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Abstract: Malaria is an enormous threat to public health, due to the emergence of Plasmodium falciparum
resistance to widely-used antimalarials, such as chloroquine (CQ). Current antimalarial drugs are
aromatic heterocyclic derivatives, most often containing a basic component with an added alkyl chain
in their chemical structure. While these drugs are effective, they have many side effects. This paper
presents the synthesis and preliminary physicochemical characterisation of novel bioinspired imi-
dazolidinedione derivatives, where the imidazolidinedione core was linked via the alkylene chain
and the basic piperazine component to the bicyclic system. These compounds were tested against
the asexual stages of two strains of P. falciparum—the chloroquine-sensitive (D10) and chloroquine-
resistant (W2) strains. In parallel, in vitro cytotoxicity was investigated on a human keratinocyte cell
line, as well as their hemolytic activity. The results demonstrated that the antiplasmodial effects were
stronger against the W2 strain (ICsy between 2424.15-5648.07 ng/mL (4.98-11.95 uM)), compared to
the D10 strain (6202.00-9659.70 ng/mL (12.75-19.85 uM)). These molecules were also non-hemolytic
to human erythrocytes at a concentration active towards the parasite, but with low toxicity to mam-
malian cell line. The synthetized derivatives, possessing enhanced antimalarial activity against the
CQ-resistant strain of P. falciparum, appear to be interesting antimalarial drug candidates.

Keywords: Imidazolidine-2,4-dione derivatives; Plasmodium falciparum; antiparasitic agents;
antimalarial; drug resistance; cytotoxicity; hemolysis

1. Introduction

Malaria is a life-threatening disease caused by parasites that are transmitted to people
through the bites of infected female Anopheles mosquitoes. Malarial parasites belong to
the Plasmodium genus, which include different species, with two of these species posing
the greatest threat, namely, Plasmodium falciparum and Plasmodium vivax. According to
the World Health Organization (WHO), in 2018, P. falciparum accounted for 99.7% of the
estimated malaria cases in the African Region, 50% of cases in the South-East Asia Region,
71% of cases in the Eastern Mediterranean and 65% in the Western Pacific [1]. P. vivax is the
predominant parasite in the WHO Region of the Americas, representing 75% of malaria
cases. Moreover, in 2018, nearly half of the world’s population was at risk of malaria,
and malaria remains an important cause of illness and death in children and adults in
countries in which it is endemic.

A malaria infection is characterized by a spectrum of signs and symptoms such as
fever, chills, headache, nausea (vomiting), muscle pain, sweating and cough with specific
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cycles of “attacks”. An attack usually starts with shivering and chills, progressing to
a high fever, followed by sweating and a return to normal temperature. Symptoms of
malaria are caused by the asexual cycle of Plasmodium parasites in the blood of the human
host. When an infected female Anopheles mosquito takes a blood meal, sporozoites are
injected into the bloodstream and circulate to infect the liver. During the liver stage,
the sporozoites mature into tissue schizonts, containing thousands of merozoites, which are
released back into the bloodstream, where they infect red blood cells. During the blood
stage, the parasites further develop through ring, trophozoite and blood schizont stages,
producing new merozoites that infect more healthy red blood cells. Within the erythrocytes,
repeated cycles of parasite replication occur, causing a loss of red blood cells.

A variety of antimalarial drugs have been developed, based on the species of malaria
parasite, the severity of the symptoms, age, and general condition of infected people.
The most common antimalarial drugs include artemisinin derivatives and blood sch-
izonticidal drugs with a quinoline scaffold. For instance, quinine (Q), chloroquine (CQ),
primaquine (PQ), amodiaquine (AQ), and mefloquine (MQ) are fast-acting and highly
effective blood schizonticidal drugs that are active against sensitive malaria parasites,
primarily P. falciparum (Table 1) [2]. In fact, new antimalarial drugs are being researched
and developed as a consequence of the constant struggle between evolving drug-resistant
parasites and the search for new drug formulations to combat them. For example, some iso-
lates of the malaria parasite have demonstrated resistance to nearly all of the available
antimalarial drugs.

CQ and its derivatives are based on a 4-aminoquinoline scaffold, which has been
extensively used as the chemical core for the synthesis of novel compounds with an-
timalarial activity. Modifications of the CQ structure mainly consist of changes to the
pentamidine chain and amino alkyl head, although recently there have been attempts
to exchange the quinoline ring with another heterocyclic ring based on ring isoster-
ism [3,4]. Thus, a cyclic dicarboxamide derivative of chlorproguanil, compound WR182393
(a 2-guanidinoimidazolidinedione derivative) was found to completely eliminate malar-
ial parasites from the body (Table 1) [5]. Several peptide and amino acid derivatives
of primaquine and other 8-aminoquinoline antimalarials have been synthesized to re-
duce the metabolic oxidative deamination pathway, as well as to reduce toxicity of the
parent drug. Moreover, imidazolidin-4-ones, prepared from amino acid derivatives of
primaquine, exhibit potent gametocytocidal activity against P. berghei (Table 1) [6]. Sys-
tematic structure-activity relationship studies undertaken on a hit compound, TDR32750
(ethyl 5-methyl-3-oxo-1,2-dihydropyrrole-4-carboxylate), with the aim of improving an-
tiparasitic activity, revealed that replacement of the pyrrolone core on the imidazolidin-
2,4-dione gave a similar level of activity against P. falciparum (Table 1) [7]. Aplysinopsin is
a tryptophan-derived natural marine product, which is composed of an indole coupled with
an imidazolidinone moiety [8]. Aplysinopsin exhibited an antiplasmodial activity against
FcM29-Cameroon, a high chloroquine-resistant strain of P. falciparum (ICsy 430 ng/mL
(1.69 uM) [9]. Aplysinopsin-type compounds (aplysinopsins) have been reported in many
marine organisms from various geographic locations. A variety of biological activities,
ranging from antimicrobial and antimalarial to antitumor and neuromodulatory activities
have been found in a group of aplysinopsins [10,11].

The hydantoin (imidazolidine-2,4-dione) core is an important pharmacophore that
exhibits many biological properties. Diverse hydantoin derivatives are well-known as
anticonvulsive (phenytoin, fosphenytoin), antiarrhythmic (azimilide), antimicrobial agents
(nitrofurantoin), skeletal muscle relaxants (dantrolene), and nonsteroidal antiandrogen
(nilutamide) drugs. Moreover, hydantoin derivatives (substituted at positions C-5, N-1,
and N-3, alkyl/arylidene, spiro, polycyclic, and amino hydantoins) have been further
explored with the view of their potential medicinal and pharmaceutical properties [12].
Hydantoins exhibit anticonvulsive [13], antidepressant [14], antiviral and antithrombotic
activities [15]. Moreover, some of them possess inhibitory activity against enzymes (human
aldose reductase and human leucocyte elastase) [16]. The hydantoin core is also present
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in herbicides (spirohydantoin, thioxohydantocidin), fungicides (clodantoin), and insecti-
cides [17].

Table 1. Antimalarial drugs based on a 4-aminoquinoline scaffold and compounds from references
[2-11]. Chemical structures and physicochemical properties.

Compound Structure MW pPKa Log D pH 7.4
w2 13.89
(Q) Quinine S k 324.41 9.05 0.86
\OE 5 4.02
cl Ng
=
(CQ) Chloroquine 54 NH 319.87 1032 0.88
J
’ 7.29
~ 10.20
(PQ) Primaquine " ) 259.35 4.09 -1.13
© 0.60
10.17
(AQ) Amodiaquine 355.86 9.10 2.32
6.46
(MQ) Mefloquine 378.31 13.79 2.07
9.46
12.69
WR182393 341.19 3.12
4.37

General structure of
imidazolidin-4-ones

No ionizable

TDR32750 418.41 3.97
atoms found
H
N
. . 7 9 15.84
Aplysinopsin -~ N 254.29 1.74
A 2.93

Hydantoin and its derivatives are frequently encountered in naturally occurring sub-
stances, mostly of marine organisms and bacteria (Figure 1). Endophytic fungus from
an estuarine mangrove on the South China Sea coast contain 5-(p-hydroxybenzyl)hydantoin.
Many alkaloids have been extracted from sponges or corals, which contain a hydantoin
moiety. Most of them exhibited biological activity, such as the well-known aplysinopsins,
with cytotoxic properties [8], Z-axinohydantoin and debromo-Z-axinohydantoin from the
Sponge Stylotella aurantium, which are potent inhibitors of protein kinase C [18]. Hydanto-
cidin, a spiro nucleoside derived from submerged cultures of Streptomyces hygroscopicus
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5-(p-hydroxybenzyl)hydantoin

SANK 63584 possesses herbicidal and plant growth regulatory activity due to the inhibition
of adenylsuccinate synthetase [19]. The ethanolic extract of the abundant shallow water
Red Sea sponge, H. arabica, contains (Z)-5-(4-hydroxybenzylidene)-hydantoin [17], (R)-5-(4-
hydroxybenzyl)hydantoin and (Z)-5-((6-bromo-1H-indol-3-yl)methylene)-hydantoin [20],
and hemimycalin A i B [17]. Extracts or isolated compounds of this organism inhibited
the proliferation and invasion of human prostate cancer PC-3M cell line, exhibited moder-
ate antiproliferative activity against the human cervical carcinoma (HeLa) and displayed
variable antimicrobial activities [17,20].
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Figure 1. Naturally occurring hydantoins.

The main purpose of this study is the evaluation of antimalarial activity of new
compounds (5-8) based on the imidazolidine-2,4-dione scaffold presented in naturally
occurring hydantoins. Modification of the hydantoin core referred to the various bicyclic
moieties attached at the C5 position of hydantoin scaffold by spiro carbon. Next, N3 po-
sition of imidazolidine-2,4-dione scaffold were connected via a five-carbon linker with
polycyclic- or heteroaryl-piperazine.

Meyers et al. [21] identified spiropiperidine hydantoins as new leads for antimalarial
drug discovery. Lead compound CWHM-123 (8-(5-chloro-2-hydroxybenzyl)-3-ethyl-1-
isopentyl-1,3,8-triazaspiro[4.5]decane-2,4-dione) and its 4,5 dichloro analogue, CWHM-505,
are potent antimalarials (ICsy values against Plasmodium falciparum 3D7 of 0.310 uM and
0.099 uM) and the former features equivalent potency on the chloroquine-resistant Dd2
strain. In this study, the 1-benzylpiperidine moiety was replaced with naphthalene or a bi-
cyclic indene system. Next, Molyneaux et al. [22] tested a broader range of substituted and
unsubstituted aryl- and heteroaryl-piperazines. The results showed that 4-aminoquinoline-
based heteroaryl-piperazines, in which the terminal secondary amino group is also unsub-
stituted, were found to be equally active against the chloroquine-resistant and chloroquine-
sensitive strains. In this study 2,3-dihydro-1H-inden or benzo[d]imidazole was substituted
at the piperazine moiety Mendoza et al. [23] evaluated piperazine and pyrrolidine deriva-
tives (1-aryl-ketone, 1-aryl-alcohol and 1-aryl-oxime) for inhibition of the growth of the
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Plasmodium falciparum chloroquine-resistant (FCR-3) strain in culture. In this group of
compounds, the combined presence of a hydroxyl group, a propane chain and a fluor
appeared to be crucial for the antiplasmodial activity of the compounds. Shortening the
carbon chain leads to a large decrease in activity. In this study, the carbon chain connected
the hydantoin core with piperazine ring was elongated to a five-carbon chain.

We have been particularly interested in determining the influence of the designed
modifications of hydantoin scaffold on physicochemical properties, antimalarial activity
and toxicity against mammalian cells.

2. Materials and Methods
2.1. Chemicals and Reagents

DMSO and MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) were
purchased from Sigma-Aldrich (Poznan, Poland). The HaCaT cell line was obtained
from AddexBio (San Diego, CA, USA). DMEM medium and FBS were from Biowest
(Zgierz, Poland). GlutaMAX™ and 100x antibiotic-antimycotic were purchased from
Life Technologies (Gibco/Life Technologies, Warsaw, Poland). All chemicals and solvents
used for synthesis were purchased from commercial suppliers, namely, Sigma-Aldrich
(Poznan, Poland) and Chempur (Piekary Slaskie, Poland) and were used without further
purification.

2.2. General Experimental Procedures

Thin-layer chromatography (TLC) was performed on Merck silica gel 60 Fps4 alu-
minum sheets (Merck; Darmstadt, Germany), using the following mixtures of solvents: (S1)
methylene chloride/methanol (9:0.7), (52) methylene chloride/methanol (9:1.2). Analytical
HPLC was conducted on a Waters HPLC instrument with a Waters 485 Tunable Ab-
sorbance Detector UV, equipped with a Symmetry column (C18, 3.5 pm, 4.6 mm x 30 mm)
using a water/acetonitrile gradient with 0.1% TFA as the mobile phase, at a flow rate
of 5 mL/min. The liquid chromatography/mass spectrometry (LC/MS) analysis was
performed on a Waters Acquity TQD system, with a Waters TQD quadrupole mass spec-
trometer, with detection by UV (DAD) using an Acquity UPLC BEH C18 column (1.7 pum,
2.1 mm X 100 mm). A water/acetonitrile gradient with 0.1% TFA was used as the mobile
phase, at a flow rate of 0.3 mL/min. NMR spectra were recorded on an FT-NMR 500 MHz
spectrometer (Joel Ltd., Akishima, Tokyo, Japan); chemical shifts are expressed in parts per
million (ppm), using the CDClj3 signal as an internal standard. The | values are expressed
in Hertz. Signal multiplets are represented by the following abbreviations: s (singlet),
brs (broad singlet), d (doublet), dd (doublet of doublets), dt (doublet of triplets), t (triplet),
q (quintet), m (multiplet) (Supplementary Materials).

Arylpiperazine derivatives (Ia and Ib): 2-(piperazin-1-yl)-1H-benzo[d]imidazole, 1-
(2,3-dihydro-1H-inden-2-yl)piperazine, and their detailed analytical data were described
previously [24,25].

2.2.1. General Procedure for Obtaining Spirohydantoin Derivatives (1, 2)

General procedure for obtaining starting spirohydantoin compounds: (R,S)-2/,3'-
dihydrospiro[imidazolidine-4,1’-indene]-2,5-dione (1), (R,S)-1’,3'-dihydrospiro[imidazolid
ine-4,2'-indene]-2,5-dione (2), and their detailed analytical data were described previ-
ously [14].

2.2.2. General Procedure for Alkylation of Spirohydantoin (3, 4)

Intermediate products (3, 4) were obtained in line with previously described N3-
alkylate spirohydantoins, with slight modifications. Briefly, a mixture of the appropriate
spirohydantoin (1, 2; 2.5 mmol) and potassium carbonate (0.69 g, 5 mmol) in acetonitrile
(15 mL) was heated to 80 °C with stirring on a magnetic stirrer. After 30 min heating,
an alkylating agent, 1.5-dibromopentane (0.632 g, 2.7 mmol), was added dropwise to the
reaction mixture, which was kept at 80 °C for 8 h. Then, the reaction mixture was filtered,
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and the resulting filtrate was concentrated under vacuum. The resulting intermediate
racemic compounds were purified by column chromatography on silica gel, using (S1)
methylene chloride/methanol (9:0.7) as eluent.

e (R,S)-1-(5-bromopentyl)-3’ 4’-dihydro-2'H-spiro[imidazolidine-4,1'-naphthalene]-2,5-
dione (3)

Creamy powder. Yield: 72%; TLC: R¢ = 0.76 (S1); HPLC: tg = 1.613; ESI-S [M + HI*
calcd for 365.08, found: 365.12, 367.12; TH NMR (500 MHz, CDCL3-d) 6 ppm 1.43-1.56 (m,
2H)1.70 (dt, ] = 14.68,7.41 Hz, 2 H) 1.79-2.03 (m, 4 H) 2.21-2.38 (m, 2 H) 2.87 (q, ] = 5.90 Hz,
2H)3.40(t,]=6.67Hz,2H) 357 (t,] =7.18 Hz,2H) 590 (s, 1 H) 7.04 (dd, ] = 7.69, 1.54 Hz,
1 H) 7.12-7.25 (m, 3 H).

e (R,S)-1-(5-bromopentyl)-2’,3'-dihydrospiro[imidazolidine-4,1’-indene]-2,5-dione (4)

Creamy powder. Yield: 57%; TLC: Ry = 0.73 (S1); HPLC: tg = 1.529; ESI-MS [M + H]*
caled for 351.06, found: 351.16, 353.16; 'H NMR (500 MHz, CDCL3-d) & ppm 1.40-1.53 (m,
2 H) 1.63-1.72 (m, 2 H) 1.83-1.94 (m, 2 H) 2.19-2.31 (m, 1 H) 2.65-2.76 (m, 1 H) 2.99-3.11
(m, 1 H) 3.18-3.32 (m, 1 H) 3.39 (t, ] = 6.67 Hz, 2 H) 3.55 (t, ] = 7.05 Hz, 2 H) 5.89 (s, 1 H)
712 (d,]=7.44Hz, 1 H) 7.20-7.27 (m, 1 H) 7.28-7.33 (m, 2 H).

2.2.3. General Procedure for Obtaining the Final Compound Series (5-8)

The appropriate bromoalkyl derivatives of spirohydantoin (0.3 mmol), and triethy-
lamine (0.061 g, 0.6 mmol) were dissolved in 4 mL of acetonitrile and arylpiperazine
(0.33 mmol) was added. The reaction mixture was heated to 100 °C in a microwave synthe-
sizer (CEM corporation, 200 W). After 1 h of heating, the reaction mixture was concentrated
under vacuum. The final, racemic compounds obtained were further purified by column
chromatography using the following eluent systems: (51) methylene chloride/methanol
(9:0.7), and (S2) methylene chloride/methanol (9:1.2).

e (R,S)-1-(5-(4-(1H-Benzo[d]imidazol-2-yl)piperazin-1-yl)pentyl)-3’,4’-dihydro-2'H-
spiro[imidazolidine-4,1’-naphthalene]-2,5-dione (5)

Light-yellow solid. Yield: 71%; TLC: R; = 0.29 (S2); HPLC: g = 0.948; ESI-MS [M + HJ*
caled for 487.27, found: 487.15; 'H NMR (500 MHz, CDCls-d) § ppm 1.29-1.34 (m, 2 H)
1.45-1.52 (m, 2 H) 1.63-1.70 (m, 2 H) 1.73-1.81 (m, 1 H) 1.90-1.98 (m, 1 H) 2.18-2.26 (m, 2 H)
2.28-2.32 (m, 2 H) 2.46 (br. s., 4 H) 2.75-2.88 (m, 2 H) 3.51-3.56 (m, 6 H) 6.29 (br. s., 1 H)
6.97-7.04 (m, 4 H) 7.08-7.16 (m, 3 H) 7.16-7.20 (m, 1 H). 13C NMR (126 MHz, CDCl-d) &
ppm 19.13 (s) 24.53 (s) 26.07 (s) 27.98 (s) 28.86 (s) 34.28 (s) 38.60 (s) 46.55 (s) 52.34 (s) 58.29 (s)
62.78 (s) 112.50 (s.) 121.14 (s) 126.43 (s) 126.95 (s) 128.78 (s) 129.91 (s) 133.07 (s) 138.24 (s)
155.39 (s) 156.92 (s) 176.43 (s).

e (R,5)-1-(5-(4-(1H-Benzo[d]imidazol-2-yl)piperazin-1-yl)pentyl)-2’,3’-dihydrospiro
[imidazolidine-4,1’-indene]-2,5-dione (6)

Light-yellow solid. Yield: 65%; TLC: Rp=0.27 (52); HPLC: tg = 0.928; ESI-MS [M + H]*
calcd for 473.26, found: 473.19; 'H NMR (500 MHz, CDCl3-d) § ppm 1.29-1.37 (m, 2 H)
1.48-1.56 (m, 2 H) 1.63-1.71 (m, 2 H) 2.31-2.37 (m, 2 H) 2.51 (d, ] = 3.44 Hz, 4 H) 3.03 (d,
] = 16.32 Hz, 2 H) 3.50-3.64 (m, 8 H) 5.87-5.98 (m, 1 H) 7.02-7.06 (m, 2 H) 7.20 (s, 4 H) 7.30
(dd, J = 5.73, 3.15 Hz, 2 H). 13C NMR (126 MHz, CDCl3-d) & ppm 24.46 (s) 25.85 (s) 27.90 (s)
30.15 (s) 36.82 (s) 38.39 (s) 45.90 (s) 52.31 (s) 58.38 (s) 71.23 (s) 112.29 (s) 120.76 (s) 122.54 (s)
125.43 (s) 127.29 (s) 129.52 (s) 140.07 (s) 144.17 (s) 155.81 (s) 157.26 (s) 176.33 (s).

e  (R,S)-1-(5-(4-(2,3-Dihydro-1H-inden-2-yl)piperazin-1-yl)pentyl)-3’ 4’-dihydro-2'H-spiro

[imidazolidine-4,1’-naphthalene]-2,5-dione (7)

Light-yellow solid. Yield: 61%; TLC: Rf =0.24 (S1); HPLC: tg = 1.002; ESI-MS [M + H]*
caled for 487.29, found: 487.29; 'H NMR (500 MHz, CDCl5-d) & ppm 1.23-1.40 (m, 4 H) 1.57
(dt, ] = 15.25,7.70 Hz, 2 H) 1.69 (q, ] = 7.52 Hz, 2 H) 1.76-1.83 (m, 1 H) 1.93-2.00 (m, 1 H)
2.22-2.29 (m, 2 H) 2.35-2.40 (m, 2 H) 2.60 (br. s, 6 H) 2.83-2.93 (m, 4 H) 3.03-3.09 (m, 2 H)
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3.19 (q, ] = 8.09 Hz, 1 H) 3.56 (t, ] = 7.16 Hz, 2 H) 5.71 (br. s, 1 H) 7.03 (d, ] = 7.16 Hz, 1 H)
7.10-7.13 (m, 2 H) 7.14-7.18 (m, 4 H) 7.20-7.24 (m, 1 H). 13C NMR (126 MHz, CDCl5-d) &
ppm 19.17 (s) 24.72 (s) 26.12 (s) 28.08 (s) 28.89 (s) 34.31 (s) 37.03 (s) 38.67 (s) 51.18 (s) 52.93 (s)
58.38 (s) 62.72 (s, 5 C) 66.98 (s) 124.47 (s, 6 C) 126.54 (s) 127.00 (s) 128.78 (s) 129.89 (s) 133.11
(s) 138.22 (s) 141.49 (s) 156.86 (s) 176.26 (5).

e  (RS5)-1-(5-(4-(2,3-Dihydro-1H-inden-2-yl)piperazin-1-yl)pentyl)-2’,3’-dihydrospiro
[imidazolidine-4,1’-indene]-2,5-dione (8)

Light-yellow solid. Yield: 59%; TLC: Rf=0.24 (S1); HPLC: tg = 0.937; ESI-MS [M+H]*
caled for 473.26, found: 473.19; 'H NMR (500 MHz, CDCl3-d) § ppm 1.32 (quin, | = 7.73 Hz,
2 H) 1.52 (quin, ] = 7.66 Hz, 2 H) 1.66 (quin, | = 7.52 Hz, 2 H) 2.19-2.26 (m, 1 H) 2.30-2.35
(m, 2 H) 2.36-2.77 (m, 8 H) 2.87 (dd, J = 15.04, 8.74 Hz, 2 H) 2.98-3.08 (m, 4 H) 3.12-3.19 (m,
1H)3.24 (dt, ] =15.97,8.20 Hz, 1 H) 3.52 (t, ] = 7.30 Hz, 2 H) 5.93 (s, 1 H) 7.08-7.13 (m, 3 H)
7.13-7.18 (m, 2 H) 7.20-7.24 (m, 1 H) 7.28-7.32 (m, 2 H). 13C NMR (126 MHz, CDCl3-d) 5
ppm 24.55 (s) 25.49 (s) 27.97 (s) 36.82 (s) 38.61 (s) 44.44 (s) 50.42 (s) 52.47 (s) 58.07 (s) 66.72
(s) 68.43 (s) 124.49 (s) 124.73 (s) 126.00-127.91 (m) 127.15-128.67 (m) 139.00 (s) 141.14 (s)
156.39 (s) 176.01 (s).

2.3. pK, and Log D Calculation

The negative logarithm of the acid dissociation constant (pK,) and the decimal log-
arithm distribution coefficient (log D) were calculated using the MarvinSketch software
(version 20.12.0, ChemAxon Ltd., Cambridge, MA, USA).

2.4. P. falciparum Cultures and Drug Susceptibility Assay

Plasmodium falciparum cultures were carried out according to Trager and Jensen,
with slight modifications [26]. The CQ-susceptible strain D10 and the CQ-resistant strain
W2 were maintained at 5% hematocrit (human type A-positive red blood cells) in RPMI
1640 (EuroClone, Milan, Italy) medium with the addition of 1% AlbuMax (Invitrogen,
Milan, Italy), 0.01% hypoxanthine, 20 mM Hepes, and 2 mM glutamine. All the cultures
were maintained at 37 °C in a standard gas mixture consisting of 1% O,, 5% CO;, and 94%
N,. Compounds were dissolved in DMSO and then diluted with medium to achieve the
required concentrations (final DMSO concentration < 1%, which is non-toxic to the parasite).
Drugs were placed in 96-well flat-bottomed microplates starting from the concentration of
20 ug/mL and 8 serial two-fold dilutions were made. Asynchronous cultures with para-
sitaemia of 1-1.5% and 1% final hematocrit were aliquoted into the plates and incubated
for 72 h at 37 °C. Parasite growth was determined spectrophotometrically (ODgs0) by mea-
suring the activity of the parasite lactate dehydrogenase (pLDH), according to a modified
version of the method of Makler in control and drug-treated cultures [27]. The antimalarial
activity is expressed as 50% inhibitory concentrations (ICsg); each ICs( value is the mean of
at least three separate experiments performed in duplicate.

2.5. Cytotoxicity Assay

HaCaT cells were cultured in DMEM medium with 10% FBS, GlutaMAX™ and
antibiotic-antimycotic. Cells were cultured at 37 °C in a humidified atmosphere containing
5% CO,. To evaluate the cytotoxic activity of tested compounds, the MTT assay was
used [28]. Cells (5 x 10% cells/well) were plated into a 96-multiwell plate and incubated
for 24 h, to grow as monolayers. Subsequently, different doses of compounds dissolved
in DMSO were added to each well and mixed. Plates were then incubated for 48 h.
The culture media with tested samples were then removed, and cells in each well were
treated with 50 pL of complete culture medium with MTT. After 4 h of incubation in a cell
culture incubator, MTT solution was replaced with DMSO (50 pL/well) and plates were
agitated for 5 min to dissolve the formazan salts. Formazan absorbance was measured at
570 nm, with background measured at 630 nm, using an Asys UVM 340 Microplate Reader
(Cambridge, UK). Results were expressed as ICs, values, with respect to the control (not
treated cells).
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2.6. Hemolysis Assay

The study protocol was approved by the Bioethics Commission at the Lower Silesian
Medical Chamber (1/PNHAB/2018). Hemolytic activity was estimated by the measure-
ment of hemoglobin release from human erythrocyte suspensions after incubation with (5),
(6), (7) and (8), as previously described [29]. Compouds dissolved in DMSO were added
in a volume corresponding to a final concentration of 20 ug/mL in the sample (DMSO
was added in an identical volume). Negative and positive controls were also determined.
Hemolysis (H) was calculated according to the following formula:

H (%) = [(Asample - Anegative control)/ (Apositive control — Anegative control)] % 100 1

where Agample, Anegative control, Ad Apositive control Tepresent the absorbances of the sample,
and negative (erythrocytes in PBS buffer) and positive (erythrocytes in distilled water)
controls, respectively.

3. Results and Discussion
3.1. Chemistry

Synthetic routes and chemical structures of the designed spirohydantoin derivatives
(5-8) are depicted in Scheme 1. Spirohydantoin rings (1 and 2) were synthesized from com-
mercially available ketones, in a Bucherer-Berg reaction, using the modification of Goodson
et al. Then, spirohydantoins (1, 2) were coupled with 1,5-dibromopenane, to give alkylated
intermediate compounds 3 and 4. Finally, racemic compounds (5-8) were obtained through
coupling intermediates (3 or 4) with corresponding arylpiperazines, namely, 2-(piperazin-
1-yl)-1H-benzo[d]imidazole or 1-(2,3-dihydro-1H-inden-2-yl)piperazine, whose analytical
data were in line with previously described procedures [24,25].

O O O R
a b c N~
HN HN HN (\

Scheme 1. Reagents and conditions for compounds 8-15: (a) KCN, (NH4),CO3, 50% EtOH, 56-60 °C, 28 h; (b) 1,5-
dibromopentane, K,CO3, MeCN, 80 °C, 8 h; (c) arylpiperazine, TEA, MeCN, 100 °C, 1 h, MW.

The applied synthetic methods facilitated the synthesis of intermediates (3, 4) and
finally, compounds (5-8), with an average-to-good yield (57-71% and 59-72%, respectively).
The purity of the final compounds (5-8) was above 95%.

Designing compounds with well-balanced physicochemical parameters is crucial
for biologically active compounds, because these parameters determine their absorption,
distribution, metabolism and excretion [30]. One of the key physicochemical parameters is
lipophilicity, expressed as the partition coefficient (Log P), or distribution coefficient (Log
D). The log P parameter relates to non-ionized molecules and the log D takes into account
ionized and non-ionized particles at a given pH. Thus, log D is a better descriptor than log
P, which reflects the partitioning of a mixture of drug species as well as the actual drug
lipophilicity at any given pH.

For compounds (5-8), as well as for CQ), the log D values at representative pH values
for blood (7.4), cytoplasm (7.2), and P. falciparum food vacuole (FV) (5.5) were calculated
(Table 2). FVs degrade host haemoglobin via a series of peptidases during the erythrocytic
life stages of the parasite. Thus, we wished to establish the role of a possible accumulation
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of compounds (5-8) in the FV. It is known that CQ accumulates in the FV, however only
aneutral form of CQ can diffuse across the FV membrane, where, in the acidic environment
of the FV, it is protonated and is subsequently unable to freely diffuse out of the FV
again. Thus, according to the log D values for compounds (5-8) under pH conditions
representative of blood, cytoplasm and FV, it can be concluded that, like CQ), the compounds
would favor accumulation in the FV of the parasite. Based on the data in Tables 1 and 2,
it can be concluded that compounds (5-8), as well as Q and CQ, display a greater affinity
for a lipophilic environment, with the Log D values of the final compounds being 3-fold
higher than that of the reference drugs. However, Log D values of compounds (5-8) are
similar to the Log D value of WR182393, which is quite an active antimalarial compound.

Table 2. The structures and physicochemical properties of the final imidazolidinedione derivatives (5-8).

Log D
Compound Structure pKa
pH74 pH7.2 pH5.5
12.32
N
@}\(o 3y 11.11
(5) HNWNMNQN N 8.41 3.39 3.20 1.11
0 5.86
o 12.32
; 11.03
Q) W 841 2.99 2.80 0.72
° 5.86
O 11.14
@) CeSONS; 8.64 3.00 2.81 1.20
J 2.86
11.05
@®) 1 QIQ 8.64 2.60 241 0.80
A 2.86
CcQ - 0.88 0.64 —0.76

Another important physicochemical parameter is pK,, which describes the ionization
state of a compound at a specific pH. At blood pH, the acidic groups of the final compounds
(5-8) will be non-ionized, while their amino groups will be partially ionized. Such a situa-
tion, on the one hand, will improve the solubility of compounds (5-8) in the blood, but on
the other hand, it may hinder their penetration through biological membranes.

3.2. Biological Activities

The chloroquine sensitive (D10) and chloroquine resistant (W2) strains of P. falciparum
were used to establish the potential activity of the studied compounds against blood-stage
parasites in vitro. The ICsy values for compounds (5-8) were subsequently calculated,
as well as their respective Rls (resistance indexes) between the sensitive and resistant strain,
respectively, as summarized in Table 3, whereas representative dose response activities of
compounds (5), (6) or (7) are included in the Supplementary Materials. The determined
ICsq values against the D10 strain were in the range of 6202.00-9659.70 ng/mL, whereas the
values obtained for the W2 strain were in the range of 2424.15-5648.07 ng/mL. Interestingly,
the highest inhibition of both strains of P. falciparum was observed for the same compound,
namely (5). Importantly, the estimated ICsy value for W2 was similar to the value obtained
for WR 182393 (2664.69 ng/mL) to the same strain, as well [31]. Another extremely
important finding is that the tested agents are more active against a Plasmodium strain
resistant to CQ. This is directly reflected in their low RI values (0.39-0.58) while, for CQ,
this value is 13.44. Moreover, structure-activity relationships for the designed compounds
revealed that the presence of naphthalene and benzo[d]imidazole-2-yl-piperazine moieties
were necessary for the most promising antiplasmodial activities.
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Table 3. In vitro antimalarial activity of compounds (5-8) against the D10 (CQ-sensitive) and W2 (CQ-resistant) strains of
P. falciparum, cytotoxicity on HaCaT cells and relevant RI and SI.

P. falciparum ICsy (ng/mL) HaCaT ICs (ng/mL) SIb
Compound RI®

W2 D10 W2

(5) 6202.00 £ 892.09 242415 + 255.34 0.39 20,216.67 £ 1181.54 3.26 8.34
1275+ 0.02 ¢ 498 +0.52°¢ 4155 +243°¢

(6) 8269.85 £ 736.88 4782.00 = 97.44 0.58 27,406.67 £ 701.17 3.31 5.73
1750 £1.55°¢ 10.12+£0.20 ¢ 57.99 +1.48°¢

(7) 9659.70 £ 140.86 4346.50 + 659.31 0.45 30,536.67 £ 1033.89 3.16 7.02
19.85 £0.29°¢ 893 +1.35¢ 62.75 +2.12°¢

(8) 5648.07 + 1946.84 - 22,723.33 £+ 1175.00 - 4.02
1195 +4.12°¢ 48.08 +2.49°¢

CQ 764 +1.70 102.67 + 27.49 13.44 nd nd nd

0.01 = 0.003 © 0.20 +0.05 ©

2RI =1Cs¢ CQresistant P. falciparum strain/ICsy CQ sensitive P. falciparum strain, b §J = IC5) HaCaT/ICs P. falciparum strain., € ICsg expressed

in (uM).

One of the greatest public health problems in the control of malaria is the the spread
of resistance to antimalarial drugs used on a large scale [32]. Therefore, our results are very
promising, especially in view of the fact that chloroquine resistant P. falciparum strains have
been described almost everywhere.

As the studied agents have shown encouraging antiplasmodial activities, we further
assessed their cytotoxic effects using the MTT assay. Additionally, for each compound,
the selectivity index (SI), namely the ratio between the ICsj values on the human cells and
that on the P. falciparum strains, was calculated and reported in Table 3. For the cytotoxicity
studies, we choose the HaCaT keratinocyte cell line, since skin cell lines are often used as
a control human cell line for antimalarial agents [33,34]. The cytotoxicity test showed 50%
inhibitory cellular cytotoxicity at a concentration range of 20,216.67 to 30,536.67 ng/mL,
after 48 h. The calculated selectivity indexes for D10 were similar, in the range of 3.16-3.32
while, in the case of W2, they reached much higher values (4.02-8.34), which suggests
they demonstrate significant selectivity towards W2, especially (5), in relation to the CQ-
resistant strain. Again, (5) had the highest selectivity index which, together with its low
toxicity, makes this agent the most promising compound amongst the studied series.

The synthesized compounds were subsequently evaluated for their effects on human
erythrocytes. In order to estimate this, fresh erythrocytes were treated with compounds
(5-8) for 30 min, at a concentration of 20 ug/mL. It was shown that compound (5) caused
minimal hemolysis, on the level of 5.6%, at a concentration corresponding to 3.2-fold (D10)
and 8.2-fold (W2) of the IC5 of the respective Plasmodium strains. The other derivatives
(6-8) had a hemolysis level of less than 2.7% at the same concentration. In summary, we
can conclude that compounds (5-8) are not toxic to human erythrocytes at a concentration
at which they effectively inhibit the growth of P. falciparum. This is a very valuable obser-
vation, especially considering that some artemisinin derivatives can cause hemolysis [35].
Moreover, we can exclude that the observed antimalarial effect of the tested compounds
was due to erythrocyte hemolysis.

In this work, we synthesized a series of bioinspired hydantoin derivatives and further
studied their antimalarial activities, as well as their cytotoxicity and hemolytic effects.
Compound (5) turned out to be the best hit compound in the series, due to the highest
activity against P. falciparum strains, especially the CQ-resistant strain, and low toxicity to
mammalian cells. Due to its low solubility in water, further work will be carried out to
develop an appropriate formulation that will improve its bioactivity and bioavailability.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/2218-273
X/11/1/33/s1. 1H- and 13C-NMR spectra for compounds 5, 6, 7 and 8 provided.
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