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Abstract: Immunotherapy has made great progress in recent years, yet the efficacy of solid tumors
remains far less than expected. One of the main hurdles is to overcome the immune-suppressive
tumor microenvironment (TME). Among all cells in TME, tumor-associated macrophages (TAMs)
play pivotal roles because of their abundance, multifaceted interactions to adaptive and host immune
systems, as well as their context-dependent plasticity. Underlying the highly plastic characteristic,
lots of research interests are focused on repolarizing TAMs from M2-like pro-tumor phenotype
towards M1-like antitumoral ones. Nanotechnology offers great opportunities for targeting and
modulating TAM polarization to mount the therapeutic efficacy in cancer immunotherapy. Here,
this mini-review highlights those emerging nano-approaches for TAM repolarization in the last
three years.

Keywords: macrophage polarization; tumor-associated macrophages; nanoparticles; drug delivery;
tumor microenvironment; cancer immunotherapy

1. Introduction

In the past decade, immunotherapy has shown great therapeutic efficacy in treating
several kinds of malignancies, especially in hematological malignancy, lymphomas and skin
cancer. For example, the complete remission (CR) rates of acute lymphoblastic leukemia
can reach as high as 90% with chimeric antigen receptor (CAR)-modified T cell therapies [1].
Nevertheless, moderate patients can benefit from the current immunotherapy, especially
in some solid tumors, such as intraepithelial neoplasia, with lower mutation, such as
gastrointestinal tumors, breast cancer and ovarian cancer [2,3]. Indeed, 50–75% of patients
have no response overall despite the furthest advance of robust immune checkpoint
inhibitors (ICIs) [4].

The immune-suppressive tumor microenvironment (TME) has been considered as
one of the main hurdles in solid-tumor immunotherapy [5–8]. In the TME, cells repre-
sent a dynamic network where cancer cells and various immune cells interact with each
other and modulate tumorigenesis and development [9]. Of the immune cells in the TME,
tumor-associated macrophages (TAMs) are the most abundant (up to 50% in some solid
tumors) [10,11]. Macrophages are highly heterogeneous cells and are primarily catego-
rized into two subtypes according to various cues in the context: anti-tumor M1 and
pro-tumor M2. The biomarkers of M1 macrophages usually include CD80, CD86 and MHC
II [12,13]. Interferon-γ (IFN-γ) and lipopolysaccharide (LPS) are usually leveraged to po-
larize macrophages into activated M1 both in vitro and in vivo [14,15]. The skewed-to-M1
macrophages usually generate a high level of inducible nitric oxide synthase (iNOS) and
tumor necrosis factor-alpha (TNF-α), inclining to kill tumor cells [16]. M2 express CD68,
CD163, CD206 and CD204 [12,16]. IL-4, IL-10, IL-13 are typical lymphokines for inducing
M2 subtype in vitro [16]. M2 macrophages generally have low expression of IL-12 and
produce a high level of IL-10 and arginase 1 (ARG-1) [17]. Tumor-associated macrophages
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(TAMs) are progressively educated by the TME and are usually considered as M2-like
macrophages to support tumor growth [18,19].

There are a bunch of strategies targeting macrophages for tumor immunotherapy since
the augment of TAMs often represents poor prognosis [10,11,20,21]. Emerging interests are
focused on the polarization approach for macrophage’s highly plasticity, an important role
in maintaining immune homeostasis and potential T-cell-activation effect as professional
antigen-presenting cells. To realize macrophage polarization towards the M1 pole, several
kinds of therapeutic agents are applied by promoting the M1-associated signal pathway
and/or suppressing M2 polarization. Specifically, agonists of Toll-like receptors (TLRs)
are notable examples for arousing M1 macrophage activation since TLRs are one kind
of pattern recognition receptor in an innate immune system. Some TLR agonists, such
as poly I:C, MO-2055 and R848, have been used in both pre-clinical [22–25] and clinical
trials [10,26]. Cytokines and growth factors are more complicated, for they trigger M1-
direction polarization and inhibit M2 signals simultaneously. Several kinds of micro RNAs
(miR) can also affect the phenotype of macrophages by regulating gene expression [27,28],
such as miR-155, miR-127 and miR-125b [28]. Despite the efficacy, systematic adminis-
tration of these agents might arouse toxicity and serious side effects. To further reduce
the unexpected risks and promote the efficiency of targeting delivery, nanoparticles are
leveraged for modulating TAM polarization.

TAM-targeting nanoparticles have gained great attention recently for their potential
in solid-tumor immunotherapy. A nanoparticle is defined as a particle with submicron
size in any dimension by the International Union of Pure and Applied Chemistry (IU-
PAC) [29]. Owing to this nanometer size and other properties, nanoparticles have several
advantages in biomedical fields, including: (i) relatively high surface area to increase load-
ing efficiency (compared to micro-scale particles) [30]; (ii) tunable parameters to achieve
specific targeting, systemic toxicity reducing and fine-tuned application in diagnosis and
treatment (compared to free drugs or other reagents) [31,32]; (iii) relatively stable structure
to provide a shield for the cargos to prevent drugs from early degradation (compared
to free macromolecules for therapeutic usage) [33,34]. With the development of cancer
immunotherapy, nanoparticles are discovered to have more advantages and potentials for
immunology application by targeting and regulating TAMs. As is known, larger particles
are cleared by the mononuclear phagocyte system and the liver, while particles with a
small size (less than 10 nm) are cleared via the kidney [35]. Lots of studies have provided
evidence for large nanoparticles passively taken in by macrophages [36–38]. Therefore, in
order to realize targeting TAMs, nanoparticles might be tailored to have a relatively larger
size and pathogen-mimicking shape, which macrophages tend to capture and phagocytose.
Active targeting strategies are also leveraged by modifying nanomedicines with various
ligands of some receptors that only peritumoral macrophages possess, such as scavenger
receptors. Common ligands include M2-peptides, mannose and folate [39–41]. According
to the matrix, nanoplatforms can generally be categorized into polymeric nanoparticles,
lipid-based nanocarriers, inorganic nanomaterials and others. A variety of reprogramming
agents are used, as aforementioned, and loaded onto the nanocarriers to achieve polar-
ization, yet some nanoparticles themselves have the ability to reprogram macrophages
in degradation. In all, this mini-review will focus on the various TAM-reprogramming
nanoparticle strategies or nanomedicines with polarization effects in the last three years
according to their material matrix. Challenges and hurdles in this burgeoning field are also
mentioned at the end.

2. Polymeric Nanoparticles and Macrophage Repolarization

Polymeric nanoparticles are one of the most significant nanoscale formulations that
are linked by monomers with covalent bonds [42]. A polymer can be engineered to have
various forms, such as polymeric micelles, polyplexes and solid particles. For biomedical
usage, these polymeric nanomaterials have several outstanding advantages: (i) the rela-
tively simple manufacture technique, usually self-assembly or emulsion fabrication process,
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providing possibilities for off-shelf nanomedicines [43,44]; (ii) functional groups on the
surface to enable modification to confer specific targeting; (iii) relatively biodegradable and
biocompatible, especially for natural polymer nanoparticles, such as chitosan, alginate and
dextran. Some synthetic polymers, such as polylactide (PLA), are also biologically safe and
have been approved for drug delivery and tissue engineering fields by the Food and Drug
Administration (FDA) [35,44].

Studies are divided according to the polymer matrix and the agents the nanoparticles
carry. As aforementioned, some nanoparticles have the capability to polarize macrophages
themselves without reprogramming agents, and the effects are varied for different modifica-
tions and residues. Ann-Kathrin Fuchs et al. found that both carboxyl-modified polystyrene
nanoparticles and amino-modified ones succeeded in suppressing macrophages from po-
larizing towards M2 by down regulating the expression of CD200R, CD163, as well as
IL-10, without affecting the M1 markers [45]. Yen-Jang Huang’s group discovered that
hydrophilic polyurethane nanoparticles themselves had surface-dependent immunosup-
pressive properties, preventing macrophages from M1 polarization by decreasing the
production of TNF-α and IL-1β [46]. Carboxyl-based nanoparticles were more suppressive
than the amino-modified ones [46]. The two studies suggested that the effect of nanopar-
ticles on macrophage polarization does not only depend on functional groups but also
on other properties, and the nanomedicines should be estimated as a whole. Recently,
membrane-coating technology has been used widely in the biomedical field [47,48], and
some cellular membranes could be special agents to influence macrophage polarization.
For example, cellular membranes of natural killer cells (NKs) and THP1 macrophages
were coated with poly(lactic-co-glycolic acid) (PLGA) nanoparticles, resulting in ten times
higher IL-6 than that in the control group [49]. Likewise, macrophage membranes were
also used to coat PLGA, which delivers iron oxide and TLR agonist R837 to potentiate
immunotherapy [50]. C.G. Da Silvaa’s group used PLGA as a biodegradable matrix core
to simultaneously deliver R848, poly (I:C) and MIP3α, leading to the inhibition of TC-1
growth in pre-clinical experiments [51].

TLR agonists are significant in macrophage repolarization. Christopher B. Rodell
et al. showed that the TLR7/8 agonist, R848, was one of the most powerful molecules
for polarizing macrophages in the M1 direction in vitro among 38 immunomodulatory
agents reported in the literature [24]. β-cyclodextrin nanoparticles encapsulated with
R848 succeeded in regulating TAMs and increased the growth inhibition efficacy of can-
cer cells in various models together with anti-PD-1 therapy [24]. A lignin nanoparticle
was also a candidate to carry R848 and targeted CD206-expressing M2 with specific pep-
tides modified on the surface [52]. In vitro, the nanomedicine successfully promoted M1
marker TNF-α almost twenty times more than the control and reduced the tumor burden
in mice [52]. In another group, acetylated chondroitin sulfate protoporphyrin polymer was
developed to deliver R837 [53]. Together with the other polymeric micelle loading with
Dox, it suppressed 4T1 growth in mice [53]. The TLR9 agonist CpG has also been carried
to modulate macrophages. Jutaek Nam’s lab [54] used cationic polyethyleneimine (PEI) to
absorb CpG and neoantigen peptides to form a polyplex nano-vaccine. In draining lymph
nodes (dLNs) of vaccinated mice, the amount of CD86+ M1 increased, and CD206+ M2
decreased [54], showing the capacity of nanovaccines to regulate macrophages. Moreover,
TLR agonists and other agents also show great potential for TAM polarization. Plasmid
DNA and messenger RNA (mRNA) are two therapeutic agent forms of genetic materials
and are also leveraged to edit M1 regulators. For example, a novel lipid-coating polymer
termed PQDEA was developed to form polyplexes with IL-12 plasmid and inhibited three
tumor models in mice with only four doses [55]. Therefore, to further prompt macrophage
repolarization, F. Zhang et al. discovered that polymers coated with M1-polarization-
associated mRNA and modified with di-mannose could target the CD206 receptor of
macrophages, increase M1 macrophages and suppress three tumor models (Figure 1) [56].
The M1-associated mRNA coded transcription factors IRF5 and IKKβ, which are down-
stream proteins in the IFN I pathway, thus promoting M1 skew [56]. Yudong Song et al.
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also modified their polymer with mannose to carry two short interfering RNAs (siRNAs),
which block VEGF and PIGF. As these two factors mediate M2 polarization and monocyte
recruitments, blocking them resulted in promoting IL-12 and IFN-γ in TME [57]. HA and
miR125b are effective in promoting M1 polarization. HA-PEI nanoparticles loaded with
miR125b were fabricated and succeeded in promoting TAM polarization towards the M1
type after being intraperitoneally injected [58]. Another article pointed out that the N-(2-
hydroxypropyl) methacrylamide (HPMA)-copolymer nanocarrier could also target CD11b+
TAMs and regulate the TME in situ by inducing M1 polarization [59]. Some biophospho-
nates, such as zoledronic acid (ZOL), were also used to mediate TAM repolarization, and
a pH-sensitive dendritic poly-lysine nanoparticle loaded with ZOL could release it once
inside the TME [60]. For the interference of key chemokines, a shrinkable polymer carrying
BLZ-945, a CSF1R inhibitor, to regulate TAM succeeded in reducing CD206+ M2 from 40%
to 15%, while IL-12 and IFN-γ in TME increased to three times that of the control [61].

Figure 1. Polymeric nanoparticles loaded with mRNA for macrophage repolarization. (A) Characteristics of the polymeric
nanocarriers: (a) The components of the polymeric nanoparticles (termed IRF5-NPs). (b) Transmission electron microscopy
of the nanoparticles. (c) Size distribution of the nanocarriers. Reproduced with permission [56]. Copyright 2019 Nature
Publishing Group. (B) IRF5-NPs prolong the survival time of mice with ovarian cancer and reprogram macrophages
in vivo. (a) Treatment schedule. (b) Tumor growth after intraperitoneal administration of IRF5-NPs. (c) The survival curves
of tumor-bearing mice. (d) Quantitation of transfection rates in various immune cells using flow cytometry. (e–g) The
reprogramming effect of IRF5-NPs on peritoneal macrophages in tumor-bearing mice. Reproduced with permission [56].
Copyright 2019 Nature Publishing Group.
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3. Lipid-Based Nanomaterials and Macrophage Repolarization

Lipid-based nanomaterials are well-known for their low immunogenicity, high bio-
compatibility in nature and being relatively easy to enlarge the manufacturing scale, thus
serving as a proper candidate for biomedical application [62–64]. Liposomes and lipid
nanoemulsions are two representatives for lipid-based nanoparticles and we outline the
two nanoformulations separately.

Liposomes are vesicles with a sphere shape and consist of one or more lipid bilayers.
They have been in the biomedical research spotlight for several decades because they have
special advantages, including: (i) the biomimetic structure where the core of liposomes can
encapsulate hydrophilic drugs while the lipid layers can entrap hydrophobic agents. This
trait of liposomes might conquer the inconvenient loading of drugs with different dissolu-
bility; (ii) a size of 40–150 nm, exhibiting the same as natural exosomes and thus serving
as a biological nanocarrier in therapeutics [65,66]; (iii) extraordinary biocompatibility to
achieve fewer side effects. Of note, liposomes encapsulated with doxorubicin (Doxil®) are
the first nanomedicine approved by the FDA. Liposomal cisplatin has also been approved
as a drug in pancreatic cancer by the European Agency for the Evaluation of Medicinal
Products (EMEA) [67]. Moreover, the fast development of microfluidics in recent years
facilitates the large-scale manufacture of liposomes and reduces differences from batches
to batches [68].

Exertions have been made in leveraging liposomal vesicles to carry different agents to
polarize TAMs, such as bisphosphonate, siRNA, cytokines, chemokines and TLR agonists.
A report proved that ZOL-loaded liposomes succeeded in repolarizing cancer-educated
macrophages towards a pro-inflammatory subtype with increasing expression of iNOS
and TNF-α [69]. Another study showed that the pegylated liposomal nanoparticles (PLNs)
loaded with alendronate could suppress tumor growth and increase progression-free
survival in tumor-bearing mice. Interestingly, the PLNs themselves, on the contrary,
empowered immunosuppression and impaired T-cell immunity [70]. As aforementioned,
cues in TME polarize TAMs towards M2-like subtypes, and among them, hypoxia-induced
factor 1-α (HIF-1α) are notorious. Therefore, a lipid nanocarrier with HIF-1α-blocking
siRNA was developed and succeeded in promoting the secretion of TNF-α and IFN-γ
in the TME [71]. The amount of CD169+ TAMs was also enhanced to 1.5-fold over the
control group [71], demonstrating that the nanostrategy had regulated TAMs towards an
immune-supportive direction. The polarization effect of TLR agonists on TAMs has greatly
benefited from nanotechnology. A research group found that R848-encapsulated liposomes
together with anti-EGFR antibody treatment could significantly suppress tumor growth in
mice. Intriguingly, they found that M1 macrophages induced antibody-dependent cellular
phagocytosis more strongly than M2 [72]. In addition, cytokine and chemokine therapies,
which also benefited from nanocarriers, are candidates for reprogramming TAMs because
of their powerful roles in tuning cellular signal pathways and phenotypes. In a recent
report, one kind of clinical-approved liposome was used to deliver mRNA, which edited
a bispecific antibody to neutralize CCL2 and CCL5 (Figure 2) [73]. The nanomedicine
down regulated IL-10, ARG1, MRC1 and CD206 and suppressed liver cancer growth
in mice together with PD-1 antibody treatment [73]. Anujan Ramesh’s lab constructed
a liposome to carry BLZ945 and SHP099 (inhibitors of CSF1R and CD47-SIRPα signal
pathway, respectively,) and the nanoparticle significantly down regulated the expression of
CD206 in a macrophage cell line Raw264.7 from ~75% to ~10%, increasing the M1/M2 ratio
by six times [74]. Recently, the same group constructed another liposome to deliver BLZ945
and another inhibitor Selumetinib to promote M1 polarization [75]. Some drugs available
in the clinic might also have positive effects on programming macrophages. For instance,
liposomes loaded with simvastatin and vorinostat also had positive impacts in down
regulating CD206 and promoting CD86 expression [76]. To overcome the off-target effects
of regulating compounds, another research group modified sialic acid to their liposomes
and loaded with zoledronic acid because of the hig -expression of sialic acid receptors in
TAMs [77].



Biomolecules 2021, 11, 1912 6 of 18

Lipid nanoemulsions can also be fabricated with microfluidic or with ultrasonic
devices. Similar to liposomes, nanoemulsions are sphere-shaped particles consisting of
several kinds of lipids in a droplet and usually exhibit a low polydispersity. For the oil-in-
water system, lipid emulsion can entrap hydrophobic drug molecules inside the oil droplet.
Different TLR agonists might contribute to macrophage polarization to a different degree.
A nanoemulsion carried with TLR7/8 agonists, R848, skewed more macrophages towards
M1 directions than that loaded with R837 [78]. Together with vaccine treatment, this
nanomedicine prolonged the survival time of animal models with melanoma and cervical
cancer for it might revert “cold” tumors into the “hot” ones [78]. Special therapeutic agents
have also been discovered to have the ability to convert macrophages. Ye Hui et al. [79]
constructed a lipid nanoemulsion to carry an isoflavone gained from Psoralea corylifolia L.,
termed Neobavaisoflavone. This anti-cancer material was able to switch M2 macrophages
to pro-inflammatory M1 in vivo [79].

Figure 2. Lipid-based nanoparticles used for mRNA delivery of a bispecific single-domain antibody for repolarizing TAMs.
(A) Lipid-based nanoparticles loaded with mRNA to realize CCL2 and CCL5 dual blockade reprogram TAMs. (a) Designs
of the lipid-based nanocarriers. (b) The percentage of macrophages and (c) M2 subtypes in tumor tissue 48 h after systemic
administration of the nanoparticles. (d) The ratio of M1/M2 in the TME. Reproduced with permission [73]. Copyright 2021
Wiley-VCH. (B) Dual blockade nano-strategy combined with PD-1/PD-L1 inhibition suppresses KPC liver cancer growth.
(a) Time lines of the experiment. (b) Tumor growth after various treatments. (c) In vivo bioluminescence of tumor-bearing
mice on days 5 and 14. Reproduced with permission [73]. Copyright 2021 Wiley-VCH.

4. Inorganic Nanoparticles and Macrophage Repolarization

Inorganic nanomaterials are defined as nanoparticles composed of inanimate maters
and usually include a metal matrix, such as calcium, iron and gold, and nonmetal materi-
als, such as silicon. The original properties confer inorganic nanoparticles lots of merits,
including: (i) relatively stable for long time period conservation and for strict sterilization
conditions compared to organic materials [80]; (ii) fine controllability for the structure and
various shapes with a low polydispersity index [81]; (iii) the intrinsic physical properties for
multipurpose applications, such as superparamagnetism, up-conversion luminescence and
surface plasmon resonance [81,82]. In fact, some inorganic nanoparticles have been clini-
cally approved. For instance, iron oxide-based nanomaterials, ferumoxytol (i.e., Feraheme®)
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and ferucarbotran (i.e., Resovist®) have been used to treat iron deficiency and complete
magnetic resonance imaging (MRI), respectively [35,83]. In order to demonstrate inorganic
nanomedicines in macrophage repolarization, we outline the approaches according to their
intrinsic properties and the agents as well.

As aforementioned, some nanoparticles have the ability to reprogram macrophages
themselves, and iron oxide nanomaterials are one of them. In 2016, Saeid Zanganeh et al. [84]
found that the clinical-approved iron oxide nanoparticle ferumoxytol could inhibit tu-
mor growth by polarizing macrophages in the M1 direction. Interestingly, it was later
discovered that both clinical-approved iron oxide nanoparticles, feracarbotran and fer-
umoxytol, were able to induce macrophage autophagy and arouse inflammatory re-
sponse through TLR4-mediated signaling and oxidative stress [85]. With the extracts
help from targeting molecules and other reprogramming agents to TAMs, these self-service
nanomedicines might further promote the efficacy and retardation of tumor development.
Jiaojiao Zhao et al. found that ferumoxytol surface-functionalized with poly(I:C) could
achieve macrophage activation and suppress malignant melanoma in mice [86]. Simi-
larly, other iron oxide nanoparticles have also been reported to be effective in turning
macrophages into anti-tumor subtypes [83,87–91]. Coating iron oxide with a cellular mem-
brane expressing SIRPα from genetic-edited cells was proven to be an effective strategy.
The iron-containing nanoparticles were magnetically oriented to aggregate in the TME,
and with the blockade of the “do not eat me” signal, TAMs were repolarized towards M1,
eliciting potent immune responses and suppressing both B16F10 and 4T1 cancer growth
with T lymphocytes [92]. Super-paramagnetic iron oxide nanoparticles (SPIONs) with dif-
ferent charges were compared in a recent study [93]. SPIONs with positive or negative
charges could skew macrophages towards M1-like phenotypes with a great promotion in
TNF-α production [93]. Hollow iron oxide with PI3Kγ inhibitor payload and modified with
mannose efficiently promoted NF-kB p65 expression and reprogrammed TAMs to M1 [94].
In an animal model with human breast cancer MDA-MB-231, the hollow nanomedicine
inhibited tumor development [94]. Hyaluronic acid (HA) was carried by various iron oxide
nanoparticles to regulate macrophages to promote the polarization effect [95–97]. Of note,
the clinical observation is in accordance with the story above, where the number of iron-
containing TAMs in patients with non-small cell lung cancer is usually associated with tumor
regression [98]. Researchers further confirmed that the phenomenon resulted from TAM
repolarizing into pro-inflammatory type after consuming iron-containing sub heme [98].

Furthermore, iron-relative nanoparticles, calcium ions and some catalytic nanoparti-
cles have also been proven to regulate macrophage phenotypes. Calcium iron itself could
boost pro-inflammatory cytokines production, such as IL-1β [99]. Therefore, nanoparticle
medicine using calcium might have positive effects on M1 repolarization. Xiao-Yan He et al.
delivered HA and IL-12-coded plasmid DNA with peptide-modified calcium carbonate
and succeeded in multiple M1 markers increasing in J774A.1 cells [100]. Additionally, a
nano-catalytic medicine was developed to target mitochondrial DNA (mtDNA) of cancer
cells [101]. With the mtDNA oxidative damagecaused by nanoparticles, the remaining parts
of nucleic acid escaped from tumor cells and then entered TAMs as damage-associated
molecular patterns (DAMPs), which turned macrophages into M1 types [101]. IL-1β, TNF-
α, IFN-β and IL-18 production reached as high as the positive control (i.e., LPS-treated
group) after treatment. In addition, this novel strategy was verified to be effective on a
PANC-1 tumor xenograft model [101].

Like other materials, inorganic nanoparticles can also be loaded with different re-
programming cargos. Photo-responsive up-conversion nanoparticles loaded with TAM-
reprogramming agents achieved photo-related therapy and macrophage polarization si-
multaneously [102,103]. Ru nanoparticles loaded with BLZ945 also worked to decrease
iNOS and CD206 expressions [104]. Non-mental materials, such as mesoporous silicon
nanoparticles (MSN), are famous for their porous structure, which contributes to the de-
livery of more polarization-related agents in vivo and in vitro [101,105]. Leonard et al.
also leveraged MSN to load albumin-paclitaxel, promoting M1 polarization [106]. Meso-
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porous silica loaded with siRNA to block monocarboxylate transporter-4 (MCT-4) also
succeeded in preventing TAM from M2 polarization for MCT play a significant role in
maintaining the acidic TME (Figure 3) [105]. Liming Bian and his colleagues coated MSN
with up-conversion materials and loaded it with calcium regulators, which are released
under near-infrared rays. Eventually, calcium levels in the cells increase or decrease, result-
ing in macrophage polarizing towards M1 or M2, respectively [103]. Gold nanoparticles
linked with mucin-1 peptides succeeded in promoting M1 polarization with increasing
cytokines, such as TNF-α, IL-6, IL-10, as well as IL-12 [107]. Li et al. rapped albumin and
paclitaxel into gold nanorods, which suppressed M2 polarization and modulated the TME
in tumor-bearing mice [108].

Figure 3. Inorganic nanoparticles with siRNA to block MCT-4 for repolarizing TAMs. (a) Schematic
illustration for hollow mesoporous organosilica loaded with hydroxycamptothecin and siRNA-
blocking MCT-4. (b) Transmission electron microscopy of the nanomedicines. (c) Transmission
electron microscopy of the nanoparticles after incubating with a buffer containing redox glutathione
for the number of indicated days. (d,e) Flow cytometric analysis of TAM phenotypes using the
(d) M2 marker CD206 and (e) M1 marker CD86. Reproduced with permission [105]. Copyright 2020
American Chemical Society.
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Manganese dioxide nanoparticles are also leveraged to deliver repolarization agents.
Tsai-Te Lu’s team prepared a core-shell structure nanomedicine whose core was man-
ganese dioxide and the shell contained PLGA and lipid and modified it with an SP94
peptide to target the TME [109]. The nanomedicine was proven to repolarize bone-marrow-
derived macrophages, as indicated by the higher expression of M1 markers and down
regulation of M2 markers [109]. Another team coated manganese dioxide nanoparticles
with HA and achieved similar effects on macrophage repolarization [110]. Black phos-
phorus nanoparticles [111] and mesoporous Prussian blue [112] could also load HA with
low-molecule weight to polarize M2. Linnan Yang and his colleagues prepared a nanocom-
posite, layered double hydroxide, to deliver miR155 [113]. Importantly, free miR155
failed to improve M1 markers while the nano-regulators could promote TNF-α, IL-12
and iNOS production [113]. Lv Chen’s group developed a copper sulfide nanomedicine
modified with folic acid to carry CpG and docetaxel, resulting in the enhanced efficacy
of phototherapy [114]. Ink-blue titanium dioxide nanoparticles modified with zwitteri-
onic chitooligosaccharide (COS) was also used to enhance TAM reprogramming to M1
because COS has the ability to improve IL-2, TNF-α and IL-12 secretion [115]. Although
the promising outcomes have revealed the feasibility of inorganic nanomaterials targeting
TAM repolarization, additional animal tests need to be performed to verify the toxic side
effects and the efficacy in real clinical situations.

5. Other Nanomaterials

With an extensive examination of the traditional nanoparticles, researchers devel-
oped lots of innovative nanomaterials to target TAM repolarization. Cholesterol-modified
pullulan nanogels were reported to target macrophages in lymph nodes with subcuta-
neous injection [116]. When it carried long antigen peptides and CpG, the nanogel entered
TAMs and activated macrophages with elevation in IFN-γ and IL-12 [117]. Chen’s group
employed another gel where calcium carbonate inside could deliver an anti-CD47 anti-
body to the TME [118]. It was designed to spray the peritumoral tissue after surgical
removal of the primary tumor to eliminate the remaining cancer cells, and it showed
positive results in two models [118]. Another gel developed by Pengyu Guo et al. con-
tained gold nanorods and iron oxide nanoparticles for thermal therapy and M1 polar-
ization, respectively [119]. Exosomes from M1 were like natural liposomes that carry
pro-inflammatory cytokines to promote macrophage M1 polarization with or without
modification [120,121]. Graphene oxide (GO) was also able to polarize macrophages in a
size-dependent way when large GO induced M1 polarization and promoted inflamma-
tory reactions both in vivo and in vitro. Nanoparticles, such as gadolinium endohedral
metallofullerenols (Gd@C82(OH)22), could activate macrophages through NLRP3 and
TLRs-NF-kB pathways and thus prompted M1 polarization [122]. There are also several
novel developments containing metal-organic framework nanoparticles to carry CpG [123],
polymetformin-based nanoemulsion to deliver IL-12 plasmid DNA [124] and engineering
exosome-mimic macrophages nanovesicles [125].

6. Conclusion and Perspective

The past decade has witnessed fast developments and achievements in cancer im-
munotherapy. However, patients with advanced solid tumors have a relatively low re-
sponse to the available immunotherapy, and the tumor microenvironment remains one
of the main obstacles. In the TME, positive feedback loops seem to be the main tune that
prompts tumor development and metastasis. Cancer cells and the assistant cells secrete
multiple chemokines and cytokines to recruit monocytes and macrophages and polarize
them to M2-like TAMs. Hence these pro-tumor TAMs propagate the immune-suppressive
responses by releasing specific cytokines that confer cancer cells’ benefits with extended
survival time and more chance to metastasize. Given that macrophages might be a potential
target to promote efficacy in immunotherapy, various approaches have been leveraged
to cut off the loop by repolarizing macrophages towards an anti-tumor subtype. Recent
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nano-strategies to reprogram macrophages have been highlighted and divided into four
groups, including polymer, lipid-based nanoparticles, inorganic and other materials. Car-
gos that are proven to have a repolarization effect mainly include TLR agonists, cytokines
and growth factors and other agents, such as micro RNAs. With the nanomedicines ad-
ministration, TAMs gradually repolarize to M1-like subtypes, resulting in turning the
microenvironment into an immune-supportive one and suppressing tumor development
(Figure 4). These nano-strategies are summarized in Table 1.

Figure 4. Nanomedicines targeting macrophage polarization. (a) There are plenty of nanoparticle
strategies focusing on reprogramming M2-like tumor-associated macrophages into M1 poles, such as
polymeric nanomaterials, lipid-based nanomedicines, inorganic nanoparticles and so on. (b) After the
administration of nanocarriers, macrophages in the tumor microenvironment turn into a “friendly”
subtype and (c) ultimately eliminate cancer cells together with other immune cells.
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Table 1. Various nanostrategies targeting TAM repolarization.

Main Matrix Therapeutic Agent Tumor Model Reference
Polymeric nanoparticles

PLGA Natural Killer cell membrane 4T1 [49]
PLGA Iron oxide, M1 cell membrane 4T1 [50]
PLGA CpG B16F10 [126]
PLGA R848, Poly (I:C) TC-1 [51]
PGA M-CSF B16 [127]
PEI Hyaluronic acid, miR125b Nonsmall cell lung tumor [58]

β-cyclodextrin R848 MC38, B16F10 [24]
Lignin R848 4T1 [52]

Poly (ε-caprolactone) (PCL), Sulfate
protoporphyrin R837 4T1 [53]

PQDEA IL-12 plasmid KPC, BPD6, 4T1 [55]
PEI CpG MC38, B16F10 [54]
PEI Paclitaxel, CRISPR/Cas9-Cdk5 CT26, B16F10 [128]

Trimethyl chitosan siRNA blocking VEGF, PIGF 4T1 [57]
Poly-L-lysines Zoledronic acid 4T1 [60]

Poly (ethylene glycol) -b-PHEP
(PEG-b-PHEP) BLZ-945 4T1 [61]

PEI-PCL Shikonin CT26 [129]
PCL-Hyd-PEG CpG, anti-CD80 antibody 4T1, B16F10 [130]
Polymetformin IL-12 plasmid, hyaluronic acid 4T1 [124]

Nanomicelles named as QHMF Hyaluronic acid A549 [131]
Lipid-based nanoparticles

Lipid nanoparticles siRNA blocking STAT3, HIF-1α OS-RC-2 [71]
Lipid nanoparticles IMD-0354 Hepa1-6 [132]

Liposome R848 WiDr [72]
Liposome Bispecific antibody (binds CCL2, CCL5) HCC, KPC liver tumor model [73]
Liposome BLZ945, anti-CD206 4T1, B16F10 [74]
Liposome Alendronate TC-1 [70]
Liposome BLZ-945, Selumetinib 4T1 [75]
Liposome Zoledronic acid S180 [77]

Lipid nanoemulsion R848, R837 B16F10-OVA, TC-1 [78]
Lipid nanoemulsion Neobavaisoflavone A549 [79]

Inorganic nanoparticles
Lanthanide-doped upconversion nanocrystals Hyaluronic acid / [102]

Mesoporous silica with upconversion
materials Calcium ion / [103]

Iron oxide Iron oxide, membrane blocking
CD47-SIRPα 4T1, B16F10 [92]

Iron oxide Iron oxide / [85]
Iron Oxide Iron oxide HT1080 [93]
Iron Oxide Iron Oxide, 3-MA MDA-MB-231 [94]
Iron Oxide Iron oxide 4T1 [89]
Iron Oxide Iron oxide 4T1 [90]
Iron Oxide Iron oxide, hyaluronic acid 4T1 [96]
Iron Oxide Iron oxide, hyaluronic acid 4T1 [97]
Iron Oxide Iron oxide, poly (I:C) B16F10 [86]

Iron Oxide Iron oxide and hyaluronic acid stimulated
macrophages 4T1 [95]

Berlin blue Hyaluronic acid 4T1 [112]
Iron Oxide Iron Oxide E.G7-OVA [91]
Rubidium BLZ-945 CT26 [104]

Iron chelated nanoparticles Iron CT26, 4T1 [133]
Silica Ferrous ion, rubidium ion PANC-1 [101]
Silica siRNA blocking MCT-4 4T1, B16F10 [105]

Calcium carbonate Hyaluronic acid, IL-12 plasmid / [100]
Copper sulphide CpG 4T1 [114]
Titanium dioxide Chitooligosaccharide H22 [115]
Black phosphorus Hyaluronic acid 4T1 [111]

Layered double hydroxides miR155 TC-1 [113]
Other nanoparticles

Cholsterol pullulan nanogel CpG CMS5a [117]
Fibrin gel (containing calcium carbonate) Anti-CD47 antibody B16F10 [118]

Gel containing iron oxide and gold nanorod Iron oxide MB49 [119]
Exosome siRNA blocking galectin-9 PANC-2 [134]
Exosome Exosome from M1 4T1 [120]

Metal-Organic framework CpG MDA-MB-231 [123]
Nanoparticles obtained from

iron-oxide-stimulated macrophages Iron oxide 4T1 [125]
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With promising outcomes in the pre-clinical stages, there are still mysterious mecha-
nisms of nanomaterials that need to be disclosed further to testify the efficacy and solve
safety concerns. In our points of view, four challenges should be conquered in this field:
(i) the manufacturing process of nanoparticles can be scaled-up with neglectable differences
in size, charges, surface-functional modifications and so on; (ii) the nanomedicines should
be tailored to target macrophages with special locations or specific functions with minimum
off-target side effects; (iii) the vehicles themselves should not have immunogenicity to
avoid rejection if multiple dosing is needed; (iv) the optimal combination of programming
drugs and nano-vectors. To overcome these obstacles, cutting-edge techniques are war-
ranted in the nanomedicine field, including but not limited to: (i) microfluidic devices,
they can be leveraged to generate nanoparticles with lower polydispersity and better
reproducibility [68,135]; (ii) chips with abundant channels, which have gained a lot of
attention in drug-screening applications [68,136] and can also be used to screen multiple
ligand candidates to actively target TAMs simultaneously. Of note, the complex in vivo
environment should also be noticed because the ligands of nanoparticles might be shielded
by protein corona formed on the bio-nanointerface and affect the ultimate biodistribu-
tion [137–139]; (iii) organoid and tumoroid technologies. Recent advances in organoid and
tumoroid might facilitate the evaluation of a new nanomedicine on the efficacy and safety
in long-term toxicity [140]. Moreover, the toxicity that results from nanomaterials taken
in by macrophages or other cells should also be taken into account in the beginning of
designing a nanomedicine. All in all, the faster these emerging nanomaterials constructed
from various novel biomaterials are developed, the more important the biocompatibility
and biodegradability of the nanomedicine is; (iiii) Many computational algorithms and
modeling approaches, such as geographical models, mathematical models and physical
models, can be applied to simulate in vivo situations and provide significant insights for
the rational design of a nanomedicine. For instance, Francesco Tavanti et al. [137] recently
studied the interaction of common blood proteins with gold nanoparticles with Molecu-
lar Dynamics and the Martini coarse-grained model. They discovered that hydrophobic
interactions played a vital role in protein binding to 11-mercapto-1-undecanesulfonate
(MUS)-capped gold nanoparticles instead of electrostatic interactions, which dominate
the process where proteins bind to citrate-capped gold nanoparticles [137]. In conclusion,
these new techniques might provide tools for us to understand and predict the realistic
behaviors of nanoparticles in biosystems.

With the significant role of macrophages in both innate and adaptive immune systems,
nanomedicine specifically targeting TAM repolarization opens a new avenue in immune-
regulated tumor eradication. The latest research further verified this with the fact that
M1-like gene-edited macrophages managed to activate immature DCs and prompted T
lymphocytes infiltration into the TME [141]. With all these discoveries of TAMs, we are
now anticipating more clinical-translational contributions in this burgeoning field with
TAM polarizing nanomedicines.
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