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Abstract: Human cartilage has relatively slow metabolism compared to other normal tissues. Carti-
lage damage is of great clinical consequence since cartilage has limited intrinsic healing potential.
Cartilage tissue engineering is a rapidly emerging field that holds great promise for tissue function
repair and artificial/engineered tissue substitutes. However, current clinical therapies for cartilage
repair are less than satisfactory and rarely recover full function or return the diseased tissue to its
native healthy state. Kartogenin (KGN), a small molecule, can promote chondrocyte differentiation
both in vitro and in vivo. The purpose of this research is to optimize the chondrogenic process in
mesenchymal stem cell (MSC)-based chondrogenic constructs with KGN for potential use in cartilage
tissue engineering. In this study, we demonstrate that KGN treatment can promote MSC conden-
sation and cell cluster formation within a tri-copolymer scaffold. Expression of Acan, Sox9, and
Col2a1 was significantly up-regulated in three-dimensional (3D) culture conditions. The lacuna-like
structure showed active deposition of type II collagen and aggrecan deposition. We expect these
results will open new avenues for the use of small molecules in chondrogenic differentiation protocols
in combination with scaffolds, which may yield better strategies for cartilage tissue engineering.

Keywords: kartogenin; chondrogenic differentiation; MSCs; 3D culture; tri-copolymer scaffolds;
self-designed bioreactor system

1. Introduction

As an aneural, avascular, alymphatic, and hypocellular tissue, articular (hyaline)
cartilage has been the primary focus of most clinicians. The dry weight of articular cartilage
is mainly composed of type II collagen and proteoglycans, which provide load-bearing
function [1]. Chondrogenic tissues in normal conditions have a relatively slow potential of
healing; damage to cartilage is of great clinical concern since the cartilage tissue has limited
intrinsic healing potential. Cartilage lesions arising due to aging, joint laxity, excessive
stress imposed upon normal tissue, diet, hormones, crystal deposition, bone microfractures,
and immunologic factors have been implicated in the etiopathogenesis of osteoarthritis [2].
Osteoarthritis (OA) is not the result of diminished metabolic activity; on the contrary, it is a
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very active catabolic process [3]. Synthesis of cartilage matrix and cell division occurs at
greater rates in damaged tissue than in normal cartilage tissue. However, the heightened
synthesis activity irritates lysosomes, which results in the release of lysosomal enzymes
that degrade cartilage and a reduction in proteoglycan contents in proportion to the disease
severity. The matrix degradation rates of cartilage eventually exceed the rate of synthesis;
thereby, the cartilage becomes eroded and forms lesions [1].

The mechanism of cellular synthesis and secretion of cartilage extracellular matrix
(ECM) can be regulated and promoted by signaling from surrounding ECM molecules.
In a previous study, we had synthesized a gelatin-chondroitin-6-sulfate-hyaluronan tri-
copolymer to mimic natural cartilage matrix; ECM secretion with lacunae formation, and
production of glycosaminoglycans (GAGs) makes tri-copolymer a promising scaffold for
cartilage tissue engineering [4]. However, using chondrocytes as a cell source still caused
morbidity at the donor site, making it impractical to use in the clinic. Current clinical
therapies for cartilage repair are still less than satisfactory and rarely recover full function
or return the pathological tissue to its native normal state [5,6].

Full-thickness cartilage lesions are found frequently, but the treatment of such articular
defects has continued to be a challenge, with no traditional medical treatment providing
the desired persistent, long-term efficacy [7,8]. In contrast, marrow stimulation techniques,
such as drilling or microfracture, have been merely used to treat relatively small defect
sites with the injection of multipotent stem cells, whereas the implantation of cultured
autologous cells or engineered tissue constructs for full-thickness cartilage lesions serves a
better option to hyaline-like cartilage regrowth. Cell-based regenerative therapy is a novel
method of surgical treatments and is indicated for cartilage repair, and it plays a major role
in the medical treatment of cartilage-associated diseases [9–11]. To date, these treatments
have had limitations, and their outcomes are still inconsistent. Disadvantages such as the
persistent morbidity on donor site, fibrous cartilage formation, lack of integration, and loss
of cell viability due to graft storage have limited their clinical applications [12,13]. In short,
the main challenges for cartilage reconstruction include selecting appropriate cell sources,
choosing suitable scaffolds, creating biomechanically adequate tissues, and integrating to
native tissue after implantation remain elusive [10,14].

MSCs form a specific cell population with highly regulated self-renewing ability; MSCs
secrete a wide spectrum of bioactive molecules, including growth factors and cytokines,
to avoid allogeneic rejection; thus, MSCs can be considered as an ideal cell source for
therapeutic use that may open new frontiers in medicine [7,15]. The secreted bioactive
factors offer a regenerative microenvironment at defect sites to restrict the area of damage
and aid in regenerating tissues by communicating with resident cell populations at the
defect site. The adult MSC is culture-dish adherent, and thus, it can be easily isolated from
bone marrow aspirates and can be expanded in culture while preserving its multipotency.
MSCs have been largely used in preclinical trials for tissue engineering, and they hold
considerable promise for therapeutic use in repairing and in reconstructing damaged or
diseased mesenchymal tissues [16,17].

A small molecule, kartogenin (KGN), can promote chondrocyte differentiation in both
in vitro and in vivo animal models. Due to KGN is a nonprotein chondrogenesis inducing
agent, it has excellent stability and can be transported at room temperature [18]. In other
words, KGN is suitable for clinical use. Previous studies have demonstrated that KGN
regulates the Runt-related transcription factor 1 (CBFβ-Runx1) transcriptional program to
induce chondrogenesis [19–22]. It can stimulate MSCs to differentiate as matrix-producing
chondrocytes while up-regulating type II collagen (Col2a1), SRY (sex determining region Y)-
box 9 (Sox9), Aggrecan (Acan), and tissue inhibitor of metalloproteinase (TIMPs) expression;
meanwhile, KGN also down-regulates Runt-related transcription factor 2-related (Runx2-
related) downstream genes, thereby preventing chondrocyte hypertrophy [20,23]. However,
the efficacy of KGN, along with a biomaterial scaffold, has not yet been assessed. Recently,
some researchers tried to combining KGN with biomaterial scaffold for facilitating effective
cartilage repair [18,22,24]; however, KGN worked in a dose-dependent manner for cartilage
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regeneration [25]. In the present study, we aim to optimize the chondrogenic process in
MSC-based chondrogenic constructs. For this, we cultured rat MSCs on 3D tri-copolymer
porous scaffolds with KGN in the dynamic self-designed bioreactor system and studied
the effects on chondrogenic differentiation at the cellular and molecular levels.

2. Materials and Methods
2.1. Isolation of Rat MSCs

The methods were carried out in accordance with the approved guidelines (NTU-
IACUC Approval No. 20140040) for animal experimentation by the Institutional Animal
Care Committee, National Taiwan University College of Medicine. The MSCs of male
Wistar rats were isolated using their plastic adherence [26]. Briefly, eight rats were sacrificed
(eight weeks old) by carbon dioxide (CO2) asphyxiation, femurs and tibias were dissected
aseptically and removed associated soft connective tissues extensively. The distal ends
of femurs and tibias were opened, and the marrow cavities were flushed with phosphate
buffered saline (PBS, pH 7.4). The mononuclear cell (MNC) fraction was isolated according
to standard techniques by using a sterile density gradient media, Ficoll-Paque PLUS (an
aqueous solution of density 1.077 ± 0.001 g/mL, GE Healthcare, Buckinghamshire, UK),
and centrifuging around 300 xg at 20 ◦C for 40 min. The isolated cells were washed with
PBS three times and resuspended in low glucose Dulbecco’s Modified Eagle’s medium
(LG-DMEM, Life Technologies, Grand Island, NY, USA) supplemented with 10% fetal
bovine serum (FBS, Biological Industries, Beit-Haemek, Israel). The cells were cultured at
37 ◦C in 5% CO2 atmosphere for three days. After 72 h incubation, the non-adherent cells
were removed by washing with PBS gently and leave behind the adherent cell population
to grow. When reaching 80% confluence, trypsinize was used, and cells were subcultured
for expanding. In this study, the rat mesenchymal stem cells (rMSCs) were used at passages
two to four throughout the following experiments.

2.2. Osteogenic, Chondrogenic, Adipogenic Differentiation Evaluation of rMSCs

To induce osteogenic differentiation, rMSCs (passage P2) were seeded at 5× 103 cells/cm2

on tissue culture plastic plates and cultured in an osteogenic medium. The osteogenic
medium consisted of LG-DMEM supplemented with 2% FBS, 1% PSA, 0.1 µM dexam-
ethasone (Dex, Sigma-Aldrich, St. Louis, MO, USA), 0.2 mM L-ascorbic acid 2-phosphate
(Sigma-Aldrich, St. Louis, MO, USA), and 10 mM β-glycerophosphate (Sigma-Aldrich, St.
Louis, MO, USA). These cells were cultured at 37 ◦C in 5% CO2 atmosphere for 14 days,
and the medium was replaced every two days.

To induce chondrogenic differentiation, rMSCs (passages P2) were seeded at 5 × 105

cells/drop on non-coating plastic plates to form a pelleted micro-mass and cultured in
chondrogenic medium. The chondrogenic medium consisted of LG-DMEM supplemented
with 2% FBS, 1% PSA, 0.1 µM dexamethasone, 50 µg/mL L-ascorbic acid 2-phosphate,
100 µg/mL sodium pyruvate (Sigma-Aldrich, St. Louis, MO, USA), 40 µg/mL proline
(Sigma-Aldrich, St. Louis, MO, USA), 10 ng/mL Transforming Growth Factor Beta 2 (TGF-
β2, Invitrogen), and 50 mg/mL ITS+ premix (6.25 µg/mL insulin, 6.25 µg/mL transferrin,
6.25 ng/mL selenius acid, 1.25 mg/mL bovine serum albumin, and 5.35 mg/mL linoleic
acid; Sigma-Aldrich, St. Louis, MO, USA). These cells were cultured at 37 ◦C in 5% CO2
atmosphere for 14 days, and the medium was replaced every two days.

To induce adipogenic differentiation, rMSCs (passages P2) were seeded at 1× 104 cells/cm2

on tissue culture plastic plates and cultured in an adipogenic medium. The adipogenic
medium consisted of LG-DMEM supplemented with 10% FBS, 1% PSA, 10 mg/mL insulin
(Sigma-Aldrich, USA), 0.2 mM indomethacin (Sigma-Aldrich, USA), 1 mM Dex, 0.5 mM
3-isobutyl-1-methylxanthine (IBMX, Sigma-Aldrich, USA). These cells were cultured at
37 °C in 5% CO2 atmosphere for 14 days, and the medium was replaced every two days.
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2.3. rMSC Characteristic Analysis by Flow Cytometry (FC)

The immunophenotypic analysis of rMSCs was carried out using direct staining
protocols with conjugated monoclonal antibodies using a flow cytometry method. The
isolated cells of passage three were characterized with respect to the expression of surface
antigens. The expression of the following four surface antigens: CD45 (BD Biosciences,
San Jose, CA, USA), CD29 (BD Biosciences, San Jose, CA, USA), CD44 (BD Biosciences,
San Jose, CA, USA), and CD90 (BD Biosciences, San Jose, CA, USA) were characterized
confirmed by LSR II flow cytometer with 488 nm laser option (BD Biosciences, San Jose,
CA, USA). The data were analyzed with the FlowJo software (Treestar, Ashland, OR, USA).
The forward and side scatter (FSC/SSC) profiles were utilized to distinguish between the
signals of the cell population and to gate out debris or dead cells.

2.4. Synthesis of Tri-Copolymer Scaffolds

The fabrication of gelatin-chondroitin-hyaluronan tri-copolymer scaffolds was per-
formed according to Chang et al. [4], following the percentage dry weight of each compo-
nent of hyaline cartilage. Briefly, 0.5 gm gelatin powder (Sigma-Aldrich, St. Louis, MO,
USA), 5 mg sodium hyaluronate (HA) powder (Sigma-Aldrich, St. Louis, MO, USA), and
0.1 gm chondroitin-6-sulfate (C6S) powder (Sigma-Aldrich, St. Louis, MO, USA) were
mixed within 7.5 mL double-distilled water and cross-linked for 2–3 min at room tempera-
ture by using 1% 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC, Sigma-Aldrich,
St. Louis, MO, USA) at pH 5–6. The complex was injected into 48-well culture plates,
frozen under −20 ◦C for 1 h, transferred to −80 ◦C for 1 h, and then lyophilized for 72 h
by freeze-drying technique. The dried scaffold was re-cross linked for 48 h at room tem-
perature by using 0.2% EDC, sterilized with 75% alcohol, then lyophilized for 72 h. A
tri-copolymer scaffold about 5 mm in diameter and 5 mm in height was produced for the
following experiments.

2.5. Measurement of Tri-Copolymer Scaffolds Cross-Linking Degree

In order to estimate the degree cross-linking in tri-copolymer scaffolds, the TNBS
assay was applied by measuring the concentration of residual amine groups. The free
amino group contents of tri-copolymer scaffolds were determined by ultraviolet-visible
spectroscopy (UV/Vis, SpectraMax M5, Molecular Devices, Silicon Valley, CA, USA) after
TNBS (Sigma-Aldrich, St. Louis, MO, USA) interaction [27,28]. Briefly, the non-cross
linked and cross-linked tri-copolymer scaffolds were separately dissolved in 0.1 M sodium
bicarbonate solution (pH 8.5) at a concentration of 200 µg/mL during different time
periods. After incubation, 0.25 mL of the 0.01% (v/v) TNBS/sodium bicarbonate solution
was added to 0.5 mL sample solution followed by reacting at 37 ◦C for 2 h. About 0.25 mL
of 10% sodium dodecyl sulfate (SDS, Sigma-Aldrich, St. Louis, MO, USA) solution and
0.125 mL of 1 N hydrochloric acid (HCl, Sigma-Aldrich, St. Louis, MO, USA) solution were
added to each sample, and the absorbance was measured at a wavelength of 345 nm. The
measurement of degradation was performed by detecting the TNBS-labeled amino groups
richly present in gelatin. In this study, L-lysine was used as the standard.

2.6. Self-Designed Bioreactor System

Bioreactor design and operation were described previously [29–32] and were carried
out using the closed-loop bioreactor system. Briefly, the bioreactor system could separate
into the cell culture tank and culture medium tank. The cell culture tank was composed of a
50 mL centrifuge tube (sterile) and a glass casing pipe (for mass transportation). The culture
medium tank is composed of a 500 mL glass bottle and a GL45 plastic cap. The GL45 plastic
cap was comprised of four stainless ports for culture medium transportation and gas
perfusion. All consumables of this system were sterilizable via 121 ◦C autoclaving. The
bioreactor system was located inside an incubator with high humidity in the atmosphere
(37 ◦C, 5% CO2). The flow rate was set at 1 mL/min via a peristaltic pump (Longer,
Baoding, China), which provided continuous culture medium replenishment.
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2.7. Cell Seeding and Culture in the Self-Designed Bioreactor System

rMSCs were suspended in medium and then seeded into scaffolds at a density of
1 × 107 cells/mL. The tri-copolymer scaffold/rMSCs constructs were placed in a culture
plate for 24 h for cell adhesion, then either cultured in static condition for seven days or
cultured in the self-designed bioreactor system up to 21 days. After 24 h for cell adhesion,
all the constructs were cultured with chondrogenic medium. The chondrogenic medium
contained LG-DMEM, 10% FBS, 1x ITS liquid media supplement (Sigma-Aldrich, St. Louis,
MO, USA), 50 µg/mL ascorbic acid (Sigma-Aldrich, St. Louis, MO, USA), 40 µg/mL
proline (Sigma-Aldrich, St. Louis, MO, USA), 100 µg/mL sodium pyruvate (Sigma-Aldrich,
St. Louis, MO, USA), and 0.1 µM or 1.0 µM of KGN (Merck, Darmstadt, Germany). At
each time period, 5 mL of the medium were sampled for GAGs quantification (n = 3) via
dimethylmethylene blue (DMMB, Sigma-Aldrich, St. Louis, MO, USA) assay.

2.8. Scanning Electron Microscopy (SEM)

The scaffold and MSC morphology inside tri-copolymer scaffolds was observed by
scanning electron microscopy (SEM) (TM 3000, Hitachi, Tokyo, Japan). Briefly, cells in
scaffolds were fixed with 4% para-formaldehyde (PFA, Affymetrix, Santa Clara, CA, USA)
for 2 h and 2% osmium tetroxide (OsO4, Sigma-Aldrich, St. Louis, MO, USA) solution for
1 h. All the samples were dehydrated in a graded ethanol solution (50%, 75%, 85%, and 95%,
each for 5 min, and 100% three times for 10 min) before applying the critical-point drying
(CPD) method, and were sputter-coated with gold to a thickness film before observation.

2.9. MSCs Condensation Examination in 2D and 3D Culture

For condensation examination in 2D, the alcian blue staining method was used. Briefly,
adherent cells were fixed with 4% para-formaldehyde for 30 min, mounted with 3% acetic
acid at room temperature for 10 min, and washed with PBS. Then cells were stained
with alcian blue solution for 30 min to react with the sulfate groups of GAGs. For 3D
examination, the live/dead staining method was used. After a seven day incubation,
constructs were stained with 4 µM calcein AM (Life Technologies, Grand Island, NY, USA)
and 4 µM of propidium iodide (PI, Life Technologies, Grand Island, NY, USA) for 30 min.
Live cells were presented in green fluorescence by calcein AM (ex/em ~495 nm/~515 nm),
and dead cells were shown in red by PI (ex/em ~540 nm/~615 nm). The cell survival rate
was observed by a confocal microscope (LSM 780, Zeiss, Oberkochen, Germany).

2.10. Quantitative Real-Time PCR (Q-PCR)

At different time periods, total RNA was extracted from the constructs using a Total
RNA Miniprep Purification Kit (GeneMark, Taichung, Taiwan). The total RNA was reverse-
transcribed into complementary DNA (cDNA) by using a First Strand cDNA Synthesis
kit (Thermo Scientific, Waltham, MA USA) according to the manufacturer’s protocol. The
housekeeping gene was β-actin (NM_031144), and the primer sequences are presented in
Table 1. Real-time PCR reactions were performed and monitored using the OmicsGreen
qPCR Master Mix (Omics, New Taipei, Taiwan) and the ABI PRISM 7500 Sequence Detec-
tion System (Life Technologies, Grand Island, NY, USA). Briefly, 5 µL of 5× OmicsGreen
qPCR Master Mix, 10 µL of primers (including forward and reverse primers), and 10 µL
of cDNA templates were mixed in a final volume of 25 µL for a single reaction. The PCR
primers were listed in Table 1. The relative quantitation value data of gene expression
was calculated using the expression of 2−∆∆Ct. For all the quantitative real time PCR
(Q-PCR) experiments, the values are expressed as relative fold difference in comparison to
expression by monolayer cells cultured for one day after seeding.
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Table 1. Primers sequences for Q-PCR.

Genes Primers Sequences Reference

Acan
(NM_022190)

F-GGCCTTCCCTCTGGATTTAG
[26,33]R-CCGCACTACTGTCCAAC

Col2a1
(NM_012929)

F-CCCCTGCAGTACATGCGG
[33]R-CTCGACGTCATGCTGTCTCAAG

Sox9
(XM_003750950.1)

F-CTGAAGGGCTACGACTGGAC
[26,33]R-TACTGGTCTGCCAGCTTCCT

TIMP-1
(NM_053819)

F-TTTCCGTTCCTTAAACGGCC
[33]R-GATTCGACGCTGTGGGAAAT

β-Actin
(NM_031144)

F-GTAGCCATCCAGGCTGTGTT
[34]R-CCCTCATAGATGGGCAGAGT

2.11. Hematoxylin/Eosin and Immunohistochemical (IHC) Staining

At the end of the cultivation (days seven, 14, and 21), the constructs were removed
at each time-point for histological examination. Hematoxylin and eosin staining were
carried out to investigate the morphology of the tri-copolymer scaffold/rMSCs constructs,
and immunohistochemical observation was made for the expression of type II collagen
and aggrecan. Briefly, paraffin-embedded tissue blocks were cut into 5 µm thickness for
staining. After deparaffinization and rehydration processes, endogenous peroxidases were
blocked by 0.1% hydrogen peroxide (Sigma-Aldrich, St. Louis, MO, USA) in PBS solution
for 10 min. For the retrieval process, nonspecific background staining was blocked by
20 µg/mL proteinase K (Sigma-Aldrich, St. Louis, MO, USA) solution and incubated 20 min
at 37 ◦C in a humidified chamber. Primary antibodies, rabbit anti-type II collagen (Abcam,
Cambridge, MA, USA) and rabbit anti-aggrecan (GeneTex, Hsinchu, Taiwan), were added
with appropriate dilution on the tissue sections and incubated at 4 ◦C overnight. After
incubation, rinse tissue sections and then incubate with SuperPicture™ Polymer Detection
Kit (Life Technologies, Grand Island, NY, USA) for 10 min at room temperature. Finally, the
tissue sections were revealed by 3, 3′-diaminobenzidine (DAB, Sigma-Aldrich, St. Louis,
MO, USA) substrate solution. For all the tissue section staining protocols, hematoxylin was
used as a counterstain on the slides.

2.12. Statistics Analysis

All experiments were conducted at least in triplicate, and all the data was presented
as the mean±standard deviation (SD). Statistical analysis was performed for all the quanti-
tative results using one-way ANOVA for comparing means from two independent sample
groups, and p-values less than 0.05 were considered statistically significant.

3. Results
3.1. Characteristics of Tri-Copolymer Scaffold

Tri-copolymer scaffold was imaged by SEM after cross-linking and lyophilization.
SEM image showed the synthesized scaffold had a mean pore size of 81.85 ± 13.8 µm
(Figure 1A), which would further increase after rehydration in medium and highly intercon-
nected porous structure (Figure 1B), which allowed better oxygen and nutrient distribution
through the scaffold. Supplementary Figure S1A contains an illustration of the cell seeding
method, and SEM imaging performed thereafter. In brief, the cells were seeded at the
center of the tri-copolymer scaffolds by pipette at a density of 5 × 105 viable cells/scaffold.
The SEM data demonstrated the pore size was uneven, it had large porous structures (some
over 150 µm) and small interconnected pores (average of 20 to 30 µm), and cells were
randomly scattered across the tri-copolymer scaffold through the interconnected pores
(Supplementary Figure S1B). The porous structure not only provides passage for oxygen
and nutrient transportation but also provides space as niches for cells (Figure 1C). The SEM
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data revealed that cells were random and scattered distributed across the tri-copolymer
scaffold via the interconnected pores (Supplementary Figure S1C).
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transportation; (C) the yellow arrow recealed that cells distributed homogeneously inside the scaffolds; (D) the TNBS assay
revealed that the estimated degree of cross-linking was 42.2%; and (E) the average pore size of tri-copolymer scaffolds and
interconnected porous structure inclusive were around 20 to 30 µm.

The degree of cross-linking of the tri-copolymer was estimated by the trinitroben-
zene sulfonate (TNBS) assay. The optical density (OD) value of the cross-linked exper-
imental group was 0.275 ± 0.009, while the OD value of the non-cross-linked group
was 0.476 ± 0.021. Based on the OD, the degree of cross-linking was found to be 42.2%
(Figure 1D). The cross-linking of pure gelatin and EDC cross-linked tri-copolymer scaffold
was further assessed by Fourier transform infrared (FT-IR) spectroscopy (Supplemen-
tary Figure S2). The representative transmittance peaks, generated after carboxyl and
amine group cross-linking, amide I, II, III bands (1650, 1530, and 1450 cm−1), ester band
(1100 cm−1) which was generated after hydroxyl and carboxyl group were cross-linked,
and the characteristic chondroitin OSO3 group (1060 cm−1) was observed.

The synthesized tri-copolymer scaffold had a porosity of 91.4% as determined by the
mercury porosimetry method. The average pore size of tri-copolymer scaffolds and the
interconnected porous structure was around 20 to 30 µm (Figure 1E). The highly porous
structure could provide an environment for cell growth and differentiation.

3.2. Isolation and Characterization of Rat MSCs

Rat mesenchymal stem cells (rMSCs) were isolated from eight-week-old Wistar rats
and propagated in vitro. The morphology of undifferentiated rMSCs was spindle-shaped
(Figure 2A), and we chose the cells between passage two and four for this study. The
expression of specific cell surface markers CD29, CD44, CD90, and the hematopoietic
marker CD45 were analyzed by flow cytometry (Figure 2B–F). Fluorescent cell screening of
undifferentiated rMSCs (Figure 2B) demonstrated that the cells were negative for CD45 ex-
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pression (Figure 2C); while over 98% of cells were positive for CD29 expression (Figure 2D)
and CD90 (Figure 2F). Since CD44 is a receptor for hyaluronan, chondroitin sulfate, and
proteoglycans [7] that facilitates homing of rMSCs to tri-copolymer scaffolds, expression of
CD44 on rMSCs was assessed. rMSCs used in this study were positive for CD44 expression
(over 90%, Figure 2E).
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Figure 2. Characterization and differential abilities of rat mesenchymal stem cells (MSCs). (A) the
image showed the morphology of rat MSCs (rMSCs) and displayed spindle-shaped; (B) Gate for live
cells of rMSCs at passage three at FSC/SSC plot; (C) there was no expression of the hematopoietic
markers CD45; Expression of the MSC markers (D) CD29, (E) CD44, and (F) CD90. Isotype controls
were also included in each experiment to ensure the results (gray histogram). (G–I) showed the
differential capability: (G) rMSCs differentiated into osteo-like cells in 14 days, and the biological
apatite stained in red; (H) rMSCs under pellet culture treatment differentiated into chondro-like cells
in 21 days, and the glycosaminoglccan stained in red; (I) rMSCs differentiated into adipo-like cells in
14 days, and the lipid droplets stained in red. The F-actin molecules were stained in green, and the
nucleus was stained in blue.

We next studied the differentiation of rMSCs under different conditions (Figure 2G–I).
In Figure 2G, rMSCs were differentiated into osteocyte like cells for seven days. Differentia-
tion was confirmed by staining for biomineralized tissue by xylenol orange (Figure 2G). The
rMSCs could also be differentiated into chondrocyte-like cells in 14 days by pellet culture,
wherein the differentiation was confirmed by staining GAGs by safranin O (Figure 2H),
and into adipocyte-like cells in seven days, wherein the differentiation was confirmed
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by staining the lipid droplets by Nile Red dye (Figure 2I). The filamentous actin (F-actin)
molecules were stained in green, and the nucleus was stained in blue.

3.3. Determining the Optimum Dose of KGN for Chondrogenesis

Condensation is one of the crucial processes during chondrogenesis. In order to deter-
mine the optimum concentration of KGN sufficient for chondrogenesis, we monitored the
morphology, marker gene expression, and secretion of proteoglycans at different concen-
trations of KGN. During this experiment, rMSCs maintained spindle-shaped morphology,
and remained fibroblastic throughout passages two and four used in this study. The cells
remained scattered sparsely after seven days culturing of the control group (Figure 3A).
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Figure 3. Chondrogenic differentiation and cell condensation examination in 2D condition. Alcian blue was stained for
check cell condensation process; (A) the control group remained sparsely scattered after seven-days of cultivation. (B) In
2D culture, the real-time quantitative PCR (Q-PCR) results represented transcript levels related to chondrogenic gene
expressions under 0.1 µM and 1.0 µM kartogen (KGN) supplement after seven days. The housekeeping gene was β-actin,
and the monolayer cells were cultured for one day as a control group. The up-regulation of genes was normalized to
rMSCs cultured for one day. When 1.0 µM KGN was added to MSCs culture for seven days, Acan gene expression was
significantly up-regulated (*** means p < 0.001); Sox9 gene expression was also up-regulated at 1.0 µM KGN group. (C)
0.1 µM KGN promoted condensation on day three (C1), and formed pellet on day seven (C2); and also (D) 1.0 µM KGN
promoted condensation on day three (D1), and formed pellet on day seven (D2).

We tested two concentrations −0.1 µM and 1.0 µM KGN in 2D culture conditions
for seven days and analyzed the expression of marker genes for chondrogenesis by qPCR
(Figure 3B). When compared to the control group, the expression of the Acan gene was
significantly up-regulated in both the KGN treatment groups (p < 0.0001). However, Col2a1
gene expression in KGN treated groups was down-regulated when compared with the
control group (monolayer culture by DMEM with 10% FBS). In addition, Sox9 expression
was slightly up-regulated in the 1.0 µM KGN group.

Staining of secreted proteoglycans by Alcian blue dye revealed that the condensation
phenomenon had taken place after three days of culturing in the presence of 0.1 or 1.0 µM
of KGN (Figure 3(C1,D1)), but there was no significant difference between the groups.
After seven days cultivation, cell pellets could be found with Alcian blue staining both in
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0.1 or 1.0 µM groups (Figure 3(C2,D2)); nevertheless, the cell pellets of the 1.0 µM group
were larger in size (the size distribution was calculated by MetaMorph software). Hence,
1.0 µM KGN was used in subsequent experiments.

3.4. Live/Dead Staining in Static 2D and 3D Culture

We monitored the condensation process during chondrogenesis in static 3D culture
by live/dead staining. Dead cells were found in nodule by propidium iodide (PI) stain-
ing. The rMSCs in the control group were sparsely scattered (Figure 4A), while rMSCs in
tri-copolymer scaffolds condensed into nodules of around 100 µm after 1.0 µM KGN sup-
plementation for 14 days (Figure 4B). Treatment with 1.0 µM KGN promoted condensation
of rMSCs within the scaffold without significant effect on the cellular viability (Figure 4B).
To evaluate the efficacy of KGN, cell proliferation in 2D culture conditions was determined
by a WST-1 assay (Supplementary Figure S3).
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Figure 4. Cell condensation examination in 3D condition. The cell viability of the static condition was tested by staining
with two-color fluorescent dyes, live in green and dead in red. (A) As shown, rMSCs sparsely scattered within the scaffold
in the control group at day 14; (B) 1.0 µM KGN promoted condensation of rMSCs within the scaffold at day 14, and cells
self-aggregated into clusters. The relative mRNA level was determined by Q-PCR, and the data were normalized by the
control group and shown as mean ± standard deviation. The housekeeping gene was β-actin, and the monolayer cells
cultured for one day after seeding acted as the control group. (A1,B1) in green represented the live cells with calcein AM
dye; (A2,B2) in red (PI) indicated dead cells; (A3,B3) were the merge images.

3.5. Cartilage-Related Gene Expression Under 3D Static and Dynamic Culture Conditions

After seven days of static culture on a 3D scaffold with KGN treatment, expression
of chondrogenesis-related genes was examined and compared with those in 2D culture
with the presence of KGN. rMSCs cultured in the 3D scaffold up-regulated Acan, Col2a1
and Sox9 genes expression were compared to cells in 2D culture conditions (Figure 5A).
This indicated that the 3D tri-copolymer scaffold could enhance the chondrogenic effects
of KGN treatment. Further, Col2a1 expression at day 21 was found to be significantly
higher than at day seven in the bioreactor system (Figure 5B). This suggests that the rMSCs
retained the chondrogenic phenotype up to 21 days of culturing. Expression of TIMP-1, a
metallopeptidase inhibitor, was also up-regulated.
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Figure 5. Chondrogenic differentiation in 3D condition. (A) When chondrogenesis markers were examined in tri-copolymer
(static 3D culture), 1.0 µM KGN treatment greatly up-regulated Acan, Col2a1, and Sox9 gene expression when compared
with monolayer cells (2D culture) on day seven. (B) For 3D dynamic perfusion, when 1.0 µM KGN was added to rMSCs and
cultured for 14 days, Acan gene expression was significantly up-regulated (*** means p < 0.001); Sox9 gene expression was
up-regulated during the first 14 days’ culture, while down-regulated in the last week’s period. However, Sox9 expression
was still more obvious when compared with that of 0.1 µM KGN treatment.

For evaluating the difference between the groups with or without KGN, Supplemen-
tary Figure S4 represented the live/dead staining evaluation at different time periods. The
rMSCs of the control group attached on the surface of tri-copolymer scaffolds and were
randomly scattered (Supplementary Figure S4A–C); on the contrary, rMSCs condensed into
nodules or spheres after treating with 1.0 µM KGN supplement (Supplementary Figure S4D
to S4E). As noted above, rMSCs cultured in 3D tri-copolymer scaffolds had significantly
higher chondrogenic gene expression (including Acan, Col2a1, and Sox9) compared to the
monolayer control.

3.6. The Comparison of KGN and TGF-β1

In order to compare the efficacy of KGN with that of TGF-β1, we analyzed the relative
expression of chondrogenic mRNA in rMSCs cultured either in the presence of 10 ng/mL
TGF-β1 or 1.0 µM KGN in 2D conditions (Figure 6). After 21-days culture, Col2a1 gene
expression of the TGF-β1 group was slightly higher than the KGN group; however, Acan
and Sox9 gene expression in the KGN group was significantly up-regulated.

We also examined the expression of cartilage hypertrophy-related genes such as type
I collagen (Col1a1), type X collagen (Col10a1), and Runx2 in cells treated with either KGN
or TGF-β1 (Figure S4A,B). In both treatment groups, the expression of Col1a1 and Runx2
remained unchanged until 21 days of culturing. In the KGN-treated cells, transcripts of
Col10a1 were up-regulated at day 14, and down-regulated at day 21. In the TGF-β1 group,
expression of Col10a1 was marginally higher as compared to that in the KGN group on
day seven.

Results revealed that the cells slightly proliferated in TGF-β1 and KGN groups com-
paring with the control group at day three and day seven; however, there was no significant
difference between TGF-β1 and KGN groups during seven-days of cultivation.
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Figure 6. Relative chondrogenic mRNA examination in 2D condition between TGF-β1 and KGN groups. (A) In 2D culture,
the Q-PCR results represented transcript levels related to chondrogenic gene expressions under 10 ng/mL TGF-β1 and
1.0 µM KGN supplement at day one, day three, and day seven. The relative mRNA level was determined by Q-PCR, and
the data were normalized by the control group and shown as mean±standard deviation. The housekeeping gene was
β-actin, and the monolayer cells were cultured for one day after seeding acted as the control group. (A1) On day one,
Acan and Col2a1 gene expression in the KGN group were significantly lower than TGF-β1 group; Sox9 gene expression in
the KGN group was up-regulated; (A2) at day three, Col2a1 gene expression in the KGN group was significantly lower
than TGF-β1 group; Acan and Sox9 gene expression in KGN group were up-regulated; (A3) at day seven, Col2a1 gene
expression had no difference between the KGN and TGF-β1 group; Acan and Sox9 gene expression in the KGN group were
up-regulated (* means p < 0.05; ** means p < 0.01; *** means p < 0.001). (B) A volcano plot of relative mRNA level at day
seven: the x-axis is the average fold-change ratio of the relative mRNA expression of each gene between TGF-β1 and KGN
groups; the y-axis represents the p-value for each gene which was analyzed between the TGF-β1 and KGN groups. (B1) On
day one, Col2a1 in the KGN group was slightly lower than TGF-β1 group; (B2) at day three, Col2a1 in the KGN group still
expressed at a lower level than the TGF-β1 group; (B3) however, at Day seven, there was no significant difference in Col2a1
gene, and Acan expression and Sox 9 was expressed at a higher level in the KGN group (the black spot means no significant
difference; the red spot means positive significant difference; the green spot means positive significant difference).
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3.7. SEM Images of Scaffold/Cell Hybrids Under Dynamic Perfusion

We then seeded rMSCs on the tri-copolymer scaffold and incubated them in the pres-
ence of 1.0 µM KGN for up to 21 days. The extent of condensation and ECM secretion was
assessed by scanning electron microscopy. The SEM images revealed that individual cells
were attached at the scaffold surface on day one (Figure 7) and underwent condensation to
form clusters while still maintaining the contour and morphology of individual cells on
day seven. At days 14 and 21, the secreted ECM gradually accumulated, and the contour
and morphology of individual cells were progressively lost; however, the size did not
increase (around 100 µm) until day 21 (Figure 7).
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Figure 7. Scanning electron microscopy (SEM) images of scaffold/cells hybrid in the dynamic culture system. While KGN
was added, a condensation phenomenon could be observed in the SEM images. (A) The image showed that the individual
cells (yellow arrow site) were attached at the surface of scaffolds on day one; (B) scattered cells could condense and exist as
clusters on day seven, at this time, the contour and morphology of individual cell were still obvious; at the (C) day 14 or
(D) 21, the secreted extracellular matrix (ECM) gradually accumulated and the contour and morphology of individual cell
progressively lost, but the size did not grow much as culture days expanded to 21 days (around 100 µm).

3.8. Chondrogenesis in 3D Tri-Copolymer Scaffolds and the Self-Designed Bioreactor System

We next monitored secretion of proteoglycans by rMSCs cultured on tri-copolymer in
the presence of KGN by staining with safranin O. In accordance with SEM data, the individ-
ual cells were scattered randomly across the scaffold on day one (Figure 8(A1)). We could
clearly observe proteoglycan secretion within the cell clusters by day 21 (Figure 8(A2)). We
also observed a time-dependent increase in sulfated glycosaminoglycan contents in the
spent medium as measured by DMMB assay (Figure 8(A3)).

3.9. Hematoxylin and Eosin Staining and IHC Examination of the Tri-Copolymer Scaffold/rMSCs
Constructs

In this study, we developed cartilage tissue using engineered constructs combining
rMSCs, KGN, the tri-copolymer, and the self-designed bioreactor system. Supplementary
Figure S6 demonstrated the effectiveness of KGN to the cell clusters. We hypothesized that
KGN might induce condensation of rMSCs into cell spheres, cell nodules, or cell sheets.
These cell spheres, cell nodules, or cell sheets may give rise to scaffold-cell hybrids, which
then develop into lacuna-like structures within the tri-polymer. To test this, we observed
cells in scaffolds cultured in the presence or absence of KGN over 21 days in culture, by
hematoxylin and eosin staining (Figure S7). On day one, rMSCs were observed to be
scattered throughout the scaffolds (Figure 8(B1)). Typical cartilage lacuna-like structures
within cell clusters were seen in the tri-copolymer scaffolds in KGN treated cells by day
seven (Figure 8(B2), blue arrow). By day 21, lacuna-like structures had attained a size of
10–20 µm (Figure 8(B3)).
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Figure 8. The proteoglycan examination and the immunohistochemical staining. (A) The confocal
microscopic examination is stained by safranin O (red) and Hoechst 33342 (blue). Proteoglycans were
observed on cell clusters, which correlated with safranin O results. (A1) The image showed that the
individual cells (nucleus in blue) were inside the scaffold on day one; (A2) the safranin O staining
of cell clusters around 100 µm could be found in the confocal image, and proteoglycan secretion
within the cell cluster was clearly demonstrated after 21-days cultivation; (A3) and the content of
glycosaminoglycans (GAGs) secreted into the cultured medium was measured by dimethylmethylene
blue (DMMB) assay, we found that the GAGs contents were significantly increased with the longer
culture period. (B) Hematoxylin and eosin staining of scaffold/cells hybrid in the self-designed
bioreactor system at different time periods. Condensed cell clusters (blue arrow sites) could be found
at 7 and 14 days (B1,B2); at 21 days, lacunae-like structures were embedding in the scaffold as blue
arrow indicated (B3). The immunohistochemical observation was made for the expression of surface
antigens of type II collagen and aggrecan at days one, seven and 21, and hematoxylin was used as a
counterstain on the slides. (C) Type II collagen is accumulated in the scaffold (brown color), and the
black arrow indicated the active deposition site. As mentioned above, cell clusters could be found at
7 and 14 days (C1,C2); at 21 days, lacunae-like structures were embedding in the scaffold as black
arrow indicated (C3). (D) aggrecan also significantly increased as the culture period increased and
accumulated inside the cell area (the red arrow site). Condensed cell clusters only were slightly
aggrecan accumulation at 7 and 14 days (D1,D2); at 21 days, the accumulated aggrecan was observed
as red arrow indicated (D3).
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For immunohistochemical staining, no area was stained positive for type II collagen
at day 1 (Figure 8(C1)). At day seven, the type II collagen could be found around tri-
copolymer scaffolds and within the cell clusters (Figure 8(C2)). At day 21, the lacuna-like
structure showed active deposition of type II collagen (Figure 8(C3), black arrow). In
contrast, aggrecan staining was mostly concentrated at the scaffold-cell hybrid at day 21 of
culturing (Figure 8D). This suggests that rMSCs and tri-copolymer scaffolds may fuse
together to become functional constructs for cartilage tissue engineering.

4. Discussion

An ideal cartilage tissue-engineered construct required three elements: a reliable and
accessible cell source, the 3D scaffold that is favorable for cell attachment and chondroge-
nesis, and a controlled cultivation system that can transduce chondrogenic signals. Our
SEM data demonstrated that the freeze-drying technique produced pores of varying sizes.
Tri-copolymer scaffolds exist as non-uniform porous structures, including large pores (even
over 150 µm) that provide space for cell attachment and small interconnected ones (average
in 20 to 30 µm) that are essential for cell migration and nutrient transportation.

Since cartilage tissue can be engineered from a variety of cell sources, the choice of
cell sources for cartilage tissue engineering is a crucial but challenging issue [35,36]. As
cells derived from different sources may have varying differentiation potential, which may
affect chondrogenic outcomes, at present, MSCs are one of the preferred cell sources for
subsequent clinical use [37]. While using MSCs as a source, chondrogenesis is the critical
stage in cartilage tissue engineering. Previously, we have demonstrated that a tri-copolymer
scaffold supports the chondrocyte phenotype [4]. In this study, we hypothesized that tri-
copolymer scaffolds containing hyaluronan and chondroitin-6-sulfate might provide a
niche for random distribution of MSCs in 3D culture conditions, thereby supporting their
chondrogenic differentiation. In this study, we provide evidence for the use of small
molecules to regulate chondrogenesis in a self-designed bioreactor system.

Due to porous scaffolds facilitate better perfusion of nutrients, self-designed biore-
actors with porous scaffolds provide a uniform supply of nutrients and oxygen. The
closed, sealed design of the bioreactor prevents contamination of the culture, while its
low cost makes it affordable for those who need such kind of cell-based treatment [29–32].
Besides, as an inexpensive heterocyclic small compound, KGN, can be easily used in the
bioreactor system. Combining the use of the MSC-loaded tri-copolymer constructs with
the self-designed bioreactor system, we examined the expression of chondrogenesis-related
genes at different time intervals during differentiation. A previous study has indicated that
long time ex vivo culture usually leads to de-differentiation of the constructs [35]. Here,
we found that the hypertrophic related genes were not up-regulated even at day 21 of
the differentiation protocol. Thus, the self-designed bioreactor system indeed enhances
chondrogenesis of MSCs.

Chondrogenesis is the earliest stage of skeletal development and includes recruitment
and migration of progenitors, condensation of progenitor cells, followed by chondrogenic
cell differentiation/maturation, and cartilage/bone formation during endochondral os-
sification [12,38,39]. The extracellular matrix macromolecule hyaluronan can regulate
coincident condensation with the onset by the expression of its own specific binding sites
on the cell surface [40]. In addition, the association between hyaluronan and the cell
surface binding receptors can affect cell behavior, especially cell aggregation [40,41]. The
quality of cartilage tissue-engineered constructs, which are composites of cells and bio-
materials, depends partially on the chemical composition of materials and on whether
biomaterials can maintain the chondrocytic phenotype [42,43]. In this study, we utilized
tri-copolymer scaffolds to enhance the process of chondrogenesis and formed an advanced
cartilaginous construct. Hyaluronan, which is present in ECM during embryonic cartilage
development, regulates cell function and helps MSC condensation. Both chondroitin and
hyaluronan provide binding sites for the CD44 receptor on MSCs, to facilitate cell adhe-
sion and regulate cell functions [9,44]. Further, scaffolds with the addition of chondroitin
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sulfate or hyaluronan can improve proteoglycan and type II collagen synthesis [42,45].
According to Figure 5A, KGN-induced rMSCs cultured in tri-copolymer scaffolds showed
Acan, Col2a1, and Sox9 up-regulation. And the hematoxylin and eosin staining images of
MSC-based chondrogenic constructs represented lacunae-like structure formation after
21-days dynamic cultivation. The data certified that scaffolds composed of key elements of
the cartilage ECM might facilitate chondrogenesis.

Recently, small molecules have emerged as candidates to regulate MSC behavior
instead of growth factors. These small molecules can selectively skew the behavior of
stem cells during differentiation and are relatively inexpensive, making them an attractive
option for clinical use. In this study, we proposed the use of KGN, which selectively
up-regulates the expression of Acan, Col2a1, Sox9, and TIMP-1, for chondrogenic differen-
tiation [46]. Meanwhile, we noticed that KGN modulated Sox9 and Acan mRNA levels
were up-regulated during seven to 21-days of cultivation under 2D conditions; however,
Col2a1 gene expression was down-regulated in the KGN treated groups. Since we knew
that Col2a1 was a specific marker of late chondrogenesis, the related mRNA levels of Col2a1
at early chondrogenesis might show a slight declining trend [47]. In contrast, it would
present a sharply rising trend at chondrogenesis for maturation [13,47].

Damaged or eroded hyaline cartilage leads to progressive debilitation, affecting the
quality of life across all ages in both sexes [48]. As mentioned above, mature hyaline
cartilage has restricted self-repair potential due to absent innervation, insufficient vascular
supply, and low mitotic capacity of chondrocytes [12,48]. Relative minor defects can be
healed by chondrocyte migration, while large ones can be healed by inferior fibrocartilage
formation. During chondrogenesis of MSCs, growth factors are the most important extrinsic
factors in the process. Among all, transforming growth factor-beta (TGF-β) superfamily are
probably the most extensively investigated [48]. However, the induction of chondrogenesis
in MSCs with TGF-β leads to hypertrophic phenotype [49,50]. At this stage, chondrogenic
cells exit the proliferative phase and express hypertrophic chondrocyte markers, such as
Runx2 and Col10a1. Runx2 is a bone-associated transcription factor and positively regulates
chondrocyte maturation towards the hypertrophic phenotype prior to ossification [38].
Besides their induction of the hypertrophic phenotype, growth factors are too expensive
for large-scale use (for example, in a bioreactor system) and possess a risk of infection
when applied to patients. Thus, there is a need for other inexpensive and efficacious
chondrogenic signals.

To validate the chondrogenesis process in the self-designed bioreactor system, we
examined the cell morphology and gene expression of the MSC-based chondrogenic con-
structs. We found out that, with the addition of KGN, a pellet cell mass was formed.
Although the dimension of the cell mass remained constant, the cell mass showed an in-
creasing tendency for GAG deposition. This result was further confirmed by IHC staining,
while the aggrecan-positive area was concentrated on the cells themselves. In addition
to the condensed cell mass, we also demonstrated the lacuna-like structure in the histo-
logical study, which is seldom formed in artificial constructs. Based on our histological
observations, we found that the differentiated cells, instead of wholly synthesizing their
own ECM, formed a lacuna-like structure on the scaffold materials. This result presents the
clear potential of KGN usage in MSC-based cartilage tissue engineering.

Overall, in this study, the self-designed bioreactor system was used as a model for
MSC-based cartilage tissue engineering (Figure 9). Since articular cartilage has very limited
capability for self-healing, it is critical to develop new strategies for clinical management of
articular cartilage lesions. For this purpose, we provide a one-step regenerative process for
personalized medicine practice. In this model, MSCs were isolated from the bone marrow
cavity, seeded on tri-copolymer scaffolds, and KGN was added to enhance chondrogenesis.
The scaffolds are placed in the bioreactor. After 21 days of incubation, lacuna-like structures
are formed in the MSC-based chondrogenic constructs. We propose that, in the future,
the MSC-based chondrogenic constructs will be considered as a potential option to treat
articular cartilage lesions.
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Figure 9. A model for MSC-based cartilage tissue engineering. In this model, it is provided with a one-step regenerative
process for personalized medicine practice. For cartilage tissue engineering, MSCs are isolated from the bone marrow
cavity, tri-copolymer scaffolds are performed, and KGN is added to regulate chondrogenesis. The self-designed bioreactor
system can avoid contamination, and lacunae-like structures are formed and preserved inside the MSC-based chondrogenic
constructs. In the future, these MSC-based chondrogenic constructs would be ready for surgical implantation. (The
illustrative drawing was created by Yu-Tung Chen.).

5. Conclusions

Based on the current results, the combination of tri-copolymer/MSCs with KGN
successfully induced the chondrogenic process as assessed at cellular and molecular levels.
Cartilage tissue engineering may be more feasible when small molecules are used instead
of growth factors to drive chondrogenic differentiation in the bioreactors. We conclude
that this research presents small molecules as a viable and potent alternative to growth
factors and paves the way for them to be used in combination with tissue constructs for the
management of cartilage tissue injury.

6. Patents

Parts of the results are patents resulting from the work reported in this manuscript:
US 10066208B2, TW I522468.
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