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Abstract: Cryo-electron microscopy (cryo-EM) is a structural technique that has played a significant
role in protein structure determination in recent years. Compared to the traditional methods of X-ray
crystallography and NMR spectroscopy, cryo-EM is capable of producing images of much larger
protein complexes. However, cryo-EM reconstructions are limited to medium-resolution (~4–10 Å)
for some cases. At this resolution range, a cryo-EM density map can hardly be used to directly
determine the structure of proteins at atomic level resolutions, or even at their amino acid residue
backbones. At such a resolution, only the position and orientation of secondary structure elements
(SSEs) such as α-helices and β-sheets are observable. Consequently, finding the mapping of the
secondary structures of the modeled structure (SSEs-A) to the cryo-EM map (SSEs-C) is one of the
primary concerns in cryo-EM modeling. To address this issue, this study proposes a novel automatic
computational method to identify SSEs correspondence in three-dimensional (3D) space. Initially,
through a modeling of the target sequence with the aid of extracting highly reliable features from a
generated 3D model and map, the SSEs matching problem is formulated as a 3D vector matching
problem. Afterward, the 3D vector matching problem is transformed into a 3D graph matching
problem. Finally, a similarity-based voting algorithm combined with the principle of least conflict
(PLC) concept is developed to obtain the SSEs correspondence. To evaluate the accuracy of the
method, a testing set of 25 experimental and simulated maps with a maximum of 65 SSEs is selected.
Comparative studies are also conducted to demonstrate the superiority of the proposed method over
some state-of-the-art techniques. The results demonstrate that the method is efficient, robust, and
works well in the presence of errors in the predicted secondary structures of the cryo-EM images.

Keywords: protein; cryo-electron microscopy; modeled structure; secondary structure elements;
3D vector matching; 3D graph matching; similarity-based voting algorithm

1. Introduction

Proteins are one of the essential parts of all organisms that perform most of the tasks
of living species. To study the relationship between protein structure and function, it is
necessary to have access to precise three-dimensional (3D) structural information [1]. Hence,
understanding the protein structure is of great interest to biologists. Traditionally, protein
structures have been obtained using experimental techniques such as X-ray crystallography
and NMR spectroscopy. X-ray crystallography has been used to study thousands of protein
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complexes which are crystallizable. NMR spectroscopy is limited to small molecules of an
atomic mass less than 50 kDa. Therefore, neither of these techniques can be used to study
molecular complexes which can be found in nature in their near-native state [2]. More
recently, cryo-electron microscopy (cryo-EM) has emerged as an experimental technique
to address most of the scalability concerns of the traditional techniques by being able to
image large macromolecular complexes, such as ribosomes and viruses, in their native
conformations. This widely used technique does not require crystalizing before data
acquisition and it is applicable on a molecule larger than ~100 kDa [3,4]. In recent years,
there have been significant advances in cryo-EM imaging techniques [5]. However, for
some cases, the cryo-EM reconstructions are limited to medium-resolution (~4–10 Å),
where the secondary structure elements can be computationally and visually identified,
but not the individual amino acid residues [6]. This lack of atomic-level resolution leads to
many computational challenges for protein 3D structure determination. For the density
maps at high-resolution (~2–4 Å), the backbone is recognizable, and the protein structure
at the atomic level can be directly derived. However, for the low (~10–25 Å) or medium-
resolution (~4–10 Å) density maps, the backbone of the protein and the atomic information
cannot be directly achieved from the cryo-EM maps. This limitation has motivated the
development of many computational methods that use the medium-resolution cryo-EM
map to collect protein structural information [7–15]. In the cryo-EM modeling pipeline,
some major steps should be handled, such as extracting the secondary structure elements
on a cryo-EM density map and matching them to a sequence/model, the C∝ placement
of SSEs, building an atomic structure, and structure optimization [6]. One of the main
challenging and critical steps is finding the mapping of the secondary structures of the
modeled structure to the cryo-EM map. This is because this step provides the initial anchor
point to find the location of the C∝ atoms and to construct the protein backbone. The precise
identification of SSEs correspondence enables us to produce an accurate initial 3D structure
of a protein that can be refined further by later steps in the model-building pipeline.

At medium-resolution, the analyses of cryo-EM maps rely on the availability of the
known protein structures obtained by other high-resolution experimental methods (X-ray
crystallography, NMR). When the atomic structure from other sources of information is not
accessible, a de novo modeling approach could be utilized [9,16–20]. S. Abeysingh et al. [16]
introduced a research study on solving the α-helix correspondence problem through shape
matching by modeling both a 1D sequence and a 3D volume to attributed relational graphs.
Furthermore, they developed Gorgon [21], which is an interactive molecular modeling
toolkit with an interactive visualization platform. Al Nasr et al. developed a weighted
directed graph to solve the secondary structure assignment and presented an approach to
enumerate the top-ranked topologies instead of enumerating all possible topologies [18].
The authors conducted another study, DP-TOSS, to solve the topology determination based
on a layered graph using a dynamic programming approach into a constrained k-shortest
path algorithm [19]. DP-TOSS was compared with Gorgon in our previous study [19]. The
results indicated that DP-TOSS was superior to Gorgon. Afterwards, Biswas et al. [22]
enhanced the performance of DP-TOSS by combining the information from multiple
secondary structure prediction servers. They utilized some different structural information,
such as the length of secondary structures, the loop length, and the skeleton between two
secondary structure traces as a scoring function. Al Nasr et al. enhanced the DP-TOSS
accuracy using the efficient scoring methodology. The proposed scoring functions were
a skeleton-based scoring function, a geometry-based function, and a multi-well potential
energy-based function [20].

In the presence of a high-resolution structure for an insufficient resolution cryo-EM
map, the fitting methods, which are categorized into flexible and rigid-body fitting, could
be utilized to derive the atomic structure from the cryo-EM map [9,12,14,17]. Early studies
have concentrated on searching for the optimal position and orientation of a protein’s
secondary structure components with the best overlaps with the SSEs extracted from a
cryo-EM density map [23–26]. Dou et al. proposed a flexible fitting of an atomic structure
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into a cryo-EM map which is guided by the correspondences between α-helices in the
atomic model and the cryo-EM map [27]. In the work of [28], a computational method is
presented to quantify the agreement between two sets of central axes of α-helices which
are relevant to atomic structures and cryo-EM maps. It utilized an arc-length association
strategy to characterize the lateral and the longitudinal differences of the two axes.

Our approach in this study is to introduce a novel geometrical matching approach to
find the correct matches between SSEs-C and SSEs-A (SSEs correspondence). The central
theme of our approach is to cast the SSEs mapping problem as that of three-dimensional
graph matching. For this purpose, the SSEs matching problem is formulated as a 3D
vector matching problem in Cartesian coordinate space. Then, the 3D vector matching
problem is transformed into a 3D graph matching problem. To solve the 3D graph matching
problem, three novel mathematical-based features, as well as two robust statistical scoring
functions, are proposed. Finally, to obtain the final SSEs assignment among all possible
ones, a similarity-based voting algorithm combined with the PLC concept is developed.
Furthermore, the results show the superiority of the proposed method compared to some
of the state-of-the-art techniques.

2. Materials and Methods

In this section, an automatic assignment method for finding the SSEs correspondence
in three-dimensional space is proposed. An overview of the method is illustrated in
Figure 1. The method takes the modeled structure and the medium-resolution cryo-EM
density map as inputs (Figure 1a,b) and produces SSEs correspondence as output. Initially,
in the preprocessing step, the α-helices and β-strands from the modeled structure (SSEs-A)
and the cryo-EM map (SSEs-C) are extracted (Figure 1c,d). Then, the extracted SSEs from
both the structure and the map are constructed as vectors in the three-dimensional Cartesian
coordinate systems (Figure 1e,f). After that, utilizing the novel strategy and innovative
mathematical-based features (i.e., angle, Euclidian distance, and relative length), the 3D
vector matching problem is transformed into the 3D graph matching problem (Figure 1g,h).
To solve the 3D graph matching problem, two robust statistical scoring functions, which
are Bhattacharyya distance (BD) and modal assurance criterion (MAC), are proposed. At
the end, a similarity-based voting algorithm has been developed (Figure 1i) to extract the
SSEs correspondence.
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Figure 1. Different stages of the framework pipeline: (a) the inputs, including the modeled structure 
(PDB ID: 1BJ7, chain A) visualized by Chimera [29]; (b) the density map simulated at 10 A ̊ resolution 
using protein structure 1BJ7 and Chimera package [29]; (c) the secondary structure elements 
extracted from the 3D modeled structure in the preprocessing step (SSEs-A); (d) the secondary 
structure elements extracted from the cryo-EM density map (SSEs-C); (e) the 3D vectors constructed 
based on the extracted SSEs-A; (f) the 3D vectors constructed based on the extracted SSEs-C; (g,h) 
the 3D graphs are constructed; (i) the similarity-based voting algorithm is proposed as a decision 
making strategy for finding the SSEs correspondence; (j) the secondary structure elements 
correspondence. 

2.1. Preprocessing 

Figure 1. Different stages of the framework pipeline: (a) the inputs, including the modeled structure (PDB ID: 1BJ7,
chain A) visualized by Chimera [29]; (b) the density map simulated at 10 Å resolution using protein structure 1BJ7 and
Chimera package [29]; (c) the secondary structure elements extracted from the 3D modeled structure in the preprocessing
step (SSEs-A); (d) the secondary structure elements extracted from the cryo-EM density map (SSEs-C); (e) the 3D vectors
constructed based on the extracted SSEs-A; (f) the 3D vectors constructed based on the extracted SSEs-C; (g,h) the 3D graphs
are constructed; (i) the similarity-based voting algorithm is proposed as a decision making strategy for finding the SSEs
correspondence; (j) the secondary structure elements correspondence.
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2.1. Preprocessing

In this step, the model, generated by I-TASSER [30–33], and the cryo-EM density map
are used as initial inputs and the geometrical features are returned as outputs. Gener-
ally, the protein modeling can be performed using various modeling tools such as Mod-
eller [34], AlphaFold [35,36], RaptorX [37–39], and I-TASSER. I-TASSER (Zhang-Server)
and AlphaFold (A7D) are two efficient and robust methods, which are based on deep
residual-convolutional networks. AlphaFold utilizes artificial intelligence and deep learn-
ing methods to generate the 3D structure of proteins. The framework of the AlphaFold
is based on a deep two-dimensional convolutional residual network that enables this
method to create high-accuracy structures even under sequences with fewer homologous
sequences. I-TASSER is developed for automated protein structure prediction, which
performs the model construction by collecting the high-scoring structural templates based
on the threading approaches. The hierarchical architecture is composed of four steps,
including threading, structural assembly, model selection, and structure-based functional
annotation. I-TASSER finds a protein template of similar super-secondary structures from
the Protein Data Bank (PDB) through LOMETS [40,41]. Then, the extracted segments from
the templates are reconstructed through replica-exchange Monte Carlo simulations. The
performance of the generated model is assessed based on the reliability of the threading
templates and the convergence parameters of the structural assembly. The server was
successful in the Critical Assessment of Techniques for Protein Structure Prediction (CASP)
competition in recent years. Hence, in this study, the authors opted for I-TASSER, which is
available at (https://zhanggroup.org/I-TASSER/, accessed on 30 September 2021) due to
its simplicity and high accuracy.

The geometrical features are Cartesian coordinate voxels of the SSEs (α-helices and
β-strands). For more clarification, the α-helices and β-strands are the primary elements of
the secondary structures, as illustrated in Figure 2. These elements are formed by amino
acid residues. Each residue consists of four primary atoms (N, C∝, C, and O). The C∝. atom
is the most important one in the backbone of the SSEs. For the first input (i.e., the 3D model),
all the C∝ coordinates of the SSEs-A (the geometrical location of the backbone alpha carbon
of the α-helices and β-strands) are extracted. The second input is the cryo-EM map. At a
medium-resolution cryo-EM map, the secondary structure components can be observed as
density rods [17]. Various computational methods, such as SSEhunter [42], SSELearner [43],
SSETracer [44], and Emap2sec [45] have been developed to detect the position, orientation,
and length of α-helices and β-strands on the cryo-EM images. In this study, the Cartesian
coordinate voxels of the SSEs-C have been extracted using SSETracer [44].
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2.2. Construction of 3D Vectors from SSEs-A and SSEs-C

This study aims to find the correspondence between the α-helices and β-strands
detected on the cryo-EM map with those extracted on the modeled structure. To deal with
this issue, the extracted SSEs from the map and the 3D model are converted to the 3D
vectors in the Cartesian coordinate system. For visualization, a simple α-protein 1FLP
(PDB ID) is selected from the data set of interest, as demonstrated in Figure 3. The start
and end voxels of the SSEs-A have been utilized to construct the 3D vectors (Figure 3a,b).
Since we do not have any information regarding the C∝ atom of the medium-resolution
cryo-EM map, the coordinate voxels of the central axis of the SSEs-C have been used to
construct the 3D vectors (Figure 3c,d).
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ID) is shown with chimera [29]; (b) each α-helix in the atomic model is considered as a helix vector
(HV) in the Cartesian coordinate system (R3

SSEs−A); (c) the cryo-EM density map and the SSEs-C
detected on it. The map is simulated at 10 Å resolution using protein structure 1FLP (PDB ID). The
location of SSEs-C is illustrated as purple cylinders with Gorgon [21]; (d) extracted SSEs-C on the
map considered as stick vector (SV) in three-dimensional Cartesian space R3

SSEs−C.

2.3. Three-Dimensional Vector Matching

In order to solve the vector matching problem, three effective mathematical-based
features, which are the angle, the Euclidean distance, and the relative length, are proposed.
These features are computed with the aid of all vectors in R3

SSEs−A. and R3
SSEs−C. Afterward,

the 3D vector matching problem is transformed into the 3D graph matching problem based
on the extracted features. The construction of the graph is elaborated in the following.

Construction of Weighted Fully Connected Graphs of SSEs-A and SSEs-C

Based on the problem at hand, the central idea of the method is to find the correspon-
dence between the constructed 3D vectors of R3

SSEs−A and R3
SSEs−C. Hence, two weighted

fully connected graphs (i.e., GSSEs−A. and GSSEs−C) have been constructed from R3
SSEs−A

and R3
SSEs−C .

Figure 4 illustrates the transformation of the 3D vectors to the 3D graphs. For the sake
of simplicity, only the relevant edges of one node in the weighted fully connected graphs
are illustrated.
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vector (HVi) is transformed into an ith helix node (HNi); (c) stick vectors in R3

SSEs−C; (d) construction
of the weighted fully connected graph of sticks (GSSEs−C.). The ith stick vector (SVi) is transformed
into the ith stick node (SNi).

Let A = (A1 A2, . . . , Am) be a set of SSEs-A detected from the atomic structure and
C = (C1 C2, . . . , Cn) be a set of SSEs-C extracted on the cryo-EM map. The weighted fully
connected graph of SSEs-A and SSEs-C are undirected fully connected graphs that are
represented as a 4-tuple GSSEs−A = (NA, EA, VA, WA) and GSSEs−C = (NC, EC, VC, WC),
respectively. Note that, since the process of construction of the GSSEs−A and GSSEs−C graphs
are the same, for summarizing, the construction of the GSSEs−A graph in the following has
been elaborated.

Given GSSEs−A = (NA, EA, VA, WA), the first element of the GSSEs−A graph is NA,
which is a nonempty set of nodes that represent the vectors of SSEs-A in the 3D space.
|NA| denotes the number of nodes, which is equal to the number of vectors in R3

SSEs−A .
The second element of the graph is EA, which is defined as a set of edges representing all
possible interactions of nodes. The third element, VA, is a set of labels of the nodes and
they are defined based on the spatial position of C∝ atoms. It is appropriate to assign a pair(
s→i , e→i

)
=
(〈

xs
i , ys

i , zs
i
〉
,
〈

xe
i , ye

i , ze
i
〉)

from the start and end points of the ith vector to ith
SSEs-A node of the graph. s→i and e→i are the first and the last C∝ coordinate voxels of the
ith SSEs-A which is corresponded to the start and end voxel of the ith SSEs-A vector (HVi.).
The last element of the graph, WA, is defined for assigning weights to the edges of the
graph according to the mathematical-based features. More details about the construction of
the three graphs based on the three mathematical-based features are provided as follows:

i. Angle-based fully connected graph (GAngle
SSEs−A.): This graph uses the angle of vectors

for assigning weights to the edges of the graph. WAngle
SSEs−A

(
ei , ej

)
is defined to calculate

the weights of the GAngle
SSEs−A . graph based on the angle of every two vectors:

WAngle
SSEs−A

(
ei , ej

)
=

(
e→i .e→j

)
‖e→i ‖ ‖e→j ‖

, ∀ ei , ej ε HNi . (1)
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ii. Euclidean distance-based fully connected graph (GED
SSEs−A.): This graph utilizes the

Euclidean distance (ED) metric for assigning weights to the edges of the GED
SSEs−A.

graph. The edge’s weight of the graph is computed based on the Euclidean distance
of the midpoint of two vectors as follows:

m→i =
s→i + e→i

2
, m→j =

s→j + e→j
2

, WED
SSEs−A

(
mi , mj

)
= ‖m→i −m→j ‖ (2)

iii. Relative length-based fully connected graph (GRL
SSEs−A.): This graph determines the

weight of the edge based on the relative length (RL) of two vectors. This characteristic
is defined to specify the relative length between two vectors and is computed based
on Equation (3).

Li = |s→i − e→i |, WRL
SSEs−A

(
Li, Lj

)
=

∣∣Li − Lj
∣∣(

Li + Lj
) (3)

According to the aforementioned three constructed graphs, three weighted adjacency
matrices for GSSEs−A have been constructed. Based on the same principle, three graphs and
three weighted adjacency matrices for GSSEs−C. have been constructed. The GSSEs−A and
GSSEs−C matrices are m×m and n× n, respectively. The characteristics of the matrices are:

• All entries on the main diagonal are zero (xii = 0);
• All off-diagonal entries are positive (xij > 0 if i 6= j);
• The matrices are a symmetric matrix (xij = xji).

In the following phase of the study, to compute the similarity of the nodes between the
GSSEs−A. and GSSEs−C. graphs, two robust statistical scoring functions, BD and MAC, have
been proposed. The Bhattacharyya distance (BD) computes the distance of two probability
distributions or variables based on the statistical moments of the data [46]. These statistical
indicators have been widely applied in signal processing [47], image processing [48],
speaker recognition [49], and pattern recognition [50]. In this study, the metric is utilized
to measure the geometrical similarity and to calculate the distance between all nodes of
the GSSEs−A and GSSEs−C graphs. For more clarification, suppose that rSSEs−A

i and rSSEs−C
j

are two rows of two weighted adjacency matrices. In detail, rSSEs−A
i is the ith row of

MatrixSSEs−A and rSSEs−C
j is the jth row of MatrixSSEs−C . rSSEs−A

i signifies the weights of

all adjacency edges for the ith SSEs-A node. Similarly, rSSEs−C
j indicates the weights of all

adjacency edges for the jth SSEs-C node. To compute the similarity score between the two
nodes of GSSEs−A and GSSEs−C, the following formula has been applied:

BD
(

rSSEs−A
i , rSSEs−C

j

)
= − ln

(
∑
√(

rSSEs−A
i

)
.
(

rSSEs−C
j

))
, ∀ i ε 1 ≤ i ≤ m, ∀ j ε 1 ≤ j ≤ n (4)

The calculated distance score (BD) determines the relative closeness of two nodes
in two peer graphs. The BD scoring function varies between 0 to 1 (0 ≤ BD ≤ 1), in
which BD=0 represents two nodes with high similarity, and vice versa. We applied the
BD scoring function for all nodes of three peer graphs (i.e., < GAngle

SSEs−A , GAngle
SSEs−C >,

< GED
SSEs−A , GED

SSEs−C >, < GRL
Helix, GRL

stick >) to achieve the initial correspondence set
for each pair of graphs.

The second proposed scoring function, the modal assurance criterion (MAC), is
a robust statistical metric that provides a measure of consistency between two linear
arrays [51,52]. The basic idea behind the metric comes from the modal assurance criterion,
which computes a measure of consistency between the experimental and the analytical
modal arrays. In this study, the MAC considers as a scoring function to calculate the
similarity of nodes in each two peer graphs based on Equation (5). Similar to the BD
scoring function, the MAC metric takes two rows (i.e., rSSEs−A

i and rSSEs−C
j .) of two

peer matrices (e.g., GAngle
SSEs−A , GAngle

SSEs−C) as inputs and computes the similarity score. The
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generated similarity score is in the range of 0–1, where a zero score indicates no consistency
between the two peer nodes of the graphs, and one indicates complete consistency.

MACSSEs−A,SSEs−C =


((

rSSEs−A
i

)T
.
(

rSSEs−C
j

))2

(((
rSSEs−A

i

)T
.rSSEs−A

i

)
.
((

rSSEs−C
j

)T
.rSSEs−C

j

) )


i

(5)

After applying the two aforementioned distance/similarity scoring functions on the
three peer graphs, three candidate SSEs correspondence sets were generated. To extract the
final SSEs correspondence among the three obtained candidate SSEs correspondence sets, a
similarity-based voting algorithm has been developed.

2.4. Similarity-Based Voting Algorithm (SimVA)

The similarity-based voting algorithm (SimVA) has been proposed as a decision-
making strategy to extract the final SSEs correspondence among the three generated
correspondence sets. The SimVA initially takes the three obtained correspondence sets as
inputs and then generates the final SSEs correspondence as output. The final correspon-
dences are extracted in three steps, including (i) unanimous voting, (ii) majority voting,
and (iii) the principle of least conflict (PLC). These steps are presented in the following in
detail.

2.4.1. Unanimous Voting

In this step, the SimVA algorithm considers an assignment as an acceptable assignment
if it is repeated in all the three candidate correspondence sets. In the other words, if ith
SSEs-A matches with the jth SSEs-C based on the three mathematical-based features (angle,
Euclidian distance, and relative length), this assignment is a great choice, and it is reported
as an acceptable assignment.

2.4.2. Majority Voting

This routine supposes an assignment to be an acceptable assignment when it is
repeated in the two candidate correspondence sets among the three correspondence sets.
For example, if the ith SSEs-A match with the jth SSEs-C based on two of the mathematical-
based features out of three, it is considered as an acceptable assignment and is inserted into
the final correspondence set.

2.4.3. Principle of Least Conflict

The main idea behind the principle of least conflict (PLC) approach is to find the
assignments in the case that there is a remaining assignment that has not been selected in
the two previous steps. In this step, the assignment with the minimum conflict has been
recognized and selected as an acceptable assignment. The minimum conflict assignment is
a <SSEs-A, SSEs-C> pair that has the least conflict with the other pairs. As an example, if
the 1st SSEs-A should match with the 4th SSEs-C (i.e., the pair <1, 4> is a true assignment),
all the other assignments except <1, 4> for the 1st SSEs-A (e.g., <1, 2>, <1, 3>, . . . <1, n>) are
considered as conflict pairs. On the other hand, for the 4th SSEs-C, all other assignments
except <1, 4> are also in conflict (e.g., <2, 4>, <3, 4>, . . . <m, 4>). After all the conflict pairs
have been detected for all assignments, the number of conflict pairs for each assignment
has been enumerated and the pair with the minimum number of conflicts is selected as an
acceptable assignment. The proposed concept allows the SimVA algorithm to continue at
times when we could not find the assignment from the two aforementioned voting routines
in each iteration of the algorithm. At the end, all the acceptable assignments obtained from
the SimVA algorithm are considered as a final SSEs correspondence.
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3. Results

This section presents experiments which have been designed to evaluate the ro-
bustness of the presented method. The effectiveness of the method was validated on
25 experimental and simulated cryo-EM maps in terms of precision, sensitivity, F-measure,
and accuracy. The validity of the proposed approach was carried out by comparing the
SSEs correspondence computed by the method presented in this study with the native
correspondence (true SSEs correspondence). The native correspondence is obtained from
the manual labeling of the SSEs in the density map based on the known atomic structure
(for simulated data) or a structural homolog (for experimental data). We calculate the
accuracy, precision, sensitivity, and F-measure based on the following formula:

Accuracy = TP + TN/(TP + FP + FN + TN) ∗ 100 (6)

Precision = TP/(TP + FP) ∗ 100 (7)

Sensitivity = TP/(TP + FN) ∗ 100 (8)

F−measure = (2× Precision× Sensitivity)/(Precision + Sensitivity) ∗ 100 (9)

In the aforementioned equations, true positive (TP) is the number of detected matched
SSEs that are correct, true negative (TN) represents the number of detected unmatched
SSEs that are correct, false positive (FP) denotes the number of matched SSEs that are
incorrect, and false negative (FN) is the number of rejected matched SSEs that are incorrect.

3.1. Experimental and Simulated Cryo-EM Density Maps

The efficiency and accuracy of the automatic method were tested using 25 α-β proteins.
The data set of interest consists of 10 experimental and 15 simulated cryo-EM maps. The
experimental cryo-EM maps, which are reported in Table 1, were obtained from the Electron
Microscopy Data Bank (EMDB) [53] so that their resolutions ranges from 3.7 to 8.9 Å.

Table 1. The information of the experimental cryo-EM maps.

No EMDB ID a PDB ID b Chain c # Length d # SSEs-A e # SSEs-C f Resolution g

1 5030 3FIN * R 117 7 7 6.4
2 3888 6EM3 * A 291 11 9 4.2
3 8625 5UZB * A 177 13 9 7
4 4176 6F36 * M 327 13 11 3.7
5 1733 3C91 * A 233 18 15 6.8
6 8070 5I1M * V 458 19 17 7
7 2526 4CHV * A 361 23 22 7
8 3761 5O8O * A 349 24 22 6.8
9 20934 6UXW * A 1703 43 35 8.9
10 8231 5KBU * A 1034 65 54 7.8

a The EMDB ID of the protein used in the test; b the PDB ID of the protein used in the test. β-containing proteins are marked with *; c the
protein chain; d the number of amino acid residues in the sequence; e the total number of secondary structure elements (α-helices and
β-strands) in the atomic structure; f the total number of secondary structure elements (α-helices and β-strands) extracted from the cryo-EM
map; g the resolution of the experimental map in angstrom (Å).

The simulated maps, which are represented in Table 2, are synthesized at 10 A resolu-
tion using the Chimera package [29], and the structure of the proteins were downloaded
from the Protein Data Bank (PDB) (https://www.rcsb.org/, accessed on 30 September
2021) [54].

In the dataset of interest, the lengths of the proteins range from 117 (PDB ID: 3FIN) to
1703 (PDB ID: 6UXW) amino acid residues. The largest test case (PDB ID: 5KBU) in this
dataset includes 65 SSEs-A and 54 SSEs-C. Therefore, the selected data set is appropriate to
evaluate the robustness and effectiveness of the method in handling large samples.

https://www.rcsb.org/
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Table 2. The information of the simulated cryo-EM map.

No Name a PDB ID b Uniprot ID c Chain d Length e #SSEs-A f #SSEs-C g

1 Apolipoprotein E 1BZ4 P02649 A 144 5 5
2 Hemoglobin-1 1FLP P41260 A 142 7 7
3 Gag polyprotein 2Y4Z * P03336 A 140 8 8

4 Uncharacterized protein
YqeY 1NG6 P54464 A 148 9 7

5 Phosphatidylinositol 1HG5 O55012 A 289 11 9

6 Class IV chitinase
Chia4-Pa2 3HBE Q6WSR8 X 204 11 7

7 Phospholipase C 1P5X P09598 A 245 13 9

8 Tetracycline repressor
protein class D 2XB5 P0ACT4 A 207 13 9

9 Protein LlR18A 1ICX * P52778 A 155 13 11

10 N-glycosylase/DNA
lyase 1XQO Q8ZVK6 A 256 14 14

11 AlphaRep-4 3LTJ __ A 201 16 12

12 4,4’-diapophytoene
synthases 3ACW A9JQL9 A 293 17 14

13 Flagellar motor switch
protein FliG 3HJL O66891 A 329 20 20

14 Symplekin 3ODS Q92797 A 415 21 16
15 Albumin 2XVV P02768 A 585 33 19
a the name of the protein; b the PDB ID of the protein used in the test. β-containing proteins are marked with *; c the Uniport ID of the
protein; d the protein chain; e the number of amino acid residues in the sequence; f the total number of secondary structure elements
(α-helices and β-strands) in the atomic structure; g the total number of secondary structure elements extracted from the cryo-EM map.

3.2. Performance Comparison of Two Scoring Functions

As described in the earlier section, three peer graphs from SSEs-A and SSEs-C (i.e.,
< GAngle

SSEs−A, GAngle
SSEs−C >,

〈
GED

SSEs−A, GED
SSEs−C

〉
,
〈

GRL
SSEs−A, GRL

SSEs−C
〉
) have been con-

structed based on the three mathematical-based features. To measure the similarity of
the nodes in each peer graph, two statistical scoring functions, BD and MAC, have been
utilized. To assess the quality of the algorithm, we have evaluated our work based on
the three proposed mathematical-based features using the BD and MAC scoring func-
tions. The accuracy of the achieved SSEs correspondence sets (angle-, ED-, and RL-based
correspondence sets) is calculated based on the Equation (6), as reported in Table 3.

As can be seen in Table 3, the percentage of the average accuracy based on the angle-,
ED-, and RL-based correspondence sets concerning the BD scoring function are equal to
53.20%, 69.39%, and 50.63%, respectively. For the MAC scoring function, these values are
identical to 57.59%, 70.58%, and 53.76%, respectively. The results indicate that the MAC
metric is more reliable than BD in finding the similarity of the nodes of the graphs.

To extract the final SSEs correspondence set from the three produced correspondence
ones, the SimVA algorithm has been designed and implemented. In the following, the
effectiveness of the developed algorithm is assessed on the experimental and simulated
cryo-EM map.

3.3. Impact of the SimVA Algorithm on the SSEs Correspondence Result

To improve the efficiency of the matching process, the SimVA algorithm has been pro-
posed. The SimVA algorithm has been developed to extract the final SSEs correspondence
based on the feature integration strategy. Here, the accuracy of the SimVA algorithm using
two scoring functions, BD and MAC, is analyzed. Table 4 compares the performance of the
method before and after incorporating the SimVA algorithm.
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Table 3. The accuracy of the three SSEs correspondence sets using two scoring functions.

BD MAC

NO PDB ID Angle ED RL Angle ED RL

1 1BZ4 80 80 80 80 60 80
2 1FLP 42.85 57.14 28.57 57.14 71.42 57.14
3 2Y4Z 50 58.33 58.33 58.33 50 50
4 1NG6 44.44 88.88 66.66 44.44 88.88 77.77
5 1HG5 72.72 36.36 36.36 54.54 45.45 54.54
6 3HBE 81.81 90.9 81.81 81.81 90.9 72.72
7 1P5X 69.23 84.16 61.53 76.92 100 69.23
8 2XB5 38.46 76.92 69.23 46.15 53.84 69.23
9 1ICX 76.19 77.38 53.57 84.52 70.23 63.09

10 1XQO 64.28 57.14 50 71.42 78.57 28.57
11 3LTJ 43.75 93.75 37.5 100 43.75 62.5
12 3ACW 35.29 64.7 47.05 35.29 52.94 35.29
13 3HJL 20 90 30 40 95 30
14 3ODS 33.33 52.38 33.33 23.8 57.14 42.58
15 2XVV 60.6 78.78 45.45 63.63 78.78 54.54
16 3FIN 58.33 58.33 29.16 45.83 87.5 58.33
17 6EM3 70.83 47.91 58.33 81.25 54.16 52.08
18 5UZB 55.55 66.66 44.44 55.55 66.66 55.55
19 6F36 38.46 92.3 53.84 38.46 100 53.84
20 3C91 62.5 63.75 60 62.5 68.75 45
21 5I1M 36.84 52.63 57.89 31.57 47.36 36.84
22 4CHV 53.33 73.33 46.66 53.33 93.33 66.66
23 5O8O 52.38 66.66 52.38 50 92.85 50
24 6UXW 41.21 79.84 48.18 49.69 67.27 41.66
25 5KBU 47.63 46.59 35.51 53.78 49.76 36.97

Average 53.20 69.39 50.63 57.59 70.58 53.76

Table 4. The accuracy of the method incorporating the SimVA algorithm.

No PDB ID a BD b SimVA_BD c MAC d SimVA_MAC
e

1 1BZ4 80 80 73.33 80
2 1FLP 42.85 57.14 61.9 85.71
3 2Y4Z 55.55 66.66 55.55 66.66
4 1NG6 66.66 100 70.37 77.77
5 1HG5 48.48 54.54 51.51 72.72
6 3HBE 84.84 90.9 81.81 90.9
7 1P5X 71.79 92.3 82.05 84.61
8 2XB5 61.53 76.92 56.4 69.23
9 1ICX 69.04 84.52 72.61 91.66

10 1XQO 57.14 78.57 59.52 64.28
11 3LTJ 58.33 100 62.5 56.25
12 3ACW 49.01 70.58 41.17 70.58
13 3HJL 46.66 85 55 75
14 3ODS 39.68 61.9 41.26 66.66
15 2XVV 61.61 66.66 65.65 63.63
16 3FIN 48.61 70.83 63.88 70.83
17 6EM3 59.02 64.58 62.5 87.5
18 5UZB 55.55 77.77 59.25 66.66
19 6F36 61.53 69.23 64.1 76.92
20 3C91 62.08 87.5 58.75 78.75
21 5I1M 49.12 78.94 38.59 84.21
22 4CHV 57.77 86.66 71.11 86.66
23 5O8O 57.14 47.61 64.28 85.71
24 6UXW 56.41 84.84 52.87 67.87
25 5KBU 43.24 70.73 46.84 81.62

Average 57.74 76.17 61.51 76.09
a the PDB ID of the protein; b the total accuracy obtained from three mathematical-based features using BD
scoring function; c the accuracy of the SimVA algorithm using BD scoring function; d the total accuracy obtained
from three mathematical-based features using MAC scoring function. e the accuracy of the SimVA algorithm
using the MAC scoring function.
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A comparison of the reported results in Table 4 shows that for 24 out of 25 test cases,
the accuracy has been improved by incorporating the SimVA algorithm. The total average
accuracy obtained from the three mathematical-based features using BD and MAC is
57.74% and 61.51%, respectively. After incorporating the SimVA algorithm in the final
step, the total average of the accuracy using BD and MAC are equal to 76.17 % and 76.09%,
respectively. This reveals that incorporating the SimVA algorithm led to an 18.43% and a
14.58% improvement in the accuracy of the method.

3.4. Assessment of the Method

To analyze the robustness of the method, four performance measurements (precision
(P), sensitivity (S), F-measure (F), and accuracy (A)) were used. Figure 5 demonstrates the
efficiency of the method using the measurements on the data set of interest.
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As can be observed in Figure 5, for most of the proteins in the data set with the aid
of the SimVA_MAC, the accuracy is more than 70%. The results show that the method is
robust and works well even under the presence of errors and uncertainties in the extracted
SSEs in the cryo-EM images. This is a valuable outcome of this study.

3.5. Comparison of Method with DP-TOSS

In this section, the accuracy of the SimVA algorithm using two scoring functions, BD
and MAC, has been compared with DP-TOSS [20]. Many approaches have recently been
developed to solve the SSEs mapping problem for medium-resolution cryo-EM maps, as
discussed in the introduction. Here, the proposed method is compared with the latest
version of DP-TOSS. As can be seen in Table 5, the average of accuracy on the data set
of interest for DP-TOSS, SimVA_BD, and SimVA_MAC are equal to 61.35%, 76.17%, and
76.09%, respectively.

Based on the obtained results, it can be concluded that SimVA is more efficient than
DP-TOSS. More specifically, the percentages of the accuracy improvement of the proposed
method compared to DP-TOSS using the BD and MAC are equal to 14.82% and 14.74%,
respectively. Furthermore, SimVA is able to work on large protein with a total number of
65 SSEs (PDB ID 5KBU). This is one of the valuable achievements of this study that can
cope with the problem of using large complex proteins with many secondary structure
elements. Working on large complex proteins has been a challenging issue in recent
studies [18–20,54]. As reported in the state-of-the-art studies, the largest protein in their
dataset includes 33 SSEs-A and 20 SSEs-C. In the current study, we have been able to run
the designed automatic method on two experimentally huge cryo-EM maps, 6UXW (PDB
ID) and 5KBU (PDB-ID), which consist of 1034 and 1703 amino acids, respectively.

3.6. Runtime of the Method

The proposed automatic matching algorithm consists of four main steps. The first step
is to extract the SSEs from two sources of information (i.e., PDB and map), the second step is
to construct the 3D vectors from extracted SSEs, the third step is to transform the 3D vectors
into the 3D graphs, and the last step is to develop a similarity-based voting algorithm in
order to obtain the final SSEs correspondence. Here, the runtime of the method has been
computed for the last three steps. The total runtime has been computed on a workstation
with MacBook Pro, 2.2 GHz 6-Core Intel Core i7 Processor, and 16 GB of memory. The
running time of the method on the benchmark data set is illustrated in Figure 6.

As can be observed in Figure 6, the runtime of the algorithm increases as the number
of SSEs-A increases. For example, the least running time (0.46 s) is related to the protein
1BZ4 (PDB ID) with 5 SSEs-A, and the most running time (10.58 s) is relevant to the protein
5KBU (PDB ID) with 65 SSEs-A.
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Table 5. Comparison between DP-TOSS and SimVA.

No PDB ID a DP-TOSS b SimVA_BD c SimVA_MAC d

1 1BZ4 100 80 80
2 1FLP 100 57.14 85.71
3 2Y4Z 50 66.66 66.66
4 1NG6 71.40 100 77.77
5 1HG5 55.60 54.54 72.72
6 3HBE 57.10 90.9 90.9
7 1P5X 55.60 92.3 84.61
8 2XB5 66.70 76.92 69.23
9 1ICX 45.50 84.52 91.66
10 1XQO 71.4 78.57 64.28
11 3LTJ 83.30 100 56.25
12 3ACW 100 70.58 70.58
13 3HJL 100 85 75
14 3ODS 100 61.9 66.66
15 2XVV 89.40 66.66 63.63
16 3FIN 100 70.83 70.83
17 6EM3 44.40 64.58 87.5
18 5UZB 55.50 77.77 66.66
19 6F36 100 69.23 76.92
20 3C91 46.70 87.5 78.75
21 5I1M 41.20 78.94 84.21
22 4CHV 0 86.66 86.66
23 5O8O 0 47.61 85.71
24 6UXW 0 84.84 67.87
25 5KBU 0 70.73 81.62

Average 61.35 76.17 76.09
a the PDB ID of the protein; b the accuracy of DP-TOSS method; c the accuracy of the SimVA algorithm using BD
scoring function; d the accuracy of the SimVA algorithm using MAC scoring function.
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4. Discussion and Conclusions

Cryo-EM has played an increasing role in the structure determination of molecular
complexes in recent years. Despite many advances in cryo-EM technologies, in some cases,
the resolution of the generated maps ranges between 4Å to 10Å. Therefore, the medium-
resolution cryo-EM map may not be adequate to directly determine the atomic structure of
the protein. At medium-resolution, the secondary structure elements have been extracted
and visualized by various methods. In this study, the automatic assignment method has
been developed to find the mapping of the secondary structures of the modeled structure to
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the cryo-EM map. Knowing this assignment allows us to form an initial hypothesis on the
structure of the protein backbone. The key idea of the 3D matching strategy proposed in this
study is to represent the extracted SSEs from the density map and the modeled structure in
a common way, and then build up the correspondence between these two representations.
Our common approach is 3D weighted fully connected graphs, with nodes representing the
SSEs and the edges representing the connectivity between the SSEs. The key contributions
of the geometrical matching method can be summarized as follows: (i) the modeling of the
SSEs to the geometrical vectors in 3D space, (ii) transforming the 3D vectors into the 3D
graphs based on the proposed mathematical-based features, (iii) introducing two robust
statistical scoring functions, BD and MAC, to measure the similarity of nodes of the graphs,
and (iv) developing the innovative similarity-based voting algorithm combined with the
PLC concept to find the true correspondence. It is important to mention that the SSEs
correspondence may not be a bijection. Due to the noise and uncertainty in a typical map,
the SSEs detection algorithms may fail to find the location of all the SSEs within the map
and may also identify false SSEs. We demonstrated the performance of the method on the
simulated as well as experimental data sets in the presence of errors. Comparative studies
have also been conducted to demonstrate the superiority of the 3D matching method
over some of the existing state-of-the-art techniques. The results show that the automatic
method is highly efficient (76.09% overall accuracy) and works well for large cryo-EM
maps. Moreover, the key strength of the matching method is that it does not require any
prior segmentation of the density map and does not need skeleton data to obtain the SSEs
correspondence. Besides, the automatic method is able to work on the large cryo-EM data
(PDB ID 5KBU) containing 65 SSEs-A and 54 SSEs-C with 81.62% accuracy in less than 11 s.

5. Code Availability

The source code and data of the method is publicly available at https://github.com/
Bahareh-Behkamal/Match_SSEs_CryoEM, accessed on 20 November 2021. Moreover, the
instruction for utilizing the method can be found in the shared readme file.
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