore, these results supported the results of the cDNA
microarray analysis.

3.6. Expression of Genes Related to Cytokine Production and ROS

At 5 nm silver NP concentrations of 1.5 and 2 µg/mL, IL-8 gene expression was
increased by 3.5- and 6.5-fold, respectively, and IL-11 gene expression was increased by
2.9- and 6.2-fold, respectively, in EA.hy926 cells (Figure 6A). At the same doses, HSP-70
gene expression was increased by 3- and 27-fold, respectively, and HO-1 gene expression
was increased by 9.8- and 19.7-fold, respectively (Figure 6B). Additionally, at 5 nm silver
NP concentrations of 0.25, 0.5, and 0.75 µg/mL, IL-8 gene expression was increased by
2.8-, 20.6-, and 21.6-fold, respectively, and IL-11 gene expression was increased by 1.3-,
11.5-, and 15.6-fold, respectively, in BEAS-2B cells (Figure 6C). At the same doses, HSP-70
gene expression was increased by 16-, 85.6-, and 103.2-fold, respectively, and HO-1 gene
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expression was increased by 54.9-, 243.5-, and 163-fold, respectively, in BEAS-2B cells
(Figure 6D).
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3.7. Effects of Silver NPs on HSP-70 and HO-1 Expression

HSP-70 protein levels were increased by a maximum of 8.7-fold in EA.hy926 cells
treated with 5 nm silver NPs at 2.75 µg/mL (Figure 7A), and HO-1 protein levels were
increased by a maximum of 33.5-fold in EA.hy926 cells treated with 5 nm silver NPs at
3 µg/mL (Figure 7B), compared with in untreated EA.hy926 cells. HSP-70 protein levels
were increased by a maximum of 7.7-fold and HO-1 protein levels were increased by a
maximum of 8.9-fold in BEAS-2B cells treated with 5 nm silver NPs at 0.5 µg/mL, compared
with in control cells (Figure 7C). In contrast, ROS-associated proteins were not affected by
treatment with 100 nm silver NPs.

3.8. Intracellular Localization of Silver NPs

The transportation and localization of silver NPs in EA.hy926 cells were observed
by TEM (Figure 8). A representative image of one EA.hy926 cell treated with silver NPs
at 1.5 µg/mL for 30 min is shown. Untreated cells showed no abnormalities (Figure 8A),
but 5 nm silver NP-treated cells showed internalization of NPs in vesicles (black arrow).
Furthermore, mitochondrial swelling, decrease or disappearance of cytoplasm, and vac-
uolization were observed after treatment with 5 nm silver NPs (Figure 8B). After treatment
with 100 nm silver NPs, no clear changes in cell morphology, including the presence of
NPs in lysosomes and the nucleus, were observed (Figure 8C).
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Figure 6. Expression of genes related to cytokine production and reactive oxygen species (ROS).
(A,B) RT-PCR analysis was performed for EA.hy926 cells treated with silver NPs at 1.5 and 2 µg/mL
for 6 h. (C,D) Real-time RT-PCR analysis was performed for BEAS-2B cells treated with silver NPs at
0.25, 0.5, and 0.75 µg/mL for 6 h. Data are shown as the mean ± standard deviation of three or more
independent experiments. One-way and two-way analysis of variance was performed to determine
the significance of the differences (* p < 0.05, ** p < 0.01, *** p < 0.001).
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Figure 7. Heat shock protein 70 kDa (HSP-70) and hemeoxygenase (HO)-1 protein levels in silver NP-treated human cells.
(A,B) EA.hy926 cells were treated with silver NPs at different doses for 24 h. Each 40-µg protein sample was loaded and
analyzed using anti-HSP-70, anti-HO-1, and anti-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (loading control)
antibodies. (C) BEAS-2B cells were treated with silver NPs at different doses for 24 h. Each 30-µg protein sample was loaded
and analyzed using anti-HSP-70, anti-HO-1, and anti-GAPDH (loading control) antibodies.
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Figure 8. Transmission electron microscopy images of intracellular silver NP localization. (A) Untreated cells showed no
abnormalities. (B) Cells treated with 5 nm silver NPs showed NP internalization, mitochondrial swelling, decrease or
disappearance of cytoplasm, and vacuolization. (C) Cells treated with 100 nm silver NPs showed no clear changes in cell
morphology. Images shown are representative of three independent trials.
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4. Discussion

In this study, the safety of silver NPs was investigated by examining the effects of
silver NPs in endothelial and epithelial cells. Most previous studies anticipated that NP
inhalation mainly affects the epithelial cells of respiratory tissues. However, a previous
study verified that NPs introduced through the respiratory system were found in various
other organs outside the respiratory system [7]. This indicated that NPs could penetrate
epithelial cells to enter endothelial cells, owing to their extremely small size.

We evaluated the cytotoxic effects of silver NPs. Although the LD50 of NPs in each
cell line was estimated to be different, the toxicity of silver NPs was confirmed. However,
cell death was not observed in cells treated with 100 nm silver NPs at a high concentration
(Figure 2). Therefore, it was suggested that the cytotoxicity of silver NPs depended on
the particle size and treatment dose. We evaluated the effect of silver NPs in macrophage
cells in our previous study. We verified that 5 nm silver NPs affected the variation in
gene expression in cells through microarray analysis and observed a noticeable increase
in IL-8 and oxidative-stress related gene expression in early stages [19]. Similarly, we
verified that oxidative stress- and inflammation-related gene expression was increased in
5 nm silver NP-exposed cells. ROS are induced by oxidative stress during cell death or
in early stages before cellular damage [20]. We also observed noticeable variation in the
expression of oxidative stress-related genes, especially MT, HO-1, and HSP-70, in early
stages after exposure. In a previous study, 20–50 nm silver NPs were added to A549 cells,
thereby producing oxidative stress products, such as malondialdehyde and 8-hydroxy-2′-
deoxyguanosine, and consequently increasing HSP-70 and HO-1 levels [21]. These results
were similar to those of our study.

The microarray used in this study can analyze up to 24,838 RefSeq (Entrez) genes.
Based on the results of this analysis, genes undergoing intracellular change after exposure
to silver NPs were classified into five categories: cell death, cell survival, inflammation,
apoptosis, and ROS. As results, there were considerable variations in genes related to cell
death and apoptosis as well as genes related to cell survival. Meanwhile, the expression
of genes related to inflammation was relatively low. This is supported by our review
of previous research, which showed that only IL-8 gene expression among cytokines
increased significantly after the exposure of macrophage cells to 5 nm silver NPs [20]. In
epithelial cells, the only intracellular cytokines that increased following exposure to 5 nm
of silver NPs were IL-8 and IL-11. Additionally, ROS-related genes were most marked as
ion-binding GO terms, probably because silver NPs are gradually ionized to Ag+ over
time and variation in ion-binding-related gene expression develops actively. A previous
study suggested that toxicity was generated by free silver ions induced by silver NPs,
demonstrating the combined effect of silver ions and silver NPs [22].

Notably, the increased IL-11 gene expression observed in this study has not been
greatly discussed in previous studies. In this study, IL-11 gene expression was particularly
increased in both endothelial and epithelial cells following exposure to 5 nm silver NPs.
As an anti-inflammatory cytokine, IL-11 has been identified to exert immunomodulatory
activities by reducing pro-inflammatory cytokine synthesis. Owing to its pivotal role
in inflammatory conditions, IL-11 has been investigated as a therapeutic candidate for
rheumatoid arthritis, Crohn’s disease, refractory immune thrombocytopenic purpura, and
periodontal disease [23]. Thus, IL-11 has various functions and plays various roles in
different cell types [18]. One study suggested that IL-11 was involved in endothelial cell
proliferation, indicating that IL-11 was associated with the STAT3 pathway, and accordingly,
survival proteins were expressed and exerted positive effects on cell proliferation [24].
However, the microarray results in this study showed increased expression of 31 genes,
including IL-11, in epithelial cells and 20 genes, including IL-11, in endothelial cells, and
these genes were classified as the regulation of cell proliferation GO term. It was inferred
that IL-11 played a role in cell proliferation of not only endothelial cells, but also epithelial
cells. Moreover, IL-11 is classified as an anti-inflammatory cytokine; the microarray results
for endothelial cells showed a 10.4-fold increase in IL-11 expression, and this expression was
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much higher than that of other cytokines. Additionally, genes classified as the regulating
apoptosis GO term showed increased expression by 37-fold in endothelial cells and 49-fold
in epithelial cells. Although IL-11, which is associated with apoptosis, induced cell death
in both endothelial and epithelial cells, it stimulated more genes in epithelial cells. This
finding is supported by results of earlier studies, which showed that one of the various
functions of IL-11 was the induction of apoptosis of epithelial cells [12,25,26]. Given the
various roles played by IL-11, it is difficult to determine its role in specific cells. Therefore,
although this study verified that IL-11 expression was commonly increased in 5 nm silver
NP-exposed cells, additional studies using various methods are required in the future to
determine the specific roles played by IL-11 based on the cell type.

5. Conclusions

This study showed that intracellular genes specifically responded to silver NPs, and
the expression of IL-11 among all cytokines, exclusive of IL-8, was significantly increased.
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Classification of increased genes associated with inflammation categories; Table S9: Classification of
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