## **Supplementary Materials**

# Pursuing the Complexity of Alzheimer's Disease: Discovery of Fluoren-9-Amines as Selective Butyrylcholinesterase Inhibitors and *N*-Methyl-D-Aspartate Receptor Antagonists

Jan Konecny <sup>1,2,</sup> <sup>+</sup>, Anna Misiachna <sup>3,4,5,</sup> <sup>+</sup>, Martina Hrabinova <sup>1,2</sup>, Lenka Pulkrabkova <sup>1,2</sup>, Marketa Benkova <sup>2</sup>, Lukas Prchal <sup>2</sup>, Tomas Kucera <sup>1,2</sup>, Tereza Kobrlova <sup>2</sup>, Vladimir Finger <sup>2,6</sup>, Marharyta Kolcheva <sup>3,4</sup>, Stepan Kortus <sup>3,4</sup>, Daniel Jun <sup>1,2</sup>, Marian Valko <sup>7</sup>, Martin Horak <sup>3,4</sup>, Ondrej Soukup <sup>1,2,\*</sup> and Jan Korabecny <sup>1,2,\*</sup>

- <sup>1</sup> Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic, jan.konecny@unob.cz (J.K.), martina.hrabinova@unob.cz (M.H.), lenka.pulkrabkova@fnhk.cz (L.P.), tomas.kucera2@unob.cz (T.K.), daniel.jun@unob.cz (D.J.)
- <sup>2</sup> Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic, Marketa.Benkova@fnhk.cz (M.B.), lukas.prchal@fnhk.cz (L.P.), tereza.kobrlova@fnhk.cz (T.K.), fingerv@faf.cuni.cz (V.F.)
- <sup>3</sup> Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic, anna.misiachna@iem.cas.cz (A.M.), marharyta.kolcheva@iem.cas.cz (M.K.), stepan.kortus@iem.cas.cz (S.K.), martin.horak@iem.cas.cz (M.H.)
- <sup>4</sup> Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
- <sup>5</sup> Department of Physiology, Faculty of Science, Charles University in Prague, Albertov 6, 12843 Prague 2, Czech Republic
- <sup>6</sup> Department of Organic and Bioorganic Chemistry, Charles University, Faculty of Pharmacy in Hradec Kralove, Akademika Heyrovskeho 1203, 50005, Hradec Kralove, Czech Republic
- <sup>7</sup> Slovak University of Technology, Faculty of Chemical and Food Technology, Radlinskeho 9, 812 37 Bratislava, Slovakia, marian.valko@stuba.sk
- \* Correspondence: ondrej.soukup@fnhk.cz (O.S.); jan.korabecny@fnhk.cz (J.K.) Tel.: +420-495-833-447 (O.S.); +420-495-833-447 (J.K.)
- + These authors contributed equally to this paper.

#### Table of contents

| 1. | Physiochemical properties and drug-likeness of final compounds        | 1    |
|----|-----------------------------------------------------------------------|------|
| 2. | MTT cell viability test prior the BBB evaluation using hCMEC/D3 cells | 3    |
| 3. | <sup>1</sup> H and <sup>13</sup> C NMR spectra                        | 4    |
| 4. | HPLC and LC-MS spectra of final compounds                             | . 34 |
| 5. | References                                                            | . 49 |

#### 1. Physiochemical properties and drug-likeness of final compounds

For the prediction of physiochemical properties (Table S1) was used MarvinSketch 20.4.0, ChemAxon Ltd. Drug-likeness of designed derivatives was evaluated by SwissADME online tool.[1]

Table S1. Physiochemical parameters of compounds 3a-o, THA and Memantine.

| Compound  | MW     | pKa   | logP | HBA | HBD | TPSA  |
|-----------|--------|-------|------|-----|-----|-------|
| 3a        | 259.78 | 9.06  | 3.76 | 1   | 1   | 12.03 |
| 3b        | 231.72 | 8.89  | 2.99 | 1   | 1   | 12.03 |
| 3c        | 299.84 | 9.34  | 4.79 | 1   | 1   | 12.03 |
| 3d        | 257.76 | 8.65  | 3.46 | 1   | 1   | 12.03 |
| 3e        | 271.79 | 8.96  | 3.90 | 1   | 1   | 12.03 |
| 3f        | 285.82 | 9.66  | 4.22 | 1   | 0   | 3.24  |
| 3g        | 275.78 | 8.33  | 2.94 | 2   | 1   | 21.26 |
| 3h        | 245.70 | 8.97  | 3.35 | 1   | 1   | 12.03 |
| 3i        | 273.80 | 9.60  | 4.09 | 1   | 0   | 3.24  |
| 3ј        | 337.29 | 8.32  | 3.22 | 2   | 0   | 6.48  |
| 3k        | 314.85 | 8.39  | 3.58 | 2   | 0   | 6.48  |
| 31        | 287.79 | 7.45  | 3.15 | 2   | 0   | 12.47 |
| 3m        | 273.80 | 9.15  | 4.31 | 1   | 1   | 12.03 |
| 3n        | 273.80 | 9.22  | 4.29 | 1   | 1   | 12.03 |
| 30        | 271.78 | 9.80  | 3.78 | 1   | 0   | 3.24  |
| THA       | 198.26 | 8.95  | 2.63 | 2   | 1   | 38.91 |
| Memantine | 179.30 | 10.70 | 2.07 | 1   | 1   | 26.02 |

MW = molecular weight, pKa = acid dissociation constant, logP = partition coefficient, HBA = hydrogen

bond acceptor, HBB = hydrogen bond donor, TPSA = topological polar surface area

Table S2. Drug-likeness of derivatives 3a-o, THA and memantine.

|           |            |                    | Drug-likeness      |                   |                     |
|-----------|------------|--------------------|--------------------|-------------------|---------------------|
| Compound  | Lipinski ª | Ghose <sup>b</sup> | Veber <sup>c</sup> | Egan <sup>d</sup> | Muegge <sup>e</sup> |
| 3a        | Yes        | Yes                | Yes                | Yes               | No <sup>f</sup>     |
| 3b        | Yes        | Yes                | Yes                | Yes               | No <sup>g</sup>     |
| 3c        | Yes        | Yes                | Yes                | Yes               | No <sup>f</sup>     |
| 3d        | Yes        | Yes                | Yes                | Yes               | No <sup>f</sup>     |
| 3e        | Yes        | Yes                | Yes                | Yes               | No <sup>f</sup>     |
| 3f        | Yes        | Yes                | Yes                | Yes               | No <sup>f</sup>     |
| 3g        | Yes        | Yes                | Yes                | Yes               | Yes                 |
| 3h        | Yes        | Yes                | Yes                | Yes               | No <sup>f</sup>     |
| 3i        | Yes        | Yes                | Yes                | Yes               | No <sup>f</sup>     |
| 3j        | Yes        | Yes                | Yes                | Yes               | Yes                 |
| 3k        | Yes        | Yes                | Yes                | Yes               | Yes                 |
| 31        | Yes        | Yes                | Yes                | Yes               | Yes                 |
| 3m        | Yes        | Yes                | Yes                | Yes               | No <sup>f</sup>     |
| 3n        | Yes        | Yes                | Yes                | Yes               | No <sup>f</sup>     |
| 30        | Yes        | Yes                | Yes                | Yes               | No <sup>f</sup>     |
| THA       | Yes        | Yes                | Yes                | Yes               | No <sup>f</sup>     |
| Memantine | Yes        | Yes                | Yes                | Yes               | No <sup>g</sup>     |

<sup>a</sup> Lipinski represent,[2] MW < 500 Da, logP <5, HBD <5, HBA <10; <sup>b</sup> Ghose,[3] MW = 180 – 480, MR (molar refractivity) = 40 – 130, logP = -0.4 – +5.6, number of atoms = 20 – 70; <sup>c</sup> Veber,[4] rotatable bonds <10, TPSA <140; <sup>d</sup> Egan,[5] TPSA <132, logP <5.88; <sup>e</sup> Muegge,[6] MW = 200 – 500, log P = -2 - +5, HBD <5, HBA <10, MR = 40 – 130, rotatable bonds <8, heavy atoms = 20 – 70, TPSA <120, net charge -2 - +2; <sup>f</sup> 1 violation, <sup>g</sup> 2 violations.

# 2. MTT cell viability test prior the BBB evaluation using hCMEC/D3 cells

|         | Conc.  | % viable cells | SD    | n |
|---------|--------|----------------|-------|---|
| 2.      | 100 µM | 82.87          | 11.19 | 3 |
| 30      | 50 μM  | 93.44          | 1.66  | 4 |
| 2       |        | 92.34          | 9.43  | 3 |
| 3e      | 50 μM  | 92.79          | 4.11  | 3 |
| 2       |        | 80.10          | 6.22  | 3 |
| 5111    | 50 μM  | 82.08          | 4.34  | 4 |
| 2       | 100 μM | 92.67          | 11.81 | 3 |
| 3n      | 50 μM  | 98.20          | 20.59 | 3 |
| Terrino | 100 µM | 94.47          | 22,25 | 4 |
| racrine | 50 μM  | 91.11          | 17.02 | 3 |

Table S3. Effect of tested compounds on the cell viability of the hCMEC/D3 cells

#### 3. <sup>1</sup>H and <sup>13</sup>C NMR spectra

<sup>1</sup>H NMR of *N*-propan-2-yl-9*H*-fluoren-9-amine hydrochloride (3a):



#### <sup>13</sup>C NMR of *N*-propan-2-yl-9*H*-fluoren-9-amine hydrochloride (3a):



#### <sup>1</sup>H NMR of *N*-methyl-9*H*-fluoren-9-amine hydrochloride (3b):





#### <sup>13</sup>C NMR of *N*-methyl-9*H*-fluoren-9-amine hydrochloride (3b):

#### <sup>1</sup>H NMR of *N*-cyclohexyl-9*H*-fluoren-9-amine hydrochloride (3c):





#### <sup>13</sup>C NMR of *N*-cyclohexyl-9*H*-fluoren-9-amine hydrochloride (3c):

#### <sup>1</sup>H NMR of *N*-cyclopropyl-9*H*-fluoren-9-amine hydrochloride (3d):



#### <sup>13</sup>C NMR of *N*-cyclopropyl-9*H*-fluoren-9-amine hydrochloride (3d):



#### <sup>1</sup>H NMR of *N*-cyclobutyl-9*H*-fluoren-9-amine hydrochloride (3e):



#### <sup>13</sup>C NMR of *N*-cyclobutyl-9*H*-fluoren-9-amine hydrochloride (3e):







#### <sup>13</sup>C NMR of 1-(9*H*-fluoren-9-yl)piperidine hydrochloride (3f):









<sup>13</sup>C NMR of *N*-(2-methoxyethyl)-9*H*-fluoren-9-amine hydrochloride (3g):

<sup>1</sup>H NMR of *N*-ethyl-9*H*-fluoren-9-amine hydrochloride (3h):



#### <sup>13</sup>C NMR of *N*-ethyl-9*H*-fluoren-9-amine hydrochloride (3h):















#### <sup>13</sup>C NMR of 1-(9*H*-fluorene-9-yl)-4-methylpiperazine hydrochloride (3j):





#### <sup>1</sup>H NMR of 1-(9*H*-fluorene-9-yl)-4-ethylpiperazine hydrochloride (3k):

<sup>13</sup>C NMR of 1-(9*H*-fluorene-9-yl)-4-ethylpiperazine hydrochloride (3k):



<sup>1</sup>H NMR of 4-(9*H*-fluorene-9-yl)morpholine hydrochloride (3l):



#### <sup>13</sup>C NMR of 4-(9*H*-fluorene-9-yl)morpholine hydrochloride (3l):



#### <sup>1</sup>H NMR of *N*-butyl-9*H*-fluoren-9-amine hydrochloride (3m):









<sup>1</sup>H NMR of *N*-(2-methylpropyl)-9*H*-fluoren-9-amine hydrochloride (3n):





#### <sup>1</sup>H NMR of 1-(9*H*-fluoren-9-yl)pyrrolidine hydrochloride (30):



#### <sup>13</sup>C NMR of 1-(9*H*-fluoren-9-yl)pyrrolidine hydrochloride (30):



#### 4. HPLC chromatograms and MS spectra of final compounds

HPLC chromatogram (UV 254 nm) of N-propan-2-yl-9H-fluoren-9-amine hydrochloride (3a)



#### MS spectrum of *N*-propan-2-yl-9*H*-fluoren-9-amine hydrochloride (3a) at Rt: 2.66 min:



## HPLC chromatogram (UV 254 nm) of *N*-methyl-9*H*-fluoren-9-amine hydrochloride (3b):



0 000 050 100 150 200 250 300 350 400 450 500 550 600 650 700

#### MS spectrum of *N*-methyl-9*H*-fluoren-9-amine hydrochloride (3b) at Rt: 2.53 min:



## HPLC chromatogram (UV 254 nm) of *N*-cyclohexyl-9*H*-fluoren-9-amine hydrochloride (3c):



## MS spectrum of *N*-cyclohexyl-9*H*-fluoren-9-amine hydrochloride (3c) at Rt: 2.86 min:



## HPLC chromatogram (UV 254 nm) of *N*-cyclopropyl-9*H*-fluoren-9-amine hydrochloride (3d):



## MS spectrum of *N*-cyclopropyl-9*H*-fluoren-9-amine hydrochloride (3d) at Rt: 2.64 min:



## HPLC chromatogram (UV 254 nm) of *N*-cyclobutyl-9*H*-fluoren-9-amine hydrochloride (3e):



## MS spectrum of *N*-cyclobutyl-9*H*-fluoren-9-amine hydrochloride (3e) at Rt: 2.77 min:



## HPLC chromatogram (UV 254 nm) of 1-(9H-fluoren-9-yl)piperidine hydrochloride (3f):



## MS spectrum of 1-(9*H*-fluoren-9-yl)piperidine hydrochloride (3f) at Rt: 2.70 min:



## HPLC chromatogram (UV 254 nm) of N-(2-methoxyethyl)-9H-fluoren-9-amine hydrochloride (3g):



## MS spectrum of *N*-(2-methoxyethyl)-9*H*-fluoren-9-amine hydrochloride (3g) at Rt: 2.62 min:



## HPLC chromatogram (UV 254 nm) of N-ethyl-9H-fluoren-9-amine hydrochloride (3h):



## MS spectrum of *N*-ethyl-9*H*-fluoren-9-amine hydrochloride (3h) at Rt: 2.58 min:



## HPLC chromatogram (UV 254 nm) of *N*,*N*-diethyl-9*H*-fluoren-9-amine hydrochloride (3i):



## MS spectrum of *N*,*N*-diethyl-9*H*-fluoren-9-amine hydrochloride (3i) at Rt: 2.65 min:



## HPLC chromatogram (UV 254 nm) of 1-(9*H*-fluorene-9-yl)-4-methylpiperazine hydrochloride (3j):



## MS spectrum of 1-(9*H*-fluorene-9-yl)-4-methylpiperazine hydrochloride (3j) at Rt: 2.75 min:



## HPLC chromatogram (UV 254 nm) of 1-(9H-fluorene-9-yl)-4-ethylpiperazine hydrochloride (3k):



## MS spectrum of 1-(9*H*-fluorene-9-yl)-4-ethylpiperazine hydrochloride (3k) at Rt: 2.77 min:



## HPLC chromatogram (UV 254 nm) of 4-(9H-fluorene-9-yl)morpholine hydrochloride (3l):



## MS spectrum of 4-(9H-fluorene-9-yl)morpholine hydrochloride (31) at Rt: 2.60 min:



## HPLC chromatogram (UV 254 nm) of *N*-butyl-9*H*-fluoren-9-amine hydrochloride (3m):



## MS spectrum of *N*-butyl-9*H*-fluoren-9-amine hydrochloride (3m) at Rt: 2.81 min:



## HPLC chromatogram (UV 254 nm) of *N*-(2-methylpropyl)-9*H*-fluoren-9-amine hydrochloride (3n):



## MS spectrum of *N*-(2-methylpropyl)-9*H*-fluoren-9-amine hydrochloride (3n) at Rt: 2.76 min:



## HPLC chromatogram (UV 254 nm) of 1-(9H-fluoren-9-yl)pyrrolidine hydrochloride (30):



## MS spectrum of 1-(9H-fluoren-9-yl)pyrrolidine hydrochloride (30) at Rt: 2.61 min:



## 5. References

- 1. Daina, A.; Michielin, O.; Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. *Scientific Reports* **2017**, *7*, 42717, doi:10.1038/srep42717.
- 2. Lipinski, C.A. Lead- and drug-like compounds: the rule-of-five revolution. *Drug Discovery Today. Technologies* **2004**, *1*, 337–341, doi:10.1016/j.ddtec.2004.11.007.
- 3. Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. *J Comb Chem* **1999**, *1*, 55–68, doi:10.1021/cc9800071.
- 4. Veber, D.F.; Johnson, S.R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. *J Med Chem* **2002**, *45*, 2615–2623, doi:10.1021/jm020017n.
- 5. Egan, W.J.; Merz, K.M.; Baldwin, J.J. Prediction of drug absorption using multivariate statistics. *J Med Chem* **2000**, 43, 3867–3877, doi:10.1021/jm000292e.
- 6. Muegge, I.; Heald, S.L.; Brittelli, D. Simple selection criteria for drug-like chemical matter. *J Med Chem* 2001, 44, 1841–1846, doi:10.1021/jm015507e.