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Abstract: Thermal interface materials (TIMs), typically composed of a polymer matrix with good wetting
properties and thermally conductive fillers, are applied to the interfaces of mating components to reduce
the interfacial thermal resistance. As a filler material, silver has been extensively studied because of its
high intrinsic thermal conductivity. However, the high cost of silver and its toxicity has hindered the
wide application of silver-based TIMs. Copper is an earth-abundant element and essential micronutrient
for humans. In this paper, we present a copper-based multi-dimensional filler composed of three-
dimensional microscale copper flakes, one-dimensional multi-walled carbon nanotubes (MWCNTs), and
zero-dimensional copper nanoparticles (Cu NPs) to create a safe and low-cost TIM with a high thermal
conductivity. Cu NPs synthesized by microwave irradiation of a precursor solution were bound to
MWCNTs and mixed with copper flakes and polyimide matrix to obtain a TIM paste, which was stable
even in a high-temperature environment. The cross-plane thermal conductivity of the copper-based
TIM was 36 W/m/K. Owing to its high thermal conductivity and low cost, the copper-based TIM could
be an industrially useful heat-dissipating material in the future.

Keywords: nano safety; thermal interface material; copper nanoparticle; multi-dimensional filler;
high thermal conductivity; low cost

1. Introduction

Thermal interface materials (TIMs), typically composed of a polymer matrix with good
wetting properties and thermally conductive fillers, are applied to the interfaces of mating
components to reduce the interfacial thermal resistance. Recent studies have shown the
excellent thermal conductivity, printability, and thermal stability of TIMs by introducing a
multi-dimensional filler design composed of three-dimensional (3D) microscale Ag flakes,
one-dimensional (1D) multi-walled carbon nanotubes (MWCNTs), and zero-dimensional
(0D) Ag nanoparticles (Ag NPs) [1,2]. The employed quantities of Ag flakes (primary
filler), MWCNTs, and Ag NPs (secondary filler) in the multi-dimensional filler design were
89.32, 0.85, and 2.86 wt%, respectively [2]. However, the safety-related issues of these
nanomaterials used as secondary fillers regarding the human health and environment
should be considered for practical industrial applications.

The toxicity of MWCNTs, one of the secondary filler materials, remains a controversial,
but recently positive research results related to the safety have been reported. Cimbaluk
et al. showed that the MWCNTs did not generate an apparent genotoxicity by means of
single/double deoxyribonucleic acid strand breaks or clastogenic/aneugenic effects over
any of the species, independent of the exposure period, using the alkaline version of the
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comet assay on erythrocytes and piscine micronucleus, also performed on erythrocytes [3].
Furthermore, the MWCNTs typically used in very small amounts for the multi-dimensional
filler design are reported to be biodegradable [4,5]. However, Ag NPs, the other secondary
filler material, are expensive and show toxicity [6–12]. For example, many studies have
reported the respiratory system-related toxicity of Ag NPs which may be inhaled during
the fabrication and application of TIMs [6–9]. Moreover, when Ag NPs are released into
the aquatic environment, many aquatic organisms such as fish, daphnia, and algae can be
negatively affected [10–12]. Therefore, the use of low-cost and innoxious metals instead of
Ag as thermally conductive fillers could be an effective approach to overcome the cost and
safety issues of TIMs.

Copper, an earth-abundant element, is 100 times cheaper than silver and has a high
thermal conductivity (~385 W/m/K at room temperature). In addition, unlike silver, which
is not biologically useful and must be removed from the body when consumed even in
very small amounts, copper is likely safe at daily amounts below 10 mg [13]. Copper is
an essential micronutrient for humans, required for the proper functioning of organs and
metabolic processes such as infant growth, host defense mechanisms, bone strength, red and
white cell maturation, iron transport, cholesterol metabolism, myocardial contractility, glucose
metabolism, and brain development [14,15]. Hence, copper could be considered as a promising
alternative to silver to achieve an industrially harmless useful heat-dissipating material.

In this study, we introduced an innoxious copper-based multi-dimensional filler
composed of 3D microscale copper flakes, 1D MWCNTs, and 0D Cu NPs by substituting
copper for silver in a multi-dimensional filler design, as demonstrated previously [1,2]. Cu
NPs were synthesized by microwave irradiation of a solution of copper acetylacetonate in
benzyl alcohol using a protocol similar to that reported previously [16]. The formation of
Cu NPs was confirmed by ultraviolet-visible (UV-VIS) spectroscopy and X-ray diffraction
(XRD). Cu NPs were then bound to MWCNTs and mixed with copper flakes and polyimide
matrix to obtain a TIM paste. Subsequently, a coin sample of TIM was prepared by curing
in a mold. The density (ρ), specific heat (Cp), and cross-plane thermal diffusivity (α) of the
copper-based TIM were measured using gas pycnometry, differential scanning calorimetry
(DSC), and laser flash analysis (LFA), respectively.

2. Materials and Methods
2.1. Synthesis of Cu NPs

In a round-bottomed flask, a 50-mL reaction mixture of 367.9 mg of Cu(acac)2 dissolved
in benzyl alcohol was exposed to microwaves at 800 W for 11 min. During the microwave
exposure, the color of the solution changed from blue (0 min) to red. A colloidal solution
was obtained by quenching the hot reaction mixture into 50 mL of pure benzyl alcohol.
The precipitate was separated from the solution by centrifugation and washed twice with
ethanol and once with diethyl ether, followed by drying under vacuum at 50 ◦C for 5 h; no
size-selective precipitation was carried out.

2.2. Binding of Cu NPs with MWCNTs

First, 50 mg of MWCNTs (Nano Solution, TMC 220-05, outer diameter: 4–6 nm, length
< 10 µm) were dispersed in 100 mL of ethanol by 450 W–10-min tip sonication (Sonics &
Materials, VCX750; Newtown, CT, USA), and subsequently mixed with Cu NPs dissolved
in ethanol by 3-h bath sonication (Lab Companion). The MWCNTs decorated with Cu NPs
were then obtained by vacuum filtering with ethanol washing and drying in a vacuum oven
for 12 h at room temperature. The relative concentration between the Cu NPs and MWCNTs
could be controlled by changing the mass of the Cu NP powder mixed with MWCNTs.

2.3. Mixing of the Fillers with the Matrix and Preparation of Specimens

Cu flakes (Alfa Aesar, 1–5 µm, 99.9%, Haverhill, MA, USA) and MWCNTs coated with
Cu NPs were mixed with 20-wt% polyimide (Huntsman Chemical Company, Matrimid®

5218, The Woodlands, TX, USA) dissolved in 1-methyl-2-pyrrolidone (Sigma-Aldrich,
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328634, 99.5%, St Louis, MO, USA) by stirring for 5 min to obtain the TIM paste. To prepare
the coin specimens for the LFA, the TIM paste was poured into a Teflon mold and cured
for 4 h at 240 ◦C. Before pouring the paste into the mold, a releasing agent (NABAKEM,
FLEX-A, Pyeongtaek, Korea) was applied to the surface of the mold to easily detach the
coin specimens from the mold.

2.4. Characterization

The cross-plane thermal diffusivity (α) of the coin specimen of the copper-based TIM
was measured using the LFA (Netzsch, LFA-447, Selb, Bavaria, Germany), while the specific
heat (Cp) was measured at 10 ◦C/min using DSC (Mettlertoledo, DSC1 STARe System,
Columbus, OH, USA) under a nitrogen atmosphere in the range of 15–40 ◦C. The density
(ρ) of the coin specimen was measured with a gas pycnometer (InstruQuestInc, Humipyc
model 2, Boca Raton, FL, USA) with helium gas. The cross-plane thermal conductivity
(k) was calculated using the relation k = ρCpα. According to the datasheets provided by
the instrument manufacturers and measurements with three specimens, the uncertainties
(confidence level: 95%) in the measurements of α, Cp, and ρ were 4.4, 25, and 3.4%, respec-
tively. Hence, the total uncertainty (confidence level: 95%) in the thermal conductivity
measurement was estimated to be 26%. The phase transformation of the Cu NPs on the
surface of the MWCNTs was characterized using DSC under a nitrogen atmosphere with
a preset temperature profile consisting of three stages: heating (10 ◦C/min) from 25 to
300 ◦C, holding at 300 ◦C for 1 min, and cooling (−10 ◦C/min) from 300 to 25 ◦C.

3. Results and Discussion

The copper-based TIM was prepared following the procedure illustrated in Figure 1a.
Cu NPs functionalized with phenyl groups were synthesized by microwave irradiation of
a solution of copper acetylacetonate in benzyl alcohol. The Cu NPs functionalized with the
phenyl groups were then mixed with MWCNTs to form MWCNTs assembled with Cu NPs
through π–π interactions. The MWCNTs coated with Cu NPs were mixed with Cu flakes
to construct a copper-based multi-dimensional filler similar to the reported silver-based
structure [1,2]. The 1D MWCNTs coated with the Cu NPs constructed effective thermal
bridges between microscale copper flake islands, as shown in Figure 1b. The Cu NPs on the
surface of the MWCNTs coalesced with microscale copper flakes at a curing temperature
considerably below the melting temperature of the bulk Cu, which significantly enhanced
the phonon transport.

At room temperature, a solution of Cu(acac)2 in benzyl alcohol is blue. Upon exposure
to microwaves at 800 W for 1 min, the color changed to green, indicating a transition to
partly reduced small clusters or NPs. Further irradiation of the solution for 10 min led
to the formation of a deep-red liquid, which indicates the formation of copper NPs. The
UV-VIS absorption spectrum of the solution after the microwave irradiation is shown in
Figure 2a. The characteristic absorption peak around 575 nm is attributed to the surface
plasmon band of nonoxidized Cu NPs [17,18]. The broadness of the absorption band
originates from the wide size distribution of the copper NPs. Therefore, the monodispersity
can be still improved and further size tuning of NPs can be carried out. The XRD analysis
confirmed that the Cu NPs were successfully prepared, as shown in Figure 2b. The sharp
peaks at 2θ of approximately 43.3, 50.5, and 74.2◦ indicate that the synthesized Cu NPs were
well crystallized [19,20]; no characteristic peaks of Cu oxides were detected. To evaluate
the size distribution of Cu NPs, a transmission electron microscopy analysis was carried
out. Figure 2c shows that the size of the NPs was in the range of ~2 to 100 nm with an
average of 34 nm. The size distribution of the Cu NPs was also evaluated after binding
with MWCNTs, as shown in Figure 2d. Notably, the analysis results show that MWCNTs
bound to small NPs with an average size of approximately 2.3 nm. As the melting point of
the Cu NPs decreases with the decrease in the particle size because of their unstable atoms
and large surface area, the selective binding between MWCNTs and small Cu NPs reduces
the curing temperature (melting point of Cu NPs bound to MWCNTs) of the TIM [21]. The
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phase change of the Cu NPs was investigated using DSC with two cycles, as shown in
Figure 3a. An endothermic valley and exothermic peak were observed during the first
heating and cooling of the Cu NPs, respectively. The endothermic peak at approximately
200 ◦C is attributed to the melting of the Cu NPs. The reaction was not reversible and was
completed within the first cycle. In the second cycle, the endothermic peak was shifted to a
higher temperature, implying aggregation of Cu NPs. Hence, the coalescence between Cu
NPs and Cu flakes occurred at approximately 200 ◦C, significantly lower than the melting
temperature of bulk copper (1085 ◦C).

Figure 3b,c show the results of the DSC for the specific heat and LFA for the cross-
plane thermal diffusivity necessary for the thermal conductivity measurement, respectively.
The specific heat measurements were carried out through a standard procedure using a
sapphire reference. Three measurements are necessary to obtain the specific heat. First, a
baseline was recorded (black line). This is the response for the empty crucible, yielding a
signal bias inherent in the system. Second, a reference measurement (blue line) was carried
out, in which sapphire with a well-known specific heat was analyzed for comparison with
a test sample. Third, the copper-based TIM was tested (yellow line). The baseline allows
removal of system bias from the data, while the reference test enables calculation of the
specific heat of the copper-based TIM based on the ratio of the specific heat of the TIM to
that of the sapphire. The laser flash method, proposed by Parker, was used to determine the
cross-plane thermal diffusivity of the copper-based TIM [22]. The method uses a short laser
pulse to heat the front surface of a thin disk-shaped specimen. An infrared detector records
the transient voltage change corresponding to the rear surface temperature. We used the
voltage change to obtain the thermal diffusivity α using the relation α = 0.1388 L2/t1/2,
where L is the thickness of the sample and t1/2 is the time required for the temperature to
increase to half of its maximum value. We used the most sophisticated model (blue line)
established by Cape and Lehman, which considers finite pulse effects as well as facial and
radial heat losses [23].
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Figure 2. Characterization of the copper nanoparticles (Cu NPs). (a) Ultraviolet–visible (UV-VIS)
absorption spectrum of the as-prepared Cu NP dispersion (a.u.: arbitrary unit), (b) X-ray diffraction
(XRD) pattern of the synthesized Cu NPs, (c) transmission electron microscopy (TEM) image and
size distribution of the as-synthesized Cu NPs, and (d) TEM image and size distribution of the Cu
NPs bound to multi-walled carbon nanotubes (MWCNTs).
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Figure 3. Thermal characterization of the Cu-based materials. (a) Differential scanning calorimetry
(DSC) analysis of the phase change of the Cu NPs, (b) DSC analysis for the measurement of the
specific heat (Cp), and (c) laser flash analysis (LFA) for the cross-plane thermal diffusivity (α) of the
Cu-based TIM.

Parametric studies were performed to verify the effect of the multi-dimensional filler,
as shown in Figure 4. The volume fraction of the Cu flakes was fixed at 36.7 vol%, according
to the previous study on a Ag-based multi-dimensional filler design, while the contents of
MWCNTs and Ag NPs were varied [1]. With the increase in the copper content, ρ of the
TIM increased (Figure 4b), while its Cp decreased (Figure 4c). The increase in ρ and decrease
in Cp due to the addition of the MWCNTs functionalized with the Cu NPs cancelled out.
However, α was significantly affected by the small change in the filler content, as shown in
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Figure 4d. The similar trends of α (Figure 4d) and k (Figure 4e) show that the change in k
is dominated by the change in α. As a control, only Cu flakes were employed as fillers to
investigate the thermal properties of a TIM without the multi-dimensional fillers (sample
A). k of sample A was 1.7 W/m/K. Despite the high intrinsic k of copper, the low k of
the Cu-flake TIM could be attributed to the poor connection among the fillers. When the
multi-dimensional design with filler contents (MWCNT: 1.313 vol%, Cu NPs: 0.987 vol%)
optimized in the previous study was used (sample C), the thermal conductivity reached
36 W/m/K [1]. The improvement of the k in the sample C is resulted from the formation
of the thermal percolation network of the fillers. The result shows that using the multi-
dimensional fillers is effective in paving the thermal percolation network by the synergistic
effect which is a phenomenon that a combination of fillers with different dimensions can
efficiently build the percolation network in a composite [24,25]. We also checked whether
k decreased when the volume content of the fillers deviated from the optimized filler
contents (MWCNTs: 1.313 vol%, Cu NPs: 0.987 vol%). When the volume fraction of the
Cu NPs was decreased to 0.364 vol% and the content of the MWCNTs was increased to
1.936 vol% (sample B), k was considerably reduced (7.8 W/m/K), confirming the important
role of the Cu NPs covering the MWCNTs for the construction of phonon pathways at
the junctions between the Cu flakes and MWCNTs. In addition, the multi-dimensional
filler design is applicable when any metal is used for the 3D and 0D fillers. Compared to k
(4.722 W/m/K for a filler content of 57 vol%) of a recently reported copper-based TIM, the
present copper-based TIM with multi-dimensional fillers exhibits a considerably higher
k even at a lower volume fraction of fillers [26]. In addition, the thermal conductivity
of our copper-based TIM (36 W/m/K) is much higher than those of commercial TIMs
(0.39–8.7 W/m/K) [27,28]. Thus, the multi-dimensional filler design bridging the 3D fillers
with lower-dimensional fillers including the MWCNTs and Cu NPs could save expensive
filler materials and provide an excellent thermal conduction at the interfaces.
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Although the introduction of low-dimensional fillers may raise concerns about safety
issues, recent research works on the toxicity of MWCNTs and Cu NPs indicate that the
concern is not an issue to be seriously considered. Moreover, replacement of Ag NPs with
Cu NPs proposed in this study is an effective approach toward highly conductive and
affordable TIMs urgently needed in the industry.

4. Conclusions

We demonstrated a safe low-cost copper-based TIM with a high thermal conductivity by
introducing a multi-dimensional filler design bridging the 3D fillers with lower-dimensional
fillers including the MWCNTs and Cu NPs. We confirmed that copper could be a promising
alternative to silver in realizing highly conductive TIMs. The cross-plane thermal conductivity
of the copper-based TIM reached 36 W/m/K. Considering its innocuousness, high thermal
conductivity, and low cost, the copper-based TIM could save expensive filler materials and
provide an excellent thermal conduction at interfaces. Thus, it could be used as an industrially
harmless and useful thermal management material in the future.
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