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Abstract: Ensemble-based structural modeling of flexible protein segments such as intrinsically
disordered regions is a complex task often solved by selection of conformers from an initial pool
based on their conformity to experimental data. However, the properties of the conformational pool
are crucial, as the sampling of the conformational space should be sufficient and, in the optimal
case, relatively uniform. In other words, the ideal sampling is both efficient and exhaustive. To
achieve this, specialized tools are usually necessary, which might not be maintained in the long term,
available on all platforms or flexible enough to be tweaked to individual needs. Here, we present an
open-source and extendable pipeline to generate initial protein structure pools for use with selection-
based tools to obtain ensemble models of flexible protein segments. Our method is implemented
in Python and uses ChimeraX, Scwrl4, Gromacs and neighbor-dependent backbone distributions
compiled and published previously by the Dunbrack lab. All these tools and data are publicly
available and maintained. Our basic premise is that by using residue-specific, neighbor-dependent
Ramachandran distributions, we can enhance the efficient exploration of the relevant region of the
conformational space. We have also provided a straightforward way to bias the sampling towards
specific conformations for selected residues by combining different conformational distributions.
This allows the consideration of a priori known conformational preferences such as in the case of
preformed structural elements. The open-source and modular nature of the pipeline allows easy
adaptation for specific problems. We tested the pipeline on an intrinsically disordered segment of the
protein Cd3ε and also a single-alpha helical (SAH) region by generating conformational pools and
selecting ensembles matching experimental data using the CoNSEnsX+ server.

Keywords: protein ensemble model; intrinsically disordered proteins; structure prediction; principal
component analysis; local interaction; dihedral angle

1. Introduction
1.1. Ensemble-Based Modeling of Protein Internal Dynamics

Despite significant developments in protein structure prediction and modeling such
as AlphaFold2 [1], the detailed description and interpretation of protein internal motions is
still a considerable challenge. One of the most efficient methods is to generate structural
ensembles that reflect experimentally determined parameters, obtained typically from
NMR and/or SAXS measurements [2,3]. The number of such ensembles is growing as
reflected in the recently updated Protein Ensemble Database [4,5]. The distinctive feature
of such ensembles is that they reflect the experimentally determined parameters as a
whole, and no individual conformer is expected to correspond to all the data. This is
based on the rationale that the measured data correspond to a time- and ensemble-average
themselves, and it might not even be realistic that a single conformation can be described
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by these parameters. Such ensembles can typically be generated by restrained molecular
dynamics simulations or selection-based approaches, where a subset of conformers is
chosen from a large pool. The former one can be primarily used for systems that are
expected to fluctuate around a more or less well-defined average state such as in the case of
fast motions described by S2 order parameters or Residual Dipolar Couplings (RDCs) [6–9].
Besides the relatively limited conformational space explored, the other potential drawback
of restrained MD is that the restraining forces might distort the force field and might result
in unrealistic geometry.

Pool-based selection approaches can avoid both of these pitfalls and are applicable
to molecules adopting highly diverse structures in the course of their fluctuations. In this
case, however, the proper sampling of the conformational space is critical as it should focus
on the relevant region which is not known a priori. Therefore, it is commonly accepted that
for the modeling of intrinsically disordered segments, a very large number of structures,
on the order of tens of thousands, should be generated [10]. For this purpose, a number of
approaches have been developed that often include all steps from pool generation to selec-
tion. One of them is Flexible Meccano [11–13], which aims to build structures of IDPs from
fragments of PDB-deposited disordered protein segments. Another approach to sample the
most relevant region of the conformational space is to consider the effects of neighboring
residues by applying a triplet-based conformer library [13]. The ENSEMBLE method [10]
performs both the generation and selection steps, and accepts pre-generated additional
ensembles to widen the conformational space explored by the TraDes method [14,15], used
by default. Structure pools can also be obtained from suitably parametrized MD simula-
tions [16]. In practice, adjustment of the conformational search space to sample structures
with predefined local conformational preferences is often desirable to obtain ensembles
with good correspondence to experimental data [17].

Our motivation was to add an open-source and easily configurable method to this
continuously developing toolkit that can be used either alone or in combination with
other approaches and is based on independently established conformational preferences
of amino acids. To this end, we created an open-source solution that relies on soft-
ware that is actively maintained and freely available, as well as on publicly available
datasets. Our pipeline, called DIPEND (DIsordered Protein Ensembles from Neighbor-
dependent Distributions) is implemented in Python3 and is available on GitHub https:
//github.com/PPKE-Bioinf/DIPEND. It uses ChimeraX [18], Scwrl4 [19] and Gromacs [20]
as well as neighbor-dependent Ramachandran distributions available from the Dunbrack
lab [21]. We have chosen this model because of its solid theoretical background, robustness
and availability. The advantage of using ChimeraX and GROMACS is that these programs
are widely used, free and actively maintained, and in the long run, the accessibility and flex-
ibility of these methods, allowing adjustments by the users, outweighs the computational
costs associated with this design. To enhance the sampling of conformations expected to
be relevant for a given system, our implementation allows for the combination of neighbor-
dependent distributions with user-defined ones with adjustable relative weighting. Thus,
local structural preferences can explicitly be taken into account during ensemble generation
on a per-residue basis.

Our design relies on decoupling ensemble generation from evaluation. The reason
for this is that we believe that it provides a fully transparent pipeline and allows the
user to choose the evaluation method independently. Here, the user intervention ensures
that the bias introduced is justifiable and intentional by the researcher. The evaluation
of the ensembles is often non-trivial as it depends both on the purpose of the modeling
and the availability and reliability of the experimental data used for validation. In this
description, we use our previously created CoNSEnsX+ server [22] extended with the
analysis of secondary chemical shifts to demonstrate the application of local structural
preferences in ensemble generation.

https://github.com/PPKE-Bioinf/DIPEND
https://github.com/PPKE-Bioinf/DIPEND
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1.2. Neighbor-Dependent Ramachandran Preferences for Amino Acids

For DIPEND, we have chosen to use the dataset compiled by Ting et al. [21]. They
have calculated probabilities for the different φ and ψ dihedral angles of a particular amino
acid having a specific amino acid as “left” (N terminal side sequential) neighbor or “right”
(C terminal side sequential) neighbor. To obtain a smooth distribution, they fitted their
data to a hierarchical Dirichlet model. Thus, the reported backbone dihedral probabilities
are a mixed sum of Gaussian probabilities. They explicitly consider cis and trans prolines
as different residue types for the “central” amino acid investigated, but these are not
considered separately as (“left” or “right”) neighbors.

1.3. Benchmark Test Systems

In order to assess our method, we have chosen two proteins with different structural
preferences and availability of NMR parameters. The cytosolic domain of Cd3ε is an
intrinsically disordered segment with no a priori known local structural preferences. In
contrast, the single α-helix (SAH) domain of myosin VI exhibits a strong helical propen-
sity. Therefore, these proteins represent suitable examples for testing the usability of the
DIPEND pipeline.

1.3.1. Cd3ε Cytoplasmic Domain

The Cd3ε (or T cell antigen receptor TCR) protein is part of the Major Histocompatibil-
ity Complex (MHC), a T cell receptor complex. Activation of this complex by an antigen (a
peptide from a pathogen brought to the receptor by an antigen-presenting T cell) leads to a
complex signal transduction cascade. This comprises phosphorylation of the complex at
multiple sites, triggering the activation of several transduction pathways (such as the RAS,
P53 and NFAT pathways), ultimately leading to T-lymphocite cell activation and immune
response, such as the generation of effector T cells. It also has a role in calcium-induced
signaling [23].

The cytoplasmic domain of the Cd3ε protein is largely intrinsically disordered and
has been characterized by solution NMR spectroscopy [24]. We have investigated the
disordered C terminal part, corresponding to residues 153–207 of the human Cd3ε protein
containing an immunoreceptor tyrosine-based activation motif (ITAM). ITAMs are com-
posed of two instances of the consensus sequence Y-X-X-[LI] separated by 6–8 residues [25].
We modeled the sequence as it appears in the corresponding BMRB entry (BMRB ID
18889 [24]) having serine and leucine as the first two amino acids instead of tryptophan
and serine. We used the deposited chemical shift data for analysis.

1.3.2. The α Helical Medial Tail Domain of the Porcine Myosin VI Protein

For modeling protein segments with a priori known structural preferences but flexi-
bility not yet explicitly modeled with all-atom ensemble models, the α helical part of the
medial tail domain of the myosin VI protein is an excellent example. This helical part
serves as a lever arm to the myosin motor protein, which has a role in muscle contraction.
For this α-helical region, a diverse set of NMR parameters was determined by Barnes et al.,
including 15N, 13C and 1H chemical shifts; 3 JHNHA scalar couplings; and N-H, C-H and
C-N residual dipolar couplings, as well as S2 order parameters. Using NOE and RDC data,
the solution structure of the segment was also determined and deposited in the PDB with
ID 6OBI [26].

2. Materials and Methods
2.1. A Pipeline to Build Three-Dimensional Ensemble Models

Our pipeline is designed to build a number of structural models of a selected non-
globular segment of a protein. Its only mandatory input with no default value is the
sequence of the segment to be generated.

The working of the program is shown in (Figure 1). The main program is built in
Python3.
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The main steps performed by the program are:

• At first, ChimeraX [18] is invoked to build up a very long beta strand based on the
given sequence.

• Next, Ramachandran angles for each residue are set based on the neighbor-dependent
probabilities reported in [21]. The probabilities are defined for bins of 5x5 degrees
and are stored as binary files to optimize speed and storage. Probabilities based on
the left (N terminal side sequential) neighbor and right (C terminal side sequential)
neighbor, as well as a combined one, derived as described in [21], are available and
are denoted LEFT, RIGHT and TRIPLET. A roulette-wheel selection approach is used
where a generated random number between 0 and 1 is used to select a bin according
to the cumulative probabilities.

• ChimeraX [18] is again used to set the dihedral angles to the previously calculated values.
• For the obtained conformation, a quick check is performed to filter out unrealistic

structures based on CA-CA distances below 4 Ångströms. This additional program is
written in C++.

• If there are no CA steric clashes, the program Scwrl4 [19] is invoked to optimize
the sidechains.

• If there are CA steric clashes, the program attempts to unknot them. If two residues
clash, the program tries to perturb the dihedral angles of the residue halfway between
them. The perturbation means to add or subtract a given value to the selected dihedral
angles. For each angle, these perturbations are combinatorially applied, and the
perturbed structures undergo the above clash check again.

• After that, the program runs GROMACS [27] to perform a short energy minimization
in vacuum to optimize the structure. The generated log file is checked for success, as
it is expected that structures with serious steric problems will fail this step.

• If the optimization is successful, ChimeraX [18] is invoked again to check for all atom
steric clashes with its command clashes using default parameters. If there are no steric
clashes, the structure is accepted successfully.

• The above steps are performed for each structure to be generated. For unsuccessful
trials, the program will try and perform structure generation again until the user-
defined limit for trials is reached or an accepted structure is generated.

• The input parameters of the program are:

– The sequence (the only required input parameter);
– The number of structures to be generated;
– The building mode;

* LEFT: considering only the left (N terminal) sequential neighbor in choosing
dihedral angles;

* RIGHT: considering only the right (C terminal) sequential neighbor in choos-
ing dihedral angles;

* TRIPLET: considers both sequential neighbors using derived cumulative
probabilities;

* WEIGHTED_LEFT: for each residue, a user defined Gaussian distribution
can be combined with the Dunbrack distribution;

* WEIGHTED_RIGHT: for each residue, a user defined Gaussian distribution
can be combined with the Dunbrack distribution;

* WEIGHTED_TRIPLET: for each residue, a user defined Gaussian distribution
can be combined with the derived distribution.

– a filename base for the generated structures (for example „bar_” as a base will
result in bar_min_1.pdb, bar_min_2.pdb, etc.);

– The dataset used (TCBIG or Coil only, see [21]);
– The number of trials for a structure;
– Whether a Gromacs optimization step should be performed for each structure;
– Whether temporary files are kept after the run;
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– The angle to add or subtract from the dihedral angles at the unknotting steps;
– The maximum number of torsions to be adjusted during unknotting, zero mean-

ing no unknotting.

Some of the above described steps are further explained in the following subsections.
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Figure 1. (A) Flowchart of the steps of the pipeline DIPEND (DIsordered Protein Ensembles from
Neighbor-dependent Distributions). (B) Flowchart of the unknotting part of the DIPEND pipeline.
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2.1.1. The Initial Structure

As a first step, we build a long extended structure with the desired amino acid
sequence using ChimeraX [18] with φ = −65◦ and ψ = +135◦.

2.1.2. Different Approaches to Handle Sequence Neighborhood

The next step is to apply the final dihedral angles for each amino acid based on its
neighbor or assigned randomly. There are different building modes in our program, which
means a different approach to handle sequential neighborhoods. The LEFT mode uses the
cumulative probabilities reported in [21] to choose a 5-degree bin in the dihedral angles
based on the left neighbor; the RIGHT mode is the same, but with the right neighbor, the
TRIPLET mode uses the combination of the left and right probabilities as it is recommended
by the Dunbrack lab. The calculation of the triplet probability is made by the following
equation in the case of a cysteine as left neighbor and a glycine as right neighbor as
an example:

Ptriplet =
eln(pcl)+ln(prg)−ln(plall)−ln(prall)

psum
(1)

where pcl is the left cysteine neighbor probability, prg is the right glycine neighbor probabil-
ity, plall is the probability of all left neighbors, prall is the probability of all right neighbors
and psum is the sum of all the different denominators in a given bin, therefore normaliz-
ing the probabilities. As a next step we evaluated this for the possible angle pairs and
calculated the cumulative distribution by starting from (−180, −180) and for each angle
pair adding the normalized respective probability to the previous sum. Normalization is
simply dividing by the whole sum, so that at the last angle pair (+175, +175), it reaches
exactly 1. The angles are eventually randomly drawn from these cumulative probabilities
as described for the other building modes.

In the weighted modes, a Gaussian distribution can be defined for each residue. The
central dihedral angles and the standard deviation can be set along with a weight which
is between 0 and 1. For 0 weight, the user defined distribution is not considered, giving
the same result as not using a weighted mode. At a weight of 1, only the user-defined
Gaussian distribution is considered. For a given dihedral angle pair, the cumulative
probability is derived as p = w ∗ pu + (1 − w) ∗ pd, where w is the user defined weight, pu
is the cumulative probability from the user-defined Gaussian distribution and pd is the
cumulative probability of the Dunbrack data.

2.1.3. Steric Clashes and Repetition

After the dihedral angles were selected with the given building mode, the angles were
set individually for each amino acid with the program ChimeraX [18], calling it without
GUI and graphics. The resulting structure is checked for steric clashes or discontinuities. If
the distance between two CA atoms is less than 4 Ångströms and they are not sequential
neighbors, it is considered a steric clash. If two CA atoms are closer than four amino
acids in sequence and yet their distance is more than 20 Ångströms, this means that there
is a discontinuity in the peptide chain. This latter case is not supposed to happen, but
the former case is quite common, especially with a large structure more than 100 amino
acids long.

Optionally, a so-called “unknotting” step can be performed for longer structures. The
idea behind this is that for most clashes a minor adjustment of a few torsion angles might
be sufficient to resolve the steric overlaps. The unknotting step is designed to provide
only minimal deviation from the pre-selected backbone dihedral angles. First, all clashes
are identified. Then, using clashes affecting neighboring residues, segments are defined,
and for each segment, the closest inter-residue distance is kept along with the position of
these clashing residues. In our heuristics, the residue to be adjusted to resolve this clash
is the one in the middle of the segment defined by these two clashing residues. For each
adjustable residue, both φ and ψ angles are considered, except for prolines, where only
ψ will be adjusted. If the number of the torsions to be adjusted is above a predefined
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limit, no unknotting will be attempted, and the structure will be dropped. Otherwise, all
combinations of these dihedrals will be explored by rotating each torsion in both directions
with a predefined value (e.g., 30 degrees). Each of these structures will be checked for
clashes, and the first clash-free structure will be accepted. If no such structure is found, the
original structure will be dropped. Although the number of combinations to be explored
during the unknotting step can be large, for long structures, this step is more efficient than
generating a completely novel structure for each one with clashes. Both the maximum
number of torsions and the extent of rotations can be set by the user.

The program keeps track of which structures are successfully built and which are not,
based on other structure checks after performing an optional but highly recommended
GROMACS minimization, and performs additional trials for the failed structures until the
user-defined limit of tries is reached. For example, if we would like to make 10 structures
and the number of tries is 30, in the worst case of an utter failure, there are 310 tries with
no resulting correct structures, and in the very best case, there are 10 tries with 10 correct
structures. We have used two datasets [21]: the coil only and the TCBIG, which contains all
kinds of secondary structures, except alpha helical and beta strand.

2.1.4. Selecting and Evaluating Subensembles

Subensemble selection was performed with a locally installed instance of the dock-
erized version of CoNSEnsX+ [22]. CoNSEnsX+ selects a subensemble which has the
best correspondence to the experimental data. A greedy algorithm is used starting with
a single structure which reflects the experimental data the most. After that, it adds other
conformers step by step if it improves the correspondence to the experimental data. The
full ensemble size is reached when no further improvement can be achieved by the addition
of conformers. CoNSEnsX+ uses the SHIFTX program [28] to calculate chemical shifts
and PALES [29] to estimate RDCs from the structures. We have introduced the calculation
of secondary chemical shifts using the neighbor-dependent random coil values reported
in [30]. The default Karplus equation parametrization was used to derive J-couplings [31].

The selected ensembles were also analyzed using CoNSEnsX+ and were compared
with principal component analysis as implemented in the ProDy package [32].

2.2. Molecular Dynamics Simulations

A 1 µs all-atom simulation on Cd3ε in an explicit SPC/E water model [33] was
performed with GROMACS (version 2020) [20] using the Amber ff99SB [34] forcefield.
After neutralization and a short energy minimization, the production run was preceded by
1 ns NVT and NPT equilibrations. The simulation was run at 300 K using GPU acceleration.
Structures taken at every 50 ps were used to obtain an ensemble with 20,001 conformers.
All structures were retained in order to not reduce conformational variability by omitting
the more extended structures at the start of the simulation.

3. Results
3.1. Implementation of the DIPEND Pipeline

DIPEND is implemented in Python3 to offer high flexibility and adaptability to specific
needs. The program is running on a standard personal computer using one thread, which
costs about 17 h for generating 1000 structures for a 50 amino acid protein. For about
100 amino acids, for 1000 structures, it costs around 190 h (about a week). In brief, the
program performs the following main steps:

• Build an initial extended structure (invokes ChimeraX);
• Select the dihedral angles of each residue according to the distribution settings

(see Methods);
• Set the dihedral angles to the selected values (invokes ChimeraX);
• Preliminary check for CA-CA clashes to filter out largely unrealistic structures (invokes

an in-house C++ program);
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• For clashing structures, an “unknotting” attempt can be performed if chosen with
the options;

• Optimize side chains (invokes Scwrl4);
• Short energy minimization (invokes GROMACS);
• All-atom clash check (invokes ChimeraX).

DIPEND is implemented in Python3 with a small part in C++ and is freely available on
GitHub https://github.com/PPKE-Bioinf/DIPEND. It requires ChimeraX and Scwrl4 as
well as GROMACS for the optional but recommended optimization step. As the neighbor-
dependent Ramachandran probabilities are provided on a grid with 5-degree resolution,
this is also the resolution of the dihedral angles used to build the models. Thus, the
GROMACS optimization step is necessary to relax this constraint.

The only input without a predefined default value is the sequence of the polypeptide
to be built. The possible parameter settings are detailed in the Methods section.

For segments or individual amino acid residues, additional Ramachandran probability
distributions can be provided. The easiest way to do this is to specify a φ, ψ dihedral angle
pair and an associated standard deviation, for which the program generates a 2D normal
distribution on the Ramachandran map. This distribution then can be combined with
the neighbor-dependent ones using a user-defined weighting. Utilizing this feature, local
structural preferences for selected amino acids can be shifted. A different distribution +
weighting can be specified for each residue if desired.

3.2. Addition of Secondary Chemical Shift Analysis to the CoNSEnsX+ Server

To facilitate the analysis of local structural preferences in more detail, we have up-
graded our CoNSensX+ web service with the analysis of secondary chemical shifts and
made the reporting of these the default, while keeping the original chemical shift analysis
results accessible. For secondary chemical shifts, we have used the neighbor-corrected
values reported by [30]. The up-to-date version of CoNSEnsX+ is available on GitHub
https://github.com/PPKE-Bioinf/consensx.itk.ppke.hu and also in dockerized form.

3.3. Overview of the DIPEND-Generated Ensembles

To test the pipeline, we have generated ensembles for two selected protein segments for
which experimental data are available. The ensembles were analyzed using CoNSEnsX+,
and we have also selected subensembles using one or more parameters. We have generally
used RMSD as a measure to be improved during selection. For chemical shifts, RMSD is
the same value irrespective of whether the full or the secondary shifts are analyzed. As the
secondary chemical shifts are usually very small for disordered regions, a selection based
on one atom type typically does not result in considerable improvement in other shift types
in terms of correlation. This is somewhat surprising as the secondary shifts in principle
report on the same structural feature, but our observation emphasizes the sensitive nature
of such shifts to subtle local structural differences, especially when the secondary shifts
are small.

3.4. Analysis of the Cd3ε Disordered Cytoplasmic Segment

After inspection of the secondary chemical shifts, we decided to omit the chemical
shifts of the last residues of the segment Ile57 as an outlier because all of its secondary shift
values were about two times larger than observed for all other residues. Based on several
preliminary runs, a slight additional distribution was set up for the segment between
residues 25–35 to enhance its extended nature using the dihedral angles −120,120 with a
standard deviation of 10 degrees and a weight of 0.4. The generated ensemble contained
5000 conformers.

For Cd3ε, the generated ensemble already shows relatively low RMSD values between
the observed and calculated chemical shifts, and the correlation between the full chemical
shifts is excellent, consistent with a largely random disordered structure (Table 1). The
correspondence to the secondary shifts can still be increased with selection, and a very low

https://github.com/PPKE-Bioinf/DIPEND
https://github.com/PPKE-Bioinf/consensx.itk.ppke.hu
https://github.com/PPKE-Bioinf/consensx.itk.ppke.hu
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RMSD and high correlation can be achieved if selecting for CA chemical shifts only. In
this case, the correlation to CB chemical shifts increases slightly but remains poor. Using
both CA and CB shifts, a larger ensemble is selected with lower but acceptable correlation
for both shift types, indicating that trends in local conformation along the sequence are
acceptably well reproduced.

We have also performed a selection from a set of conformers generated by a 1 µs
all-atom molecular dynamics simulation in explicit water. The subensemble obtained from
this selection exhibits considerably worse correspondence to experimental data than the
one selected from the DIPEND-generated pool. During the MD simulation, Cd3ε quickly
adopts a compact structure, and principal component analysis reveals that the selected
subensemble samples this compact state as well as several frames from the extended
conformation close to the initial state. In contrast, the DIPEND-generated structures
provide a more even sampling of the conformational space, and the selected conformers are
also more evenly distributed (Figure 2). This latter scenario is more in line with the expected
behavior of an unfolded ensemble, but more independent parameters would be needed to
confirm the accuracy of the DIPEND-selected ensemble model of Cd3ε conformations.

A

B

C

D

E

Figure 2. Overview of the Cd3ε ensemble. (A) Disorder propensity as predicted by the IUPred3
server. (B) Observed and calculated CA secondary chemical shifts. (C) Secondary structure logo for
the ensemble selected based on CA chemical shifts. DSSPcont states are averaged for all models.
Figure prepared with Weblogo. (D) PCA of the simulated, generated and selected (sub)ensembles.
(E) Ramachandran plot of all residues in the ITAM1 (dark-green) and ITAM2 (purple) motifs in all
structures of the selected ensemble.
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Table 1. RMSD and correlation of the back-calculated chemical shifts of the generated ensembles of
the Cd3ε segment.

Generated 5000 CA+CB rmsd CA rmsd Selected from MD
Selected Selected (CA rmsd,

(84 Models) (45 Models) 29 Models)

rmsd corr. rmsd corr. rmsd corr. rmsd corr.
CA full 0.458 0.996 0.211 0.999 0.073 1.000 0.400 0.997
CA secondary 0.296 0.696 0.953 0.451
CB full 0.550 0.999 0.137 1.000 0.601 0.998 0.831 0.997
CB secondary 0.233 0.764 0.322 0.301

It was previously noted that the ITAM motifs exhibit a slight helical propensity, which
is reflected in the CA secondary chemical shifts. In our ensemble, this propensity is not
sufficient to cause the emergence of any DSSP ‘H’ states, and only a slight increase near
the second motif is observed. The rationale for this observation can be that for a hydrogen
bond to occur and thus be recognized as ‘T’ by DSSP, four consecutive residues should be
simultaneously in a helical conformation, and for state ’H’, consecutive hydrogen bonds
should be present. In a highly dynamic molecule with such small secondary chemical
shifts, this occurs with only a very low probability. The Ramachandran plot of the 2 × 4
residues in the two ITAM motifs also does not reveal enrichment of backbone torsions in
the α-helical region, although a slight preference for the φ torsion near −54 degrees can
be observed.

3.5. The Single α-Helical Segment of Myosin VI

Using the published supplementary information, we have extended the BMRB entry
30591 [26] with N-H, N-C and C-H RDC data; 3 JHNHA scalar couplings; and S2 order pa-
rameters. In our selection, we have consistently used RMSD as a target function. It should
be noted that in the case of RDCs, we deliberately do not intend to make any direct com-
parison with the Q-values reported by Barnes et al. because our calculation methodology
differs. First, they used scaled RDCs to consider the dynamics of the molecule yet fitted the
values to a highly rigid structure. Second, they used an alternative formula derived from
the alignment tensor in the denominator to obtain the Q-values to account for the uneven
sampling of the orientations by this rod-like structure. Third, our calculation method
assumes an independent and different orientation of the members of the ensemble, each of
which is separately fit to obtain the best correspondence with experimental values before
averaging the RDCs for the ensemble. We have chosen this approach by reasoning that
the changes in the molecular shape, i.e., the deviations from the straight rod-like structure
are expected to influence the alignment substantially for the individual conformers. Thus,
there is no universal alignment tensor for all the structures considered in our calculations.

For this highly α-helical segment it is evident that the helical region of the Ramachan-
dran map should be sampled with high probability. Therefore, we have chosen to use an
additional distribution to bias conformational sampling towards helical regions. However,
analyzing the secondary chemical shifts, it is expected that the helical propensity of the
molecule decreases more substantially and in a longer segment at the C-terminus. To
account for this effect, we built our model using two additional distributions, both centered
at the dihedral angles −58, −47, and having a standard deviation of 10 degrees, but for
residues 1–55, this was applied with a weight of 0.99, whereas for residues 56–68, it was
applied with a weight of 0.80.

A pool of 5000 structures was generated with these parameters, and then various
selection settings were tested with CoNSEnsX+. Below, we report the results obtained with
selection from the RMSD as a target measure and using the following relative weights: CA
chemical shifts, 10, 3 JHNHA scalar couplings, 5, N-H, N-C and C-H RDCs (measured in
100 mM NaCl), 1.
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The selected ensemble shows improvement for all parameters considered and even
for the CB shifts not included in the selection (Table 2). As expected, the structures show
deviation from a straight α-helix. In Figure 3, the structures are shown superimposed
through residues 28-42, corresponding to the most rigid segment identified by Barnes
et al. based on NMR relaxation data. It should be noted that in the case of such a rod-
like structure, the visualization highly depends on the segment chosen for superposition.
DSSPcont analysis shows that the helical secondary structure is dominant throughout
the sequence. A small fraction of turns (DSSP state T) is present along the full sequence,
indicating occasional interruption of the hydrogen-bond pattern and accounting for the
kinks observed in the structure. Helicity decreases at the C-terminal region from around
residue 55, which is in agreement with the secondary chemical shifts and our applied biased
distribution influencing local structural preferences. Investigating the relationship between
the fully generated ensemble and the selected one using principal component analysis
reveals that only a limited region of the conformational space explored is represented by the
selected conformers, indicating that adjusting the local structural preferences was necessary
to obtain the set of structures corresponding to the experimental parameters, but alone, it
is not sufficient. The most important question is how well our selected ensemble actually
describes the internal motions of the Myosin VI SAH segment, especially in relation to the
deposited structure which was refined against a set of NMR observables overlapping with
those used here. Again it should be noted that for the 6OBI structure, it was not a goal
to reflect structural heterogeneity at the level of the ensemble, and the internal dynamics
was taken into account by scaling the RDC parameters used in the structure calculation.
We have used the unscaled values and explicitly selected our ensemble for secondary CA
chemical shifts and 3 JHNHA scalar couplings, whereas no NOE restraints were used. In
addition, our selected ensemble contains 37 conformers compared to the 10 models in 6OBI,
and averaging the parameters over a larger ensemble renders achieving correspondence to
experimental data easier. Perhaps our most interesting observation is that the correlation
to the backbone S2 order parameters is excellent for our ensemble, although the calculated
values are considerably lower than the experimental ones. It should be noted here that for
this rod-like structure, the structure-based estimation of order parameters [35] is heavily
dependent on the exact mode of superposition of the structures. For this calculation, we
have chosen to use all residues. In summary, we believe that our ensemble successfully
recapitulates the nature of the structural rearrangements in the SAH segments, meaning
that for most of the region, local disruptions in the helical structure are prevalent, leading
to occasional kinks in the structure, and partial unfolding of the helix occurs only at the
10–15 C-terminal residues. Barnes et al. concluded that S2 order parameters and RDCs
report on the same kinds of motions, which is—if we accept the validity of the correlation
to the S2 values—recapitulated by our ensemble but indicates that faster motions might be
of smaller amplitude, accounting for the high experimental S2 order parameters and the
magnitude difference with the calculated ones in our ensemble generated using RDC data.

Table 2. RMSD and correlation of selected back-calculated NMR parameters of MYO VI
SAH ensembles.

6OBI (10 Models) Generated 5000 Selected (37 Models)

rmsd corr. rmsd corr. rmsd corr.
N-H RDC 4.021 0.746 7.304 0.756 3.676 0.917
H-C RDC 1.709 0.456 1.440 0.671 1.058 0.807
N-C RDC 0.822 0.118 0.541 0.576 0.351 0.838
3JHNHA 0.602 0.789 0.765 0.625 0.518 0.903

CA secondary 0.969 0.712 0.866 0.705 0.688 0.903
CB secondary 0.915 0.389 0.967 0.561 0.970 0.587

N-H S2 0.201 0.488 0.258 0.871
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Figure 3. Measured and back-calculated NMR parameters and structural characteristics for the
selected SAH ensemble. (A) Measured (red) and calculated (blue) values of some NMR parameters
for the selected SAH ensemble. Calculated values were obtained with CoNSensX+. (B) Ribbon
representation of the selected 37 conformers of the MYO VI SAH domain, superimposed for residues
28–42. Rainbow coloring from N to C terminus. Figure prepared with UCSF Chimera. (C) Secondary
structure logo generated from averaging all DSSP state probabilities calculated with DSSPcont for all
37 models. Figure prepared with Weblogo. (D) PCA plot showing the distribution along modes 1–2
of the generated 5000 (orange), the selected 37 (black) structures and the 10 deposited conformers in
PDB entry 6OBI (purple). Mode 1 corresponds to the end-to-end distance of the structures.

4. Discussion

We have developed an open-source pipeline, DIPEND, that can be used to generate
conformer pools to model ensembles of intrinsically disordered proteins. Given the nature
of the choice of the dihedral angles, the probability of steric clashes increases with the
size of the protein segment, and as a result, the computation time increases. The pipeline
can handle protein segments up to 100 amino acids at a reasonable CPU time on a sin-
gle thread without the “unknotting” step. Naturally, the program can easily be run in
multiple instances to make use of today’s common multicore CPUs, pushing the practical
limit further. Our experience shows that switching on the unknotting step is advised for
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sequences longer than 75 residues, as for shorter segments, it does not necessarily provide
an advantage over the complete resampling of all dihedrals.

DIPEND itself performs only the generation of the structures; thus, any kind of
selection/analysis approach or tool, such as CoNSEnsX+ or BME [36], can be used to refine
the model. The detachment of ensemble generation from the analysis has both advantages
and disadvantages. The upside is that the generation can be adjusted precisely to the given
system, and even multiple tools (such as classical MD simulation) can be used to extend
the ensemble before analysis. The downside is that in this way, separate tools have to
be used for subsequent steps, the compatibility of which might not be straightforward.
For example, the atomic nomenclature of an MD-derived ensemble might not necessarily
match that used in a BMRB entry. To help with such issues, a number of small conversion
scripts are already available on the CoNSEnsX+ page. In summary, we believe that for
research purposes, the transparency and flexibility of the DIPEND pipeline outweigh the
potential disadvantages listed above.

Conformational sampling is one of the main technical issues that has to be solved
in modeling protein flexibility and dynamics. The ideal tool would sample only a region
around the biologically relevant one, but with good internal spacing. The problem is
that this region is not known a priori, and, especially for intrinsically disordered proteins,
the number of accessible conformations with potential relevance is astronomical. Fully
randomized approaches to generate a large conformer pool can in principle provide suit-
able states but, depending on the system, only with low probabilities. The conventional
solution is to generate a large ensemble and then use selection/reweighting to obtain the
biologically relevant subspace [37]. The subtle preferences reflected by secondary chem-
ical shifts, however, can be not trivially captured from an unbiased ensemble. DIPEND
intends to overcome this difficulty by applying a neighbor-dependent sampling of the
Ramachandran map and the possibility of adding a biasing distribution that can be used to
avoid conformations that are not characteristic for a given region of a molecule and/or to
enhance sampling or regions where a priori knowledge or exploratory calculations indicate
the need for this.

Selection-based ensemble generation will only be as good as the initial pool of con-
formations, and naturally, the availability and nature of different structural parameters
will greatly affect the outcome. DIPEND is designed to provide a means to generate an
initial ensemble that covers the functionally relevant region of the conformational space of
a protein segment, providing a suitable input for different selection approaches.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.3390/
biom11101505/s1, Data set S1: input parameter files (parameters.in, distributions.in) for Dipend.py
used to generate the ensembles described in the manuscript, the modified NMR-STAR files used for
the CoNSEnsX+-based analysis and selection as well as a PDB file with a selected ensemble for CD3e
(selection based on CA shifts only) and Myo VI SAH (selection based on all parameters described in
the manuscript) in separate directories
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