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Abstract: Perinatal brain injuries, including encephalopathy related to fetal growth restriction, en-
cephalopathy of prematurity, neonatal encephalopathy of the term neonate, and neonatal stroke, are a
major cause of neurodevelopmental disorders. They trigger cellular and molecular cascades that lead
in many cases to permanent motor, cognitive, and/or behavioral deficits. Damage includes neuronal
degeneration, selective loss of subclasses of interneurons, blocked maturation of oligodendrocyte
progenitor cells leading to dysmyelination, axonopathy and very likely synaptopathy, leading to
impaired connectivity. The nature and severity of changes vary according to the type and severity of
insult and maturation stage of the brain. Microglial activation has been demonstrated almost ubiqui-
tously in perinatal brain injuries and these responses are key cell orchestrators of brain pathology
but also attempts at repair. These divergent roles are facilitated by a diverse suite of transcriptional
profiles and through a complex dialogue with other brain cell types. Adding to the complexity of
understanding microglia and how to modulate them to protect the brain is that these cells have
their own developmental stages, enabling them to be key participants in brain building. Of note,
not only do microglia help build the brain and respond to brain injury, but they are a key cell in the
transduction of systemic inflammation into neuroinflammation. Systemic inflammatory exposure
is a key risk factor for poor neurodevelopmental outcomes in preterm born infants. Based on these
observations, microglia appear as a key cell target for neuroprotection in perinatal brain injuries.
Numerous strategies have been developed experimentally to modulate microglia and attenuate brain
injury based on these strong supporting data and we will summarize these.

Keywords: neuroprotection; encephalopathy; neuroinflammation; stroke; prematurity; neurodegen-
erative disorders

1. Perinatal Brain Disorders

Perinatal brain injuries (PBIs) represent a number of entities of different origins that
are each responsible for causing neurodevelopmental disorders (NDDs). The present
review will focus on four causes of PBI that are highly prevalent both in westernized and
emerging countries: (i) encephalopathy associated with fetal growth restriction (EoFGR);
(ii) encephalopathy of prematurity (EoP); (iii) neonatal encephalopathy of term neonates
(NE), and; (iv) neonatal stroke (NS) that can occur both in preterm and term neonates.

Although PBIs are not typically considered to be neurodegenerative disorders, we
would like to highlight that they all involve to a greater or lesser extent changes to neu-
rons, that in the case of EoFGR, NE and NS certainly involve cell death [1–3] and for
EoP that involves dysfunction related to neuronal maturation and sub-cellular organiza-
tion/connectivity [4–6]. Specifically, it has been shown that there is a link between being
born preterm and cognitive decline associated with Alzheimer’s disease [7], highlighting
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that neurodegenerative disorders are truly life-span conditions. Persisting effects of perina-
tal brain injuries such as this are increasingly recognized [8–12], leading to increased risks
of other neurological injuries and disorders [13–16], (and reviewed in [17]). In addition,
although it seems that the ‘holy grail’ in adult neurodegeneration is the controlled recapitu-
lation of developmental steps to regenerate the brain, it is striking that the still developing
brain is not capable of this redeployment of developmental processes. As such, lessons
learnt from the similarities and differences between neurodegenerative events early versus
late in life will be valuable to us all in the hunt for the master switch of repair.

For recent reviews on the epidemiology, etiology, radiological and clinical spectrum
of the described PBIs, please refer to [18–22]. In brief, these are frequent brain disorders:
3–9% neonates are born with FGR (up to 30% in low-resource settings), 6–11% neonates
are born preterm (below 37 weeks of gestation), 1–3.5/1000 term neonates develop NE,
and NS occur in at least 1/4000 neonates. Major negative outcomes include motor deficits
(including cerebral palsy), cognitive impairment, and increased risk for several behavioral
deficits including autism spectrum disorders (ASD), attention deficit hyperactivity disorder
(ADHD), schizophrenia, psychosis, depression, and bipolar disorder [19,20,23–25]. The
most affected brain structures are briefly summarized in Table 1. Of note, especially in the
more diffuse forms of encephalopathy (EoP, EoFGR), other brain structures not mentioned
in Table 1 might also be significantly affected but have not been studied in a such detailed
and/or repeated manner to date.

Table 1. Brain structures predominantly affected in MRI and/or post-mortem studies of PBIs.

PBIs Key Features (by Severity)

EoFGR [19]

Reduced cortical grey matter volume
Altered cortical gyrification

Impaired myelination
Reduced connectivity

EoP [22,23]

Diffuse white matter injury (including cerebellum)
Punctate white matter cystic lesions
Reduced grey matter microstructure

Reduced connectivity (in particular thalamocortical connectivity)
Intra-ventricular hemorrhages

NE [22]
Destructive lesions of cortical areas
Destructive lesions of basal ganglia

Impaired myelination of the posterior limb of the internal capsule (PLIC)

NS [20] Destructive lesions of arterial or venous territories

2. Origins, Development and Heterogeneity of Microglia

Microglia (MG) are currently the only known immune cells which permanently reside
in the CNS and they make up approximately 10% to 15% of the cells in the brain, depending
on the region [26]. The roles of MG can be categorised into two general functions: (1) innate
immune defense, including responding to invading pathogens or clearing away debris
from injury, and (2) development and homeostatic roles which include supporting the
formation of cortical lamination, oligodendrocyte maturation and facilitating learning
and memory acquisition via phagocytosis. For in-depth reviews of the roles of MG in
development please see [27,28].

MG are derived from the myeloid cell linage and arise from yolk sack (YS) primitive
macrophages and possibly also progenitor cells derived from hematopoietic cells [29], but
this is still an issue of some debate. MG invasion occurs in two waves (data predominantly
from the mouse) with the first wave occurring between embryonic day (E) 8.5 and E14.5
in the mouse. Specifically, the E8.5 mouse embryo develops erythromyeloid progenitors
within the yolk sack [30]. A subset of these erythromyeloid progenitors, regulated by the
expression of PU1, RUNX1 and IRF8, give rise to MG progenitors [31]. At E9.5 to E10.5,
these MG progenitors migrate to the central nervous system (CNS) where they distribute
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and continue to proliferate [32,33]. The peripheral hematopoietic system continues to
supply MG progenitors until the formation of the blood brain barrier at E15.5 [34]. After
this event the MG population in the brain is fixed and becomes self-sustaining [17,18].
Once MG are established in the brain, approximately 4.5 week’s human gestation, they
express ionized calcium-binding adaptor protein 1 (Iba1) and a suit of additional markers
indicated in Figure 1.
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Figure 1. Outline of the origins or macrophage and microglia highlighting common and unique markers. Also, the stage
specific markers as drawn and adapted from [35–38] and stages of maturation of microglia, their approximate timing in
mouse and human [39,40]. Created with BioRender.com.

The second wave of MG invasion is marked by a rapid increase in numbers between
E14 and E17 [41]. Since the abrupt and rapid increase in MG density cannot be explained
by proliferation alone, it was concluded that there is a second MG invasion following
development of the brain vasculature [42]. However, it is yet to be determined if the
second wave of MG also originated from the yolk sac, whether they follow a different
lineage to the first wave, or if there is a correlation between endothelial cells and second
wave MG. Furthermore, it is unknown if MG from the first wave are phenotypically,
developmentally and functionally different to MG from the first wave. Another important
point to note, is that the invasion and proliferation of MG in human [43], mouse [44], and
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sheep (Shearer and Fleiss, unpublished observations) occurs via the subventricular zones,
with MG accumulating and sitting adjacent to oligodendrocyte progenitor cells (OPCs).
This unfortunate juxtaposition makes the OPCs particularly vulnerable to soluble products
released from the MG activated by injury or infection.

Once in the brain, MG pass through three temporally regulated stages of development:
early MG, pre-MG, and adult MG (Figure 1). Each of these three stages are marked by
changes in gene expression, morphology, and the specific roles that these cells under-
take [36,45–47]. Early MG display increases in cell cycling and chromatin remodeling
genes, including Dab2, Mcm5 and Lyz2 [35]. Two early MG markers, Ifit3 and Dnmt1,
which have also been identified in mouse have also been detected in pre-MG from the
neonatal pig brain [48]. Towards the end of mouse gestation (approximately equivalent
to the end of the second trimester in the human) there is a distinct change in MG gene
profile. This is marked by the down regulation of cell differentiation genes observed in
early MG, and the up regulation of genes associated with synaptic pruning which is a
hallmark of the pre-MG stage. The maturation stage dependent processes during the
pre-MG stage also include controlling the death of unnecessary progenitors [49], regulating
cortical layering [44], and as mentioned synaptic pruning [50]. The specific mechanism
controlling MG development are unknown, but studies focused on epigenetic suggest
these processes play a key role, reviewed in [51]. Of note, using ATAC-seq that identifies
accessible regions within promoters (H3K4me3+ regions near the transcription start site of
genes), substantial shifts in the chromatin conformation between early MG and adult MG
were identified [35]. However, there were no apparent changes in early MG suggesting
that transcriptional changes in early MG my not be mediated by chromatic changes, but
by alternative regulators of transcriptional activity. As the mouse reaches adulthood, the
pre-MG genetic profile is downregulated. Simultaneously, genes associated with immune
surveillance (including Cd14, MafB and Met2a) are up regulated [35]. This final stage in
maturation is estimated to occur at 14 years in the human (Figure 1).

MG populations in different regions of the brain vary in terms of gene expres-
sion [52–54], density [55] and morphology [56]. Of note, MG abundance in the cortex
and hippocampus is two-fold higher than in the thalamus and midbrain [55] and MG popu-
lations also vary between layers of highly structured regions, including within the cortices
and the hippocampus [57]. Furthermore, mouse MG are present at higher density in the
grey matter compared to white matter [55]. MG branching also differ between the grey and
white matter: white matter MG typically being bipolar, whereas there is far more complex
branching in the cortices, striatum and [58]. Another critical mediator of differences in
MG state is sex [59–61], and this is now hypothesized to underly critical differences in
disease progression in adult neurodegeneration [62] and also likely explains sex differences
in PBI and models of injury [63]. Of note, MG isolated from adult mice retain their sex
specific transcriptomic phenotype even when transplanted in hosts of the opposite sex [64]
and male sex is associated with a slower maturation of MG [65], with females having
significantly increased maturity of pathways such as for modulating cytokine production
and mast cell and leukocyte activation. Species is also another significant factor in the
expression profile of MG [66] and a focus on understanding changes the core across-species
markers will improve the translational potential of work on MG.

3. Role of Systemic Inflammation in PBIs

Human clinical and epidemiological studies strongly argue in favor of a major role
of a sustained systemic inflammation in the pathophysiology of several PBIs, reviewed
in [21,67,68]. This has been particularly addressed in the field of EoP [69]. Indeed, preterm
infants (and especially very and extremely preterm infants) are at high risk to be exposed,
before, during and after birth, to several conditions that lead to systemic inflammation as
measured by increased levels of circulating pro-inflammatory cytokines [70], including
chorioamnionitis and funisitis, peri-partum hypoxic/hypoxic-ischemic insults including
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intermittent hypoxemia, postnatal lung mechanical ventilation, sepsis or necrotizing ente-
rocolitis (Figure 2).
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ment, including from [71–73] and others in this review.

Animal models have shown that systemic inflammation in itself can impact the de-
veloping brain. Alternatively, in the so-called multiple hit hypothesis (Figure 3), systemic
inflammation can act as a predisposing factor making the brain more susceptible to a
second stress (sensitization process). Indeed, injection of low doses lipopolysaccharide
(LPS, a TLR4 agonist derived from E. coli) to developing rats makes the newborn brain
significantly more susceptible to hypoxic-ischemic insult [74]. Similarly, injection of the
prototypical pro-inflammatory cytokine interleukin-1-beta (IL-1β) to newborn mice or rats
increases sensitivity to an excitotoxic insult [75,76]. The mechanisms mediating sensitiza-
tion are not yet fully understood, however, could include changes in gene transcription in
MG and modifications of metabotropic glutamate receptor activity in neurons, potentially
through changes in GRK2 [17–21,77]. From a clinical point of view, a sensitizing effect
of systemic inflammation linked to in utero infection, has been suggested in some term
infants with NE that is resistant to hypothermia [78]. It is important to note, that evidence
accrues that the nature of the infectious agent is critical for determining the specific pattern
of systemic response and whether brain injury occurs [79,80].
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in this review.

For a long time, the brain was thought to be isolated from the rest of the body, protected
behind the blood-brain barrier (BBB) and CSF-brain barrier. On the other hand, textbooks
informed us that the immature brain, including the neonate one, had immature barriers that
left the brain vulnerable. As often, these over-simplified dogmas proved to be incorrect [82]:
(i) there is an important cross talk between the CNS and the periphery, in particular the gut
and its microbiota, through circulating factors and the vagal nerve, among others [83]; and
(ii) the BBB matures quite early during brain development and is fully mature in neonates
and even more resistant to some insults (such as ischemic stroke) when compared to adult
BBB [84]. Of note, MG protect neurovascular integrity following NS in the P7 rat, as prior
clodronate-liposomal depletion of MG induced hemorrhages in the injured area when
assessed at 24 h post-injury [85]. Whether this protective effect is found in other models of
PBI has yet to be determined.

An area of interest for integrating the ideas of systemic inflammation, effects of
the brain development and common disorders related to PBIs such as ASD is the gut-
brain axis [86]. Although the impact on brain maturation and future function is not
yet known, preterm and FGR infants have been shown to have an abnormal microbiota
when compared to term healthy controls [87]. In addition, recent studies suggest that
this abnormal microbiota could be long-lasting [88]. There are also significant changes
in the gut structure and function associated with gene defects identified in people with
ASD [89] Further integrative studies, both in humans and relevant animal models, of the
interactions between the immune system, the gut, the microbiota, and the developing brain
appear of paramount importance. Additional studies will allow us to obtain in an in-depth
understanding of the potential disturbed cross-talks between the brain and the periphery
in the genesis of PBI’s and their morbid consequences on brain functions.

4. Role of Microglia in PBIs

Human post-mortem and/or experimental studies have highlighted MG activation as
a key early hallmark of PBI [72,90–94]. Studies of animal models of EoP (and, to a lesser
extent, of EoFGR) have mostly focused on innate immune cells, showing a strong and
predominant involvement of MG with some transient recruitment of small numbers of
peripheral neutrophils, monocytes, and macrophages. The contributing role of these latter
innate immune cells to brain pathology has been so far poorly explored. This is likely due
to papers reporting only limited roles for cells, such as macrophage in perinatal brain in-
jury [94,95] although neutrophils and T cells have been implicated after HI [96,97]. Studies
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have also been hampered by a lack of specific tools to discriminate MG and macrophage
(until relatively recently, see [98,99]). Similarly, the potential contribution of perivascular
macrophages is far from being elucidated [100], although there is tantalizing evidence
that perinatal environmental factors such as maternal high-fat diet during gestation and
lactation changes these cells and sensitizes them to β-amyloid accumulation [101]. In
pre-clinical models of NE, time profiles of innate and adaptive cell recruitment at the site
of the lesion have been characterized (Figure 4), highlighting the potential roles of multiple
innate cell types in progression of brain damage. Of note, when compared to models of
EoP, the NE models in which these studies are based are much more severe insults/brain
damage and are performed in a more mature animal (modeling the preterm vs term infant).
The overwhelming body of evidence to data states that the ‘activation’ of MG after injury
is damaging, supported by studies in which ablating MG or applying blanket suppression
of their functions improves outcomes (reviewed in [90,102]). However, studies do report
protective roles for MG [85,103] and the potential for endogenous positive roles (that may
be valuable neurotherapeutics themselves) is increasingly supported by studies that look
over time at the role for these cells [83,97,98]. Blanket suppression or ablation of MG has
also failed to show persisting efficacy [104] or to worsen outcomes [105,106] in models of
injury to the immature brain and in adult neurodegenerative disorders [107] and models of
injury [108,109] further highlighting that MG are likely not the ‘bad guys’ all the time.
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Figure 4. Schematic representation of the immune reaction following a hypoxic-ischemic brain insult in newborn rodents.
The hypoxic-ischemic insult triggers a proinflammatory response followed by anti-inflammatory and reparative phases.
These events result either in resolution of inflammation or in chronic inflammation. Filled clouds correspond to demonstrated
events and shaded clouds correspond to potential events. Adapted from [72].

A limited number of experimental studies have aimed at deciphering the molecular
pathways underlying MG activation for the goal of down-regulating damaging pathways
and also potentially supporting MG to acquire a beneficial phenotype in terms of brain
cleaning, repair, and plasticity [110]. Most of these studies have employed gene expression
profiling in cell-sorted MG—using various approaches and markers to determine the speci-
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ficity of their cell populations. We will mention that studies have shown in experimental
model of EoP and in preterm infants with abnormal white matter, the identification of
lipid metabolism pathways including the PPARγ pathway [111,112], Wnt pathway inhi-
bition [91], and DLG4/PSD-95 [94]. In addition, there is a link between MG activation
and EoP phenotype for microRNA (miR)-146b in an experimental model of EoP, and
the oxytocin receptor-mediated pathway in an experimental model of EoFGR [113]. The
identification specifically in MG of PSD-95 in a stage of brain development during which
preterm birth is reasonably common (22–33 weeks) and when PSD-95 is not yet expressed
in neurons is of particular interest. PSD-95 mutations have been found in some cases of
ASD, childhood epilepsy, and intellectual deficiency, raising the question of the role of
abnormal MG in these disorders that have been viewed as “neuronal/synaptic disorders”.
In addition, these studies have shown that MG not only become potently pro-inflammatory
even in the context of a mild/moderate systemic inflammatory context, but down-regulate
most of the pathways related to normal functions of MG during brain development [94].
This supports the concept that some PBIs induce a brain maldevelopment by disrupting
normal brain development programming [114,115].

Our recent studies have also highlighted the fact that MG genome expression remained
disturbed weeks and months (and we suspect even years) beyond the perinatal systemic
inflammation insult [94]. This is also supported by the excellent work of others across
models of PBI (and in models of maternal immune activation) that there are long-term
changes into MG biology following an insult [116–120] and that this might be phase of
injury that can be targeted to improve outcomes [117,121]. This observation, combined
with clinical and experimental data in adult brain disorders such as TBI [122], has led
to the hypothesis of a tertiary phase of PBIs [17,123] that were until recently viewed as
non-progressive disorders [94,124] (Figure 5).
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Tertiary changes are in addition to developmental disruption associated with the initial
insult to the immature brain and reflect injury processes can persist for many months or
years, such as persistently activated MG, potentially related to epigenetic changes (reviewed
in the context of perinatal stress in [125]). These processes are implicit in prevention of
endogenous repair and regeneration and predispose patients to development of future
cognitive dysfunction and sensitization to further injury.

5. Limitations of Microglial Studies in the Immature Animal

Different approaches have been used to ablate MG and hence demonstrate their role
in neuropathology in animal models. However, when applied to newborn animals, all
these approaches have limitations that need to be considered when interpreting the data: (i)
embryonic depletion of MG (i.e., PU1 or CX3CR1 KO) itself alters brain development [126]
in ways that could alter the experimental paradigm; (ii) postnatal ablation of MG with a
Tamoxifen driven transgenic or other pharmacologic approaches (i.e. PLX3397, ganciclovir)
require approximately 3 days to be efficient, making them inappropriate when targeting
the first postnatal days in the experimental model and prenatal tamoxifen increases pup
mortality and requires cesarean delivery and cross fostering [127] processes also known to
alter experimental outcomes; in addition, in our hands PLX3397 (3 or 30 mg/kg in vivo
or 1 µM in vitro) induced a reduced expression of several MG genes (including Iba1 and
Cx3cr1) without affecting MG density [50] indicating that care must be taken to ensure
ablation and not an incomplete silencing, (iii) gadolinium chloride (GdCl3), which kills pro-
inflammatory MG via competitive inhibition of calcium mobilization and damage to the
plasma membrane, has to be injected intracerebrally (as it does not cross the intact BBB) and
only has a focal effect on MG [91,128] (iv) intracerebral injection of liposome-encapsulated
clodronate [103], which has similar advantages and limitations as GdCl3.

The remaining part of this review will focus on the potential role of MG on different
brain cell types involved in PBIs. Although we believe MG are a key player in these
disorders, one should not ignore the potential roles of other cells types (beyond other
immune cells already mentioned above) in the pathophysiology of PBIs.

6. Microglia and Other Cellular Brain Partners
6.1. Microglia Effects on Oligodendrocyte Progenitor Cell Maturation and Myelin Deficit in PBIs

Human postmortem studies of EoP and animal models of EoP and EoFGR have
identified an oligodendrocyte progenitor cell (OPC) maturation arrest, leading to dys-
myelination [92,129]. One experimental study, using GdCl3 to ablate pro-inflammatory
MG, has demonstrated a direct role of MG in the white matter phenotype in a mouse
model of EoP [91], and previous work has used antibody and pharmacologic approaches
to show a similar causal role for MG in perinatal excitotoxic lesion development [130]. In
addition, a specific role for a subset of MG, CD11c-ve, has been demonstrated by studying
responses to injury and development using ablation and gene profiling [131]. This study
revealed that this MG subset produced factors, including IGF-1, that are necessary for
myelination and neurogenesis. Additional studies will be important to generalize this
concept of MG-induced OPC maturation arrest in PBIs.

6.2. Microglia Interaction with Astrocytes in PBIs

Several post-mortem and preclinical studies have highlighted the importance of
astrocytes and their potential interactions with MG [60,61]. These include a study that
demonstrated using transgenic, and pharmacologic approaches in vivo and in vitro that
astrocyte derived IL33 is an endogenous neuroprotective agent in a mouse more of NE
including by HI including by supporting the M2-like phenotype of MG [132]. In an EoP
model, the existence of a tripartite glial circuits has been demonstrated: the OPC maturation
blockade by MG activation required an astrocytic reactivity, via an overproduction of cyclo-
oxygenase-2 (COX)-2 [133]. It is interesting to highlight that reactive astrocytes have been
associated to adult neurodegenerative diseases as Alzheimer’s, Parkinson’s and Multiple
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Sclerosis [134]. In the future, it will be pertinent to study reactive astrocyte profile in PBIs
models and correlate it (or not) to the one observed in adult models.

6.3. Microglia Effects on Neuronal Cell Death in PBIs

In term NE and NS, neuronal cell death is a key feature. The absence of frank levels
of cell death in contemporaneous cohorts of EoP is reviewed in detail in [135]. Human
post-mortem studies of term NE cases and animal models of NE (hypoxic-ischemic insult)
and NS (middle cerebral artery occlusion) have identified different types of neuronal cell
death: necrosis, apoptosis, excitotoxic cell death, necroptosis and autophagy [136,137] and
review in [138,139]. When studied over time, neurodegeneration has been shown to last for
several days (and up to a couple of weeks) after the experimental insult [140]. This delayed
cell death is generally referred to the ‘secondary phase’ but the ‘tertiary phase’ is probably
a more accurate description of death occurring past one week—as it likely is not linked
directly to the insult. Although this neurodegeneration is accompanied by a protracted
inflammatory response as described above (Figure 4), to our knowledge, only two studies
addressed directly the role of MG in neuronal cell death. In a model of transient middle
cerebral artery occlusion in P7 rats, ablation of MG with intracerebral injection of liposome-
encapsulated clodronate increased the brain levels of several cytokines and chemokines and
increased the severity and volume of injury, suggesting that MG contribute to endogenous
protection during the subacute injury phase [103]. In contrast, partial ablation of MG with
anti-MAC1 antibody coupled to the toxin saporin significantly reduced neuronal cell death
in a model of neonatal excitotoxic brain lesion [141]. These studies suggest that the impact
of MG on neuronal cell death might be dependent upon the injury stimulus and/or the
timing after the insult, in agreement with the fact that MG can adopt different phenotypes
that can be either deleterious or protective for the injured developing brain [142]. In the
context of normal development, MG are known to directly and specifically mediate the
apoptotic cell death of retinal cells via there production of nerve growth factor (NGF) [143]
and Layer V cortical neurons require trophic support for survival from MG, in the form of
MG-secreted IGF1 [44].

6.4. Microglia Effects on Interneurons in PBIs

Interneurons originally appear in the subpallium before tangentially migrating through
the neocortex, to then emerge radially through the cortical plate (CP) and distribute through-
out cortical laminae [144]. In the mouse, interneuron development continues during the
first 3 weeks of postnatal life, and in the human this process continues through the third
trimester and early neonatal life making interneurons particularly vulnerable to distur-
bance from preterm birth. Recent human postmortem studies performed in preterm infants
have shown a deficit in some subpopulations of interneurons, in particular, cortical parval-
bumin (PV) positive interneurons [6,145]. Such a selective deficit of interneurons has also
been described in mouse models, a rat model and a sheep model of EoP [6,146,147]. The
precise origin of the deficits are still unknown and could be due to impaired production,
migration, survival, localisation and/or differentiation of these interneurons.

Importantly, interneuron migration into the CP occurs on a timeline parallel with
MG invasion of the CP. In a mouse depleted of MG (Cx3cr1–/–) and a model of maternal
immune activation, interneurons prematurely enter the CP [126], and when assessed at P7,
an increased number of interneurons were found in the upper cortical layers. By P20, there
were increased PV+ interneurons within layers III/IV, and so MG have been proposed
to mediate development of cortical interneurons [148]. Early aberrant MG activation in
cases of PBI may interfere with these cellular processes [141]. A recent interesting study
investigated the specific effects on MG on interneurons derived from iPSC [149]. This
novel study identified that inflammatory-activated MG induced profound changes in
the interneurons including compromising energy-dependent neuronal processes such as
arborization, synapse formation and synaptic GABA release.
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6.5. Microglia Effects on Neuronal Connectivity in PBIs

MRI studies have identified connectivity deficits in preterm infants compared to term
infants [150,151]. Using ultrafast Doppler in a model of EoFGR it has been beautifully
shown that prenatal malnutrition linked brain injury causes significant changes in connec-
tivity and this is rescued by neuroprotective agent targeting MG activation [113]. However,
to the best of our knowledge, connectivity has not yet been fully investigated across animal
models of PBIs, not allowing yet to determine experimentally the potential role of MG
in this connectivity deficit. However, MG engulf synapses in the healthy brain to refine
circuitry during learning in the adult [152] and during development the absence of MG
(Cx3cr1 KO) leads to disturbances in connectivity [50].

7. Microglia, a Target for Neuroprotection in PBIs?

Several studies have been focusing on targeting ‘activated’ MG in order to protect the
developing brain against perinatal insults or stimulate repair (Table 2). One potential limi-
tation of these studies is that, in most instances, the molecular target is not specific to MG.
However, advances in bioengineering has led to a few studies, using either liposome-based
delivery or nanoparticles (3DNA-based or dendrimer-based nanoparticles) have selectively
targeted MG in animal models of PBIs and have shown the benefit of delivering Wnt
agonist [91] or miR mimic. One exciting advance has been the discovery that 4 hydroxyl-
terminated poly(amidoamine) (G4-OH PAMAM) dendrimers (approx. 4 nm) delivered
intravenous cross the BBB and accumulate selectively in activated MG and astrocytes in a
mouse inflammatory model [153] and a rabbit model of neonatal HI-injury [154] (but they
are not found in glia in the uninjured brain). These PAMAM dendrimers have been used to
deliver the antioxidant N-acetylcysteine (NAC) in these models to successfully reduce brain
injury. Another nanoparticle, a poly (methyl methacrylate) (PMMA) nanoparticles has
also been shown to be selectively taken up by MG, and capable of cargo delivery in vivo,
but limited to tissue direct delivery (injection into the spinal cord) [155]. Interestingly,
the uptake of these PMMA nanoparticles was inhibited in a dose dependent manner by
clathrin-mediated endocytosis inhibitor, chlorpromazine (CPZ). Work from this team has
also explored further the physical characteristics of PMMA, selective uptake by MG and
delivery of minocycline to improve outcome in a spinal cord injury model [156]. Finally, our
team has described a MG-specific targeting 3DNA nanoparticle (approx. 200 nM) with no
identified toxicity, and no uptake by peripheral macrophage populations in vivo [91]. We
have used this 3DNA nanoparticle to deliver an immunomodulatory peptide and demon-
strate neuroprotection in a model of systemic-inflammation driven EoP. A highly desirable
characteristic of the 3DNA nanoparticles is that they can be delivered intraperitoneal,
crossing the BBB to the brain.

Science advances when it can accurately and consistently communicate its ideas.
A limitation in the field of MG biology currently is that we lack a clear definition of what
markers (enzymes, mRNA species, receptors, cytokines etc) are the core components of
the phenotype(s) with functional significance in PBI. This issue is complex, including that
there can be expected to be differences in the core members of a phenotype that is injurious
in response to different infectious agents [157,158] or even in the white or grey matter
located MG [159,160] (for examples) can be different. Standardized nomenclature has
benefited many fields, including cell death [161], and recently a consortium has collated an
approach for astrocyte biology and there is move underway to derive census in the field of
MG biology. Because MG are heterogenous treatments applied systemically will need to
target the shared core regulators of function—either good or bad—to have any chance of
improving the outcomes for infants with PBI.

Based on the more recent understanding of the role of metabolism in the maturation
and ‘activation’ of MG [162,163] different pathways and potential molecular targets have
been proposed as ways to reprogram MG toward beneficial functions [110] (Table 2). How-
ever, such molecular reprogramming may be beneficial or detrimental depending on the
nature of the injury and timing of intervention, warranting careful consideration when
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designing experimental paradigms and interpreting data. An example of this is illustrated
by the selective liposomal delivery of the antioxidant, reduced glutathione (GSH), to MG
in the rat prior to modelling NS at P7 [103]. Although GSH is considered neuroprotective
due to its antioxidant activities, pre-treatment increased MG superoxide production with
concomitant upregulation of scavenger receptor CD36, in turn, exacerbating neuronal
cell death when assessed at 24 h post-NS. Upregulation of CD36 is associated with the
anti-inflammatory MG phenotype and mediates phagocytosis of apoptotic bodies follow-
ing PBI and during normal brain development [164]. However, the respiratory driven
process of CD36-mediated phagocytosis leads to generation of ROS, particularly superox-
ide [165]. And so, while the redox-signaling balance is suggested to modulate polarization
of MG phenotypes [164,166], untimely polarization may be ineffective or detrimental to
injury outcomes.

Table 2. Potential therapeutic targets to modulate MG effects in PBIs. Adapted from [104].

Molecular Targets Candidate Interventions

PPARγ receptor Pioglitazone, Rosiglitazone, Metformin [167,168]
AMP-related kinase (AMPK) Metformin [169]

Aldose reductase Sorbinil, Zopolrestat, Fidarestat, Tolrestat [170,171]
Sirtuin 1 Resveratrol [172]

Wnt pathway Wnt pathway agonists (via 3DNA nanoparticle delivery) [91]

MicroRNAs (miRs) miR mimics and antago-miRs
(via 3DNA nanoparticle delivery) [110]

Omega3-omega6 fatty acid balance Enriched omega3 fatty acid nutrition [173,174]
Steroid receptors Estetrol (E4) [175]

Cyclo-oxygenase-2 (COX)-2 Nimesulide, Indomethacin [133,176]
Leukotriens Montelukast

Microbiota and gut Prebiotics, probiotics, faecal transplant [177,178]
Multiple targets Mesenchymal stem cells [179–181], melatonin [182]

Redox balance, Nrf2 GSH: GSSG, N-acetyl-cysteine, sulforaphane [183], p38 [184]
Transforming Growth Factor Beta ALK5 [185,186]

8. Perspectives and Potential Relevance for Other Brain Disorders

The Kennard Principle describes the concept that the immature brain is more resilient
to injury compared to the mature brain and can reorganize and re-structure more effectively
to preserve function, and thus is more plastic. However, in the instance of preterm born
infants, a great number suffer from permanent neurodisability. This is even though over the
past decades’ injury has reduced markedly in severity, now typically being characterised by
mild axonopathy and connectivity deficits (for review see [187] and also in TBI [188]). The
popularisation of the concept of ‘innate plasticity’ in the immature brain is an impediment
to the transfer of information between the fields of perinatal and adult neurodegeneration,
as it suggests that the two systems are too different to compare. However, babies do not
get better with time (perhaps even the opposite, see text on the tertiary phase) and PBIs
share several cellular and molecular features with other brain disorders such as ASD,
neurodegenerative disorders or TBI (Table 3). The field of PBIs is greatly benefiting from
the knowledge acquired in these other fields. We believe that insights gained in the PBI field
might also be of interest due to shared mechanism eventually leading to the identification
of targets to boost post-lesioned plasticity in all forms of brain injury situations.
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Table 3. Potential overlap between PBIs and other brain disorders.

Brain Disorders Potential Similarities with PBIs

ASDs

Pro-inflammatory MG activation
Myelin defects

Impaired connectivity
Impaired synaptogenesis

Impaired microbiota
Sex bias

MS

Pro-inflammatory MG activation
Reactive astrocytes

OPC maturation arrest
Myelin defects

PD and AD

Pro-inflammatory MG activation
Reactive astrocytes

Protracted neuronal cell death
Sensitization, systemic inflammation

TBI

Pro-inflammatory MG activation
Impaired astrocyte functions

Myelin defect
Tertiary phase

9. Conclusions

The specific identity of MG as a unique cell type [189], their roles in PBIs [85,94,103,
113,142,190–196] and novel in vivo MG targeting tools [83,147,148] have emerged over the
last decade. Future studies will need to address the precise roles of MG in these disorders
by systematically ablating these cells in relevant animal models, despite the complexity
to achieve this goal in newborn animals as described above. In addition, work on basic
MG development and biology has shown that there is significant regional and temporal
heterogeneity in MG [43,153,156,191] that is largely unexplored in models of perinatal brain
injury. These effects need to be fully explored not only in rodent models, but in ‘big brain’
models and in human tissues to identify the core processes occurring across regions and
time that we need to suppress or support to achieve our aim of improving outcomes for
babies who suffer PBI. Finally, once we have our targets, specifically targeting MG with
nanoparticles, if they prove to be safe, could represent a major step forward improving the
outcome of PBIs.
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Abbreviations

PBI perinatal brain injury;
EoFGR encephalopathy of fetal growth restriction;
EoP encephalopathy of prematurity;
NE neonatal encephalopathy;
NS neonatal stroke;
ASD autism spectrum disorders;
MS multiple sclerosis;
PD Parkinson’s disease;
PSD95 post synaptic density 95;
AD Alzheimer’s Disease;
TBI traumatic brain injury
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