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Abstract: Wnt/β-catenin signaling controls many biological processes for the generation and sus-
tainability of proper tissue size, organization and function during development and homeostasis.
Consequently, mutations in the Wnt pathway components and modulators cause diseases, including
genetic disorders and cancers. Targeted treatment of pathway-associated diseases entails detailed
understanding of the regulatory mechanisms that fine-tune Wnt signaling. Here, we identify the
neurotrophin receptor-associated death domain (Nradd), a homolog of p75 neurotrophin receptor
(p75NTR), as a negative regulator of Wnt/β-catenin signaling in zebrafish embryos and in mammalian
cells. Nradd significantly suppresses Wnt8-mediated patterning of the mesoderm and neuroectoderm
during zebrafish gastrulation. Nradd is localized at the plasma membrane, physically interacts with
the Wnt receptor complex and enhances apoptosis in cooperation with Wnt/β-catenin signaling. Our
functional analyses indicate that the N-glycosylated N-terminus and the death domain-containing
C-terminus regions are necessary for both the inhibition of Wnt signaling and apoptosis. Finally,
Nradd can induce apoptosis in mammalian cells. Thus, Nradd regulates cell death as a modifier of
Wnt/β-catenin signaling during development.

Keywords: Nradd; p75 neurotrophin receptor; Wnt/β-catenin signaling; apoptosis; death receptor

1. Introduction

Wnt/β-catenin signaling is an evolutionarily conserved signaling pathway that con-
trols a plethora of cellular processes including proliferation, migration, apoptosis, cell fate
determination and tissue patterning during development and adult homeostasis [1–3].
Due to these essential roles, misregulation of the signaling pathway has been associated
with various human diseases, including cancer [1,4–7]. Pathway misregulation in cancer is
triggered via either mutational alterations, such as gain-of-function mutations in β-catenin
and Tcf transcription factors and loss-of-function mutations in the β-catenin destruction
complex components, or nonmutational alterations such as silencing of extracellular Wnt
antagonists through epigenetic mechanisms [8–11].

Wnt/β-catenin signaling is thought to operate with its core components as follows:
If there exist no active Wnt ligands in the environment, the so-called Wnt-off state, the
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β-catenin destruction complex containing Axin, adenomatous polyposis coli (Apc), glyco-
gen synthase kinase 3 (Gsk3) and casein kinase 1 (Ck1) bind to β-catenin and leads to its
proteasomal degradation after phosphorylation [12,13]. The cell switches to the Wnt-on
state when the Wnt ligand triggers the formation of a complex between itself, the receptor
Frizzled (Fz) and the co-receptor low-density lipoprotein receptor-related protein (Lrp)
5/6 at the plasma membrane. This interaction appears to recruit cytoplasmic proteins Di-
sheveled and Axin to the (co)receptors at the membrane. Further receptor clustering in turn
causes Lrp6 phosphorylation and subsequent internalization of the receptor complex by
endocytosis [14,15]. The removal of Axin from the destruction complex, direct inhibition of
Gsk3 kinase activity by the phosphorylated cytoplasmic portion of Lrp6 and sequestration
of Gsk3 from the cytoplasm into multivesicular bodies are collectively assumed to prevent
the degradation of β-catenin [16–18]. β-catenin then enters the nucleus and interacts with
the transcription factors of the T cell factor (Tcf)/lymphoid enhancer factor (Lef) family to
regulate the expression of its target genes [19].

Due to the deleterious consequences of aberrant signal transduction, it is not surprising
that Wnt/β-catenin signaling is controlled by a large number of positive and negative
regulators. Tight regulation of the pathway at the plasma membrane is achieved by a
complex network of extracellular or membrane-bound modulators [14,20,21]. Many of
these pathway modulators, including Axin2, Dkk1, Waif1/5T4 and Lypd6, are also Wnt
targets and act in feedback regulation, a key feature of Wnt pathway regulation [22–26].
Since these modulators are usually not required for vital cellular activities and are highly
specialized for the signaling pathway, they constitute a worthwhile option for targeted
therapeutic interventions that can dampen abnormal Wnt pathway activity.

Here, we identify the neurotrophin receptor-associated death domain (nradd) gene, en-
coding for a single-pass transmembrane protein with a C-terminal death domain, as a
transcriptional target of Wnt/β-catenin signaling during the embryonic development of
zebrafish. Nradd exhibits a high degree of homology with the p75 neurotrophin receptor
(p75NTR), which has been characterized as a receptor for members of the neurotrophin fam-
ily [27,28]. The neurotrophins are a family of growth factors that are essential for growth,
differentiation, survival, apoptosis and regeneration of the neurons in vertebrates [29,30].
There are four types of neurotrophins in mammals: nerve growth factor (NGF), brain-
derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin 4 (NT-4) [31].
Neurotrophins bind to and signal through two main types of receptors: tropomyosin re-
ceptor kinase (Trk) family receptors, also known as neurotrophic tyrosine kinase receptors,
and p75NTR, a member of the tumor necrosis factor receptor superfamily (TNFRSF) [32–34].
Being produced as larger precursors called proneurotrophins that turn into mature forms
via proteolytic cleavage, neurotrophins exhibit distinct binding affinities for their recep-
tors [29,35]. Proneurotrophins, for example, show high affinity to a complex composed of
p75NTR and sortilin [36,37].

Neurotrophins induce neuronal survival or cell death by activating Trk receptors and
p75NTR, respectively [38]. The binding of mature neurotrophins with Trk results in the
activation of phosphoinositide 3-kinase (PI3K), phospholipase Cγ1 (PLCγ1) and mitogen-
activated protein kinase (MAPK) pathways and promotes cell growth, differentiation and
survival [39]. On the other hand, mature neurotrophins that bind to p75NTR can enhance
neurotrophin binding to Trk receptors and Trk signal transduction through protein kinase B
(PKB or AKT) and MAPKs, depending on the circumstances. They can either enhance sur-
vival by the nuclear factor-κB (NF-κB) pathway or antagonize the action of Trk through the
activation of the JUN N-terminal kinase (JNK) and Rhoa pathways [39–44]. This ultimately
generates a paradoxical paradigm that harbors a matter of life and death depending on Trk
receptor and p75NTR signaling [45]. Mouse NRADD has been found to induce apoptosis
in neuroblastoma cell lines through the activation of caspase 8 and independently of the
mitochondrial pathway, or so-called intrinsic apoptosis [27]. However, little is known
about its mechanism of action and potential interaction with a signaling pathway.
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We describe Nradd as a feedback inhibitor of Wnt/β-catenin signaling during ze-
brafish development and in mammalian cells. Nradd localizes to the plasma membrane
and interacts with the Fz8 and Lrp6 receptors. Our functional analyses show that Nradd
acts together with Wnt/β-catenin signaling to promote apoptosis during development and
that both the death domain and N-glycosylated N-terminus are essential for its apoptotic
function. Finally, Nradd can also enhance apoptosis in human embryonic kidney and
neuroblastoma cell lines. Overall, Nradd acts as a negative modulator of Wnt/β-catenin
signaling and a key player in the regulation of apoptosis during development.

2. Materials and Methods
2.1. Transgenic Fish Lines

Transgenic zebrafish (Danio rerio) lines Tg(hsp70l:wnt8a-GFP)w34 and Tg(hsp70l:Mmu.Axin1-
YFP)w35 were outcrossed to wild type (wt) AB zebrafish [22,46]. The embryos were heat
shocked and identified as described previously [22]. The Tg(7XTcf-Xla.Siam:nlsmCherry)ia

transgenic line was used as a reporter of Wnt/β-catenin signaling, outcrossed to wt ze-
brafish and embryos were sorted as described previously [47]. Animal experiments were
approved by the Animal Experiments Local Ethics Committee of Izmir International
Biomedicine and Genome Institute (IBG-AELEC) on 26.07.2017 with the protocol num-
ber 12/2017.

2.2. Cloning

RNA was isolated from whole embryos at 24 h post-fertilization (hpf) using a Direct-
Zol RNA kit (Zymo Research, Irvine, CA, USA) and cDNA was synthesized with an
iScript reverse transcription kit (Biorad, Hercules, CA, USA) using a 1:1 mixture of
oligo (dT) and random primers. iScript reverse transcriptase (RT) was replaced with
water for (-RT) controls. The following products were amplified with the correspond-
ing primer pairs using 1 µL of cDNA. Zebrafish wt Nradd-EGFP: forward primer 5′-
AAAAAGGATCCCCACCATGAAAGGAGCAACTGAAGC-3′ and reverse primer 5′-AAA
AAGAATTCGACCACTGATACTCCTTGCG-3′; Nradd death domain deleted (DDD)-
EGFP: forward primer 5′-AAAAAGGATCCCCACCATGAAAGGAGCAACTGAAGC-3′

and reverse primer 5′-AAAGAATTCATCCTGTTTGCTGTCCCGTTTA-3′. Both PCR prod-
ucts were digested with BamHI and EcoRI and ligated into a pCS2P+ vector that has
EGFP. The Nradd DDD construct was generated through the deletion of a 95 amino
acid region between the 318th and 413th amino acids at the C-terminal region. Nradd
glycosylation site deleted (GSD)-EGFP was generated by site-directed mutagenesis at
wt Nradd-GFP using overlap extension PCR. The Nradd GSD construct was generated
through the deletion of a 101 amino acid region between the 22nd and 123rd amino
acids at the N-terminal region. The first round of PCR was conducted with the two
primer pairs forward1 5′-AAAAAGGATCCCCACCATGAAAGGAGCAACTGAAGC-3′,
reverse1 5′-ACACTCCCCATCCTGGCCCACAGCCAAAGGCCATCTT-3′ and forward2 5′-
AAGATGGCCTTTGGCTGTGGGCCAGGATGGGGAGTGT-3′, reverse2 5′-AAAAAGAAT
TCGACCACTGATACTCCTTGCG-3′. The second round of PCR was performed by using
the purified PCR product of the first round as the template and the primers forward1 and
reverse2. The purified PCR product of the second round of PCR was again digested with
BamHI and EcoRI and ligated into a pCS2P+ vector that has EGFP. For Fz8a-EGFP, zebrafish
Fz8a was amplified with the forward primer 5′-AGAATTCAACCACCATGGAGTGCTACCT-
3′ and the reverse primer 5′- GGATCCTCAGACTTGGGACAAAGGC-3′. The PCR product
was digested with EcoRI and BamHI and ligated into a pCS2P+ vector that has EGFP. For
Fz8a-mRuby3, mRuby was amplified with the forward primer 5′-AAGGCGCGCCTATGGT
GTCTAAGG-3′ and the reverse primer 5′- AATCTAGATTACTTGTACAGCTCGTCCATGC
CAC-3′ from the mRuby3 plasmid. The PCR product was digested with AscI and XbaI
and ligated into an Fzd8a-EGFP plasmid after excising EGFP with the same restric-
tion enzymes. For Nradd-mRuby3, mRuby3 was amplified with the forward primer 5′-
AAATCTAGAATGGTGTCTAAGGGCGAAGA-3′ and the reverse primer 5′- AAAGATATC
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TTACTTGTACAGCTCGTCCAT-3′ from the mRuby3 plasmid. The PCR product was di-
gested with XbaI and BsaBI ligated into a wt Nradd-EFGP plasmid after excising EGFP with
the same restriction enzymes. Successful cloning was verified by sequencing, restriction
digestion and agarose gel electrophoresis.

2.3. Capped Sense mRNA Synthesis, Microinjection and Whole-Mount in situ
Hybridization (WMISH)

Capped sense RNAs of GFP, wt Nradd, Nradd-GFP, Nradd DDD-EGFP and Nradd
GSD-EGFP were synthesized using an mMessage mMachine Kit (Thermo Fisher Scientific,
Waltham, MA, USA). mRNAs were injected into 1-cell zebrafish embryos as 250 pg for
nradd and 20 pg for Wnt8. Embryos were fixed at indicated stages (30% epiboly, 50% epiboly,
60% epiboly, 80% epiboly, 100% epiboly, 3-somite, 5-somite, 10-somite or 24 hpf) in 4%
paraformaldehyde (PFA) overnight. WMISH was performed with nradd, mCherry, goosecoid,
otx2, hoxb1b, foxg1a, her5 and krox20 antisense RNA probes as described previously [48].

2.4. Quantitative PCR (qPCR)

cDNA was synthesized from RNA using a ProtoScript II First Strand cDNA Synthesis
Kit (New England BioLabs, Ipswich, MA, USA) according to the manufacturer’s instruc-
tions. Zebrafish rpl13a or β-actin were used as the reference genes for normalization to de-
termine the relative gene expression levels. qPCR was performed in triplicate using GoTaq
qPCR Master Mix (Promega, Madison, WI, USA) in an Applied Biosystems 7500 Fast Real
Time PCR machine (Foster City, CA, USA). The data were analyzed using GraphPad Prism
8 software (Graphpad Software Inc., San Diego, CA, USA). The values are mean± standard
deviation (SD) of three samples. The following primers were used: mCherry forward 5′-
GAACGGCCACGAGTTCGAGA-3′ and reverse 5′-CTTGGAGCCGTACATGAACTGAGG-
3′, zebrafish sp5l forward 5′-GCTTCACGCAGGTGTGGAT-3′ and reverse 5′-TTCTGGAGA
TGAGCTGGGAGT-3′, zebrafish axin2 forward 5’-TAGTTTTGCCCCTGCCACG-3’ and re-
verse 5’-TCCCAGCTTGTAAGGAGGAATG-3’, zebrafish cdx4 forward 5’-CCAGAGAAAA
TCAGAGCTGGCA-3’ and reverse 5’-TTGCACCGAGCCTCCACTATT-3’, zebrafish nradd
forward 5’-AAGTGTCAGCCATGCCAAGA-3’ and reverse 5’-AGGAATACCGATGGGGC
AATG-3’, zebrafish rpl13a forward 5′-TCTGGAGGACTGTAAGAGGTATGC-3′ and reverse
5′-AGACGCACAATCTTGAGAGCAG-3′, zebrafish β-actin forward 5′-GAAGGAGATCAC
CTCTCTTGCTC-3′ and reverse 5′-GTTCTGTTTAGAAGCACTTCCTGTG-3′.

2.5. Cell Culture

Human embryonic kidney 293T (HEK293T), neuroblastoma SH-SY5Y and bone os-
teosarcoma U2OS cell lines were purchased from ATCC (Manassas, VA, USA). HEK293T
and U2OS cells were cultured in high-glucose Dulbecco’s modified Eagle’s medium
(DMEM) and SH-SY5Y cells in DMEM F-12 at 37 ◦C in a 5% (v/v) CO2 humidified en-
vironment. All media were supplemented with 10% fetal bovine serum (FBS) and 1%
penicillin–streptomycin.

2.6. Transfection and Luciferase Assay

HEK293T were seeded on 24-well plates and transfected in triplicate with 20 ng of
Wnt8, with and without 300 ng of Nradd. SH-SY5Y cells were seeded on 24-well plates
and transfected in triplicate with 250 ng of Nradd and stimulated with Wnt3a conditioned
media (CM) for 6h. All cells were co-transfected with 20 ng of firefly luciferase reporter
pGL3 BAR [49] and 5 ng of renilla luciferase reporter pGL4.73 hRLuc/SV40 (Promega,
Madison, WI, USA) using Fugene HD Transfection Reagent (1 µg/1 µL, Promega, Madison,
WI, USA). Twenty-four hours after transfection, reporter activity was measured with the
dual luciferase reporter assay kit (Promega, Madison, WI, USA) in a Varioskan Flash
multimode reader (Thermo Fisher Scientific, Waltham, MA, USA). Statistical analysis was
performed using a Student’s t-test. Error bars represent SD, where * and ** indicate p < 0.05
and p < 0.01, respectively.
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2.7. Subcellular Localization

Zebrafish embryos were injected with 250 pg Nradd-EGFP and 250 pg RFP-GPI at the
1-cell stage, dechorionated at 3 hpf, mounted in 3% methylcellulose, and imaged using a
Zeiss LSM 880 confocal microscope (Carl Zeiss AG, Oberkochen, Germany). U2OS cells
were seeded in a 6-well plate on a 35 mm glass-bottom dish with a 10 mm micro-well #1.5
cover glass (0.16–0.19 mm) and transfected with Fz8a-EGFP and Nradd-mRuby3 plasmids
(500 ng each) using Lipofectamine 3000 reagent at 24 h. The next day, cell membranes
were stained with CellMask Deep Red at a concentration of 5 µg/mL for 5 min. The
cells were imaged in Leibovitz’s L-15 medium without phenol red using a Zeiss LSM
780 confocal microscope.

2.8. Isolation of Giant Plasma Membrane Vesicles (GPMVs)

U2OS cells were seeded in a 6-well plate on a 35 mm glass-bottom dish with a 10 mm
micro-well #1.5 cover glass and transfected with 500 ng Nradd-EGFP using Lipofectamine
3000 reagent at 48 h. At ~70% confluence, the cells were washed twice with GPMV buffer
(10 mM HEPES, 150 mM NaCl, 2 mM CaCl2, pH 7.4) and incubated for 1 h at 37 ◦C
with GPMV buffer including 2 mM N-ethyl maleimide (NEM). After 1 h, the supernatant
containing vesicles was collected, incubated with Atto647N-labeled 1,2-dipalmitoyl-sn-
glycero-3-phosphoethanolamine (Atto647N-PE) for membrane staining and imaged using
a Zeiss LSM 780 confocal microscope.

2.9. Co-Immunoprecipitation and Western Blotting

HEK293T cells were seeded in 6-well plates and transfected with 500 ng Nradd-GFP
and 500 ng LRP6-HA. At 48 h, Wnt induction was performed for 6h and cells were washed
with ice-cold PBS and lysed with NOP buffer (10 mM HEPES KOH pH 7.4, 150 mM NaCl,
2 mM EDTA, 10% glycerol, 1% NP40 (Igepal CA-630, Sigma-Aldrich, St. Louis, MO, USA).
Lysate was centrifuged at 300 g for 5 min at 4 ◦C. Supernatant was precipitated with a
SureBeads™ Protein G Magnetic Beads Co-Immunoprecipitation Kit (BioRad, Hercules,
CA, USA) according to the kit protocol. For western blotting, samples were dissolved in 5X
loading dye and separated by SDS gel electrophoresis on a 10% acrylamide-bis acrylamide
gel. Proteins were transferred from the gel to a polyvinylidene fluoride (PVDF) membrane
(GE Healthcare Life Science, Chicago, IL, USA). Membranes were blocked in 5% milk
powder for 45 min at room temperature (RT) and incubated with the following antibodies
at the corresponding dilutions. Primary antibodies: rabbit anti-GFP ((D5.1) XP, 1:1000;
Cell Signaling Technology, Danvers, MA, USA) and mouse anti-HA (1: 2000; OriGene
Technologies, Rockville, MD, USA). Secondary antibodies: anti-rabbit IgG, horseradish
peroxidase (HRP)-linked and anti-mouse IgG, HRP-linked (both 1:2500; Cell Signaling
Technology, Danvers, MA, USA).

2.10. Fluorescence Cross-Correlation Spectroscopy (FCCS)

The molecular interaction between Nradd protein and the components of the Wnt–
receptor complex was examined by comparing the diffusion characters on the membrane
using a fluorescence cross-correlation spectroscopy (FCCS) technique. FCCS measurements
were performed on a Zeiss LSM 780 confocal microscope equipped with 63X oil immer-
sion objective (1.4 NA). GFP- and mCherry-labeled proteins were excited with 488 and
561 nm lasers, respectively. Detection intervals of 500–550 nm and 600–690 nm were used
to detect green and red signals, respectively. Curves were analyzed using the FoCuS-point
software package [50]. Cross-correlation percentages were calculated by the amplitudes of
autocorrelation and cross-correlation curves of molecules tagged with two different fluo-
rophores at the plasma membrane. Calculations were performed by using the GNO values
obtained from the FoCuS-point program. Among the values of GFP- and mCherry-labeled
molecules, the one which was closer to the cross-correlation GNO value was considered
for comparisons. This value was normalized using the positive control. The experiment
was performed in U2OS cells that were seeded on 0.17 mm cover slides. The next day,
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cells were transfected with 500 ng of each plasmid using Lipofectamine 3000 reagent. The
diffusion rates were measured at 24 h. The following combinations of molecules were
used: (1) Fz8a-EGFP + Lrp6-mCherry, (2) Fz8a-EGFP + Lrp6-mCherry + Wnt3a CM, (3)
Fz8a-mRuby3 + Nradd-EGFP, (4) Fz8a-mRuby3 + Nradd-EGFP + Wnt3a CM, (5) Lrp6-
mCherry + Nradd-EGFP, (6) Lrp6-mCherry + Nradd-EGFP + Wnt3a CM. All values were
normalized to the positive control EGFP-mCherry. GPI-EGFP + Fzd8a-mRuby3 + Wnt CM
was used as a negative control. Wnt3a CM was produced from murine L cells. Cells were
grown in a 10 cm plate in DMEM supplemented with 10% FBS. At 90% confluence, cells
were diluted 1:10 and seeded in new 10 cm plates. Wnt3a CM was collected at 2 days,
4 days and 6 days, and added to the cells 20 min prior to measurement.

2.11. Immunofluorescence Staining

Zebrafish embryos produced by crossing wt AB and Tg(hsp70l:wnt8a-GFP)w34 were
injected with the capped sense RNAs of control GFP (100 pg), wt Nradd-GFP (250 pg),
Nradd-DDD (250 pg) or Nradd-GSD (250 pg) at the 1-cell stage. Injected embryos were
heat shocked at 60% epiboly, dechorionated at 24 hpf by adding 100 µL of 10 mg/mL
pronase in 10 mL E3 medium (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2, 0.33 mM
MgSO4) and fixed in 4% PFA in PBST (1× PBS, 0.1% Tween-20) overnight at 4 ◦C. Embryos
were incubated in ice-cold methanol at −20 ◦C for 24 h. Methanol was removed and
embryos were washed twice with 1 mL 1× PDT (1× PBST, 0.3% Triton-X, 1% DMSO)
for 30 min by rocking gently at RT. Next, embryos were incubated with 500 µL blocking
buffer (1× PBST, 10% heat-inactivated fetal bovine serum, 2% bovine serum albumin) at
RT for 1 h and incubated with rabbit anti-cleaved caspase 3 antibody (1:400; Cell Signaling
Technology, Danvers, MA, USA) at 4 ◦C overnight. The next day, embryos were washed
twice with 1× PDT, incubated with rhodamine (TRITC)-AffiniPure donkey anti-rabbit IgG
(1:400; Jackson ImmunoResearch Laboratories, Inc., West Grove, PA, USA) for 2 h at RT,
re-washed with 1× PDT, mounted in 50% glycerol in PBS and imaged using a Zeiss LSM
880 confocal microscope.

2.12. Annexin V-FITC Apoptosis Assay

HEK293T or SH-SY5Y cells were seeded in 6-well plates. For the control and Nradd,
cells were transfected with firefly luciferase reporter pGL3 BAR (100 ng) and the plasmid
containing Nradd without GFP tags (250 ng), respectively, according to the manufac-
turer’s protocol. For the positive controls, cells were treated with 0.3 mM H2O2 and 1 µM
staurosporine for 18 h. Relevant cells were treated with Wnt3a CM overnight to induce
Wnt signaling. Twenty-four hours after transfection, supernatants and trypsinized cells
were collected. Cells were washed and stained with annexin V-FITC and 7AAD using an
FITC Annexin V Apoptosis Detection Kit with 7-AAD (BioLegend, San Diego, CA, USA).
Flow cytometry was performed using a BD Fortessa and data were analyzed with FlowJo
8.8.6 software (Tree Star Inc., Ashland, OR, USA). Experiments were performed in three
biological replicates and data are representative of at least three independent experiments.

3. Results
3.1. Nradd is Transcriptionally Regulated by Wnt/β-Catenin Signaling during Development

To identify new modulators of Wnt/β-catenin signaling, we exploited the fact that
various pathway components are also transcriptional targets of the pathway. To identify
Wnt targets, we conditionally activated or inhibited Wnt/β-catenin signaling by giving
transgenic zebrafish embryos a single heat shock at three independent developmental
stages, namely, gastrula, somitogenesis and organogenesis, and performed RNA sequenc-
ing. By screening for genes that are upregulated upon activation and downregulated upon
inhibition, i.e., positively regulated by the pathway, during all three developmental stages,
we identified neurotrophin receptor-associated death domain (nradd) that has no previously
defined function in Wnt/β-catenin signaling and in vertebrate embryonic development.
At late gastrula stages, nradd was expressed at the marginal zone and later became concen-
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trated at the posterior sites of the embryo (Figure 1A). During organogenesis, its expression
was downregulated in the posterior regions and observed at a weaker level throughout the
body (Figure 1A). To confirm the gene expression profiling results, we investigated nradd ex-
pression levels at gastrula, somitogenesis and organogenesis by in situ hybridization in heat
shock-inducible transgenic zebrafish embryos Tg(hsp70l:Mmu.Axin1-YFP)w35 (hs:Axin1)
and Tg(hsp70l:wnt8a-GFP)w34 (hs:Wnt8) by overexpressing pathway inhibitor Axin1 and
pathway activator Wnt8, respectively. In all three developmental stages, the inhibition of
Wnt/β-catenin signaling significantly suppressed nradd expression, while its activation
upregulated nradd (Figure 1A). To support these data quantitatively, we performed qPCR
in the same conditions and found that the expression of both nradd and the direct Wnt/β-
catenin target gene sp5l increased with activated Wnt signaling in hs:Wnt8 embryos and
decreased with inhibited signaling in hs:Axin1 embryos at all developmental stages tested
(Figure 1B–D). These results confirm that nradd is a transcriptional target of Wnt/β-catenin
signaling and its expression is broadly regulated by the pathway during development.

Biomolecules 2021, 11, x FOR PEER REVIEW 8 of 24 
 

 
Figure 1. nradd is transcriptionally regulated by Wnt/β-catenin signaling during development. (A) Whole-mount in situ 
hybridization (WMISH) shows that nradd expression is downregulated in transgenic embryos expressing Axin1 (hs:Axin1) 
and upregulated in transgenic embryos expressing Wnt8a (hs:Wnt8a) at gastrula (80% epiboly), somitogenesis (10-somite) 
and organogenesis (22 hpf) stages. (n (80% epiboly): wild type 21/21 embryos, hs:Axin1 18/20 embryos, hs:Wnt8a 16/17; n 
(10-somite st.): wild type 24/24 embryos, hs:Axin1 24/24 embryos, hs:Wnt8a 28/30; n (22 hpf st.): wild type 19/19 embryos, 
hs:Axin1 23/25 embryos, hs:Wnt8a 19/20) hs: heat shock, fix: fixation, st: stage, hpf: hours post-fertilization. Three inde-
pendent experiments were conducted. (B–D) nradd and sp5l expression levels determined by qPCR in hs:Axin1 and 
hs:Wnt8a transgenic embryos are shown relative to those in wild-type embryos at (B) gastrula, (C) somitogenesis and (D) 
organogenesis stages. Statistical significance was evaluated using an unpaired t-test. * p<0.05, ** p<0.01 and *** p<0.001. 
Error bars represent ± standard deviation (SD, n = 3). Three independent experiments were conducted. 

3.2. Nradd Acts as an Inhibitor of Wnt/β-Catenin Signaling 
To test whether nradd has an influence on Wnt/β-catenin signaling, we first cloned 

wild-type zebrafish nradd into a pCS2P+ expression vector with or without EGFP, termed 
Nradd and Nradd-EGFP, respectively. Next, we overexpressed nradd mRNA in a trans-
genic reporter of Tcf/Lef-mediated transcription, Tg(7XTcf-Xla.Siam:nlsmCherry)ia 
(7xTcf:mCherry). Reporter expression dramatically decreased in nradd-overexpressing 
embryos at late gastrula, somitogenesis and organogenesis stages (Figure 2A). Activation 
of Wnt8-mediated β-catenin signaling generates a range of phenotypes from mild neu-
roectodermal posteriorization to loss of forebrain and notochord in zebrafish embryos 
(classes 2 to 4, Figure 2B) [23,51]. To test whether nradd overexpression can rescue these 
phenotypes, we activated Wnt/β-catenin signaling in hs:Wnt8 transgenic embryos by giv-
ing a heat shock at early gastrula (shield stage), which generated class 3 and 4 phenotypes 
at 24 hpf (Figure 2C). nradd overexpression indeed significantly restored the phenotypes 
to class 2 and 3 (Figure 2C). Moreover, nradd significantly downregulated the expression 
of axin2, cdx4 and sp5l, three direct Wnt/β-catenin target genes in these embryos [25,46,52]. 

Figure 1. nradd is transcriptionally regulated by Wnt/β-catenin signaling during development. (A) Whole-mount in situ
hybridization (WMISH) shows that nradd expression is downregulated in transgenic embryos expressing Axin1 (hs:Axin1)
and upregulated in transgenic embryos expressing Wnt8a (hs:Wnt8a) at gastrula (80% epiboly), somitogenesis (10-somite)
and organogenesis (22 hpf) stages. (n (80% epiboly): wild type 21/21 embryos, hs:Axin1 18/20 embryos, hs:Wnt8a 16/17; n
(10-somite st.): wild type 24/24 embryos, hs:Axin1 24/24 embryos, hs:Wnt8a 28/30; n (22 hpf st.): wild type 19/19 embryos,
hs:Axin1 23/25 embryos, hs:Wnt8a 19/20) hs: heat shock, fix: fixation, st: stage, hpf: hours post-fertilization. Three
independent experiments were conducted. (B–D) nradd and sp5l expression levels determined by qPCR in hs:Axin1
and hs:Wnt8a transgenic embryos are shown relative to those in wild-type embryos at (B) gastrula, (C) somitogenesis
and (D) organogenesis stages. Statistical significance was evaluated using an unpaired t-test. * p < 0.05, ** p < 0.01 and
*** p < 0.001. Error bars represent ± standard deviation (SD, n = 3). Three independent experiments were conducted.
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3.2. Nradd Acts as an Inhibitor of Wnt/β-Catenin Signaling

To test whether nradd has an influence on Wnt/β-catenin signaling, we first cloned
wild-type zebrafish nradd into a pCS2P+ expression vector with or without EGFP, termed
Nradd and Nradd-EGFP, respectively. Next, we overexpressed nradd mRNA in a transgenic
reporter of Tcf/Lef-mediated transcription, Tg(7XTcf-Xla.Siam:nlsmCherry)ia (7xTcf:mCherry).
Reporter expression dramatically decreased in nradd-overexpressing embryos at late gas-
trula, somitogenesis and organogenesis stages (Figure 2A). Activation of Wnt8-mediated
β-catenin signaling generates a range of phenotypes from mild neuroectodermal pos-
teriorization to loss of forebrain and notochord in zebrafish embryos (classes 2 to 4,
Figure 2B) [23,51]. To test whether nradd overexpression can rescue these phenotypes,
we activated Wnt/β-catenin signaling in hs:Wnt8 transgenic embryos by giving a heat
shock at early gastrula (shield stage), which generated class 3 and 4 phenotypes at 24 hpf
(Figure 2C). nradd overexpression indeed significantly restored the phenotypes to class 2
and 3 (Figure 2C). Moreover, nradd significantly downregulated the expression of axin2,
cdx4 and sp5l, three direct Wnt/β-catenin target genes in these embryos [25,46,52]. Strik-
ingly, nradd overexpression was also able to reduce the expression of these genes in wild-
type embryos (Figure 2D–F). Finally, zebrafish nradd efficiently suppressed Wnt/β-catenin
signaling in HEK293T and SH-SY5Y cells, as evidenced by the activation of the firefly lu-
ciferase pBAR reporter of Tcf/Lef-mediated transcription (Figure 2G–H) [49]. These results
strongly suggest that nradd acts as a negative feedback regulator of Wnt/β-catenin signaling
during zebrafish development and can suppress Wnt signaling in mammalian cells.
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Figure 2. nradd acts as an inhibitor of Wnt/β-catenin signaling. (A) Wnt/β-catenin reporter activity is reduced in
7xTcf:mCherry embryos injected with 250 pg nradd mRNA. (n (tailbud): control 26/26 embryos, nradd 27/31 embryos; n
(10-somite): control 26/26 embryos, nradd 25/26 embryos, n (22 hpf): control 21/21 embryos, nradd 29/30 embryos). Three
independent experiments were conducted. (B) Classification of phenotypes at 24 hpf caused by wnt8 overexpression in
hs:Wnt8a transgenic embryos after 1 hour of heat shock during gastrulation. Class 2: no eyes, reduced forebrain, normal
midbrain–hindbrain boundary (mhb, arrow), class 3: no forebrain, severely reduced midbrain, no mhb, class 4: abnormal
notochord development. (C) Phenotypes in wild-type (wt) or hs:Wnt8 transgenic embryos injected with nradd mRNA
(150 pg) or equimolar amounts of control mRNA heat shocked at shield stage during gastrulation and scored at 24 hpf.
Nradd rescues Wnt8-induced phenotypes. (n (tailbud): control 53 embryos, nradd 46 embryos, nradd+hs:Wnt8a 56 embryos,
hs:Wnt8a 45 embryos). Three independent experiments were conducted. (D–F) Expression levels of direct Wnt-target genes
axin2, cdx4 and sp5l determined by qPCR in nradd-overexpressing wt embryos (nradd) relative to those in wt embryos
injected with GFP mRNA (control) and in nradd-overexpressing hs:Wnt8 embryos (hs:Wnt8+nradd) relative to those in
hs:Wnt8 embryos injected with GFP mRNA (hs:Wnt8). All target genes are reduced by nradd in both wt and hs:Wnt8
embryos. Statistical significance was evaluated using an unpaired t-test. * p < 0.05, ** p < 0.01 and *** p < 0.001. Error bars
represent ± standard deviation (SD, n = 3). Three independent experiments were conducted. (G–H) Average and SD of the
mean (error bars) values of pBAR luciferase reporter activity monitoring Wnt/β-catenin signaling activity (normalized to
renilla luciferase activity) in (G) HEK293T and (H) SH-SY5Y cells where Wnt/β-catenin signaling is activated by Wnt8 or
Wnt3a conditioned media (CM) and transfected with Nradd. Nradd significantly inhibited Wnt signaling in both cell lines.
Statistical significance was evaluated using an unpaired t-test. * p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001. Error
bars represent SD. Three independent experiments were performed.

3.3. Nradd Suppresses Wnt-Mediated Patterning of the Mesoderm and the Neuroectoderm

During gastrulation, wnt8-mediated β-catenin signaling has essential roles in the
specification of the ventrolateral mesoderm and the repression of the dorsal organizer [51].
To test whether nradd affects mesodermal patterning of the embryo, we examined how the
organizer reacts to nradd overexpression during early development. nradd caused a signifi-
cant enlargement of the dorsal organizer region marked by goosecoid (gsc) expression [53],
not at the late blastula (30% epiboly) stage, but at the early gastrula (60% epiboly) stage
(Figure 3A,B). This suggests that nradd can relieve wnt8-mediated repression of the dorsal
organizer. Wnt/β-catenin signaling is also required for the induction of posterior neural
fates during gastrulation. nradd overexpression caused an extension of the early forebrain
and midbrain region marked by otx2 [54] and a concomitant restriction of the posterior
neuroectodermal region marked by hoxb1b [55] at late gastrula (100% epiboly, Figure 3C).
To further investigate the role of nradd in later patterning of the neuroectodermal fates,
we tested whether it can rescue wnt8-induced posteriorization of the zebrafish embryo
brain. nradd overexpression rescued the anterior neuroectodermal fates, shown by the
forebrain marker foxg1a, which completely disappeared in wnt8-overexpressing embryos
during mid-somitogenesis (10–13 somites (Figure 3D). Thus, we conclude that nradd acts as
a feedback inhibitor of wnt8-mediated patterning of mesoderm and neuroectoderm during
zebrafish gastrulation.
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Figure 3. nradd suppresses Wnt-mediated patterning of the mesoderm and the neuroectoderm. (A) nradd mRNA (250 pg)
causes expansion of the dorsal organizer domain (arrows) marked by goosecoid (gsc) WMISH, not at late blastula (30%
epiboly, n: control 23/23 embryos, nradd 26/29 embryos), but at early gastrula (60% epiboly, n: control 27/27 embryos,
nradd 32/33 embryos) stage zebrafish embryos. Three independent experiments were conducted. (B) Quantification of
gsc expression shown in (A) by measurement of arc degree (29 embryos in control 30% epiboly, 33 embryos in nradd 30%
epiboly, 35 embryos in control 60% epiboly, 37 embryos in nradd 60% epiboly). Error bars are SD. ** indicates p < 0.01 and
ns is non-significant. (C) nradd mRNA (250 pg) results in expansion of the anterior neuroectodermal marker otx2 (red bar)
and a complementary reduction of the posterior neuroectodermal marker hoxb1b (green bar) defined by WMISH at the
100% epiboly stage (n: control 35/35 embryos, nradd 38/41 embryos). Three independent experiments were conducted.
(D) nradd mRNA (250 pg) restores the telencephalon, marked by foxg1a (arrowhead), that is completely abolished by wnt8
mRNA (20 pg). WMISH is performed to detect expression of three independent RNAs, the forebrain marker foxg1a (red
bar), the midbrain–hindbrain boundary marker her5 (blue bar) and the rhombomere 3/5 marker krox20 (two green bars) in
zebrafish embryos at the 10-somite stage (n: control 33/33 embryos, wnt8 35/36 embryos, nradd+wnt8 42/45 embryos).
Three independent experiments were conducted.

3.4. Nradd Localizes to the Plasma Membrane and Interacts with the Wnt–Receptor Complex

Since nradd encodes for a transmembrane protein, we next aimed to examine its sub-
cellular localization and test whether it interacts with the Wnt–receptor complex. Nradd-
EGFP localized to the plasma membrane and co-localized with the membrane bound
RFP-GPI (glycosylphosphatidylinositol) in zebrafish embryos during the early blastula
stage (Figure 4A). When expressed in the human osteosarcoma epithelial cell line U2OS,
we observed that Nradd tagged with mRuby partially localized to the plasma membrane
along with the canonical Wnt receptor Fz8a tagged with EGFP (Figure 4B). Fractions of both
proteins, Nradd to a larger extent, were detected in the intracellular space (mostly endo-
plasmic reticulum [ER]), presumably due to overexpression. To further confirm the plasma
membrane localization of Nradd-EGFP, we prepared giant plasma membrane vesicles
(GPMVs) from Nradd-EGFP-expressing U2OS cells. GPMVs are pure plasma membrane
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encapsulating soluble cytoplasmic content while being devoid of any organelles [56]. In
GPMVs, Nradd-EGFP was clearly detectable at the surface of the vesicles, confirming
its plasma membrane localization (Figure 4C) [56]. Next, we asked whether there is a
physical interaction between Nradd and components of the Wnt–receptor complex at the
plasma membrane. First, Nradd coimmunoprecipitated with the canonical Wnt co-receptor
Lrp6, showing a potential interaction between these two proteins (Figure 4D). Second, we
applied fluorescence cross-correlation spectroscopy (FCCS) that can be used to analyze the
synchronous movement (co-diffusion) and binding behavior of two fluorescently labeled
proteins with single molecule detection sensitivity in live cells [57]. Representative graphics
for low cross-correlation (negative control), high cross-correlation (positive control and
Lrp6+Nradd+Wnt3a) are provided (Figure S1). In addition, Wnt3 stimulation increased the
interaction of all three combinations of molecules at the membrane, defined by percentages
of cross-correlation (Figure 4E). Thus, Nradd appears to diffuse together with both the Fz8a
receptor and Lrp6 co-receptor at the membrane and this diffusion is further enhanced by
canonical Wnt stimulation. These results together show that Nradd localizes at the plasma
membrane and physically interacts with the components of the Wnt–receptor complex.

3.5. Nradd Acts Together with Wnt/β-Catenin Signaling to Promote Apoptosis during
Development

Although Nradd has been shown to promote apoptosis in neuroblastoma cell lines [27],
its potential role in embryonic development has not been described. Nradd has four amino-
terminal cysteine-rich domains (CRDs) conserved among TNFRSF members and located
between the 23rd and 184th amino acids and a carboxy-terminal death domain located
between the 326th and 404th amino acids. In addition to wt Nradd, we thus generated two
other constructs, Nradd-DDD and Nradd-GSD, in which the C-terminal region including
the death domain and the N-terminal region including the N-glycosylation site and the
two CRD domains were deleted, respectively (Figure 5A). Initially, to address whether
Nradd can induce apoptosis during development, we overexpressed wt nradd mRNA in
zebrafish embryos and performed immunostaining for activated caspase 3, a marker of
apoptosis. Since Nradd can suppress wnt8-mediated patterning of the neuroectoderm
during development, we focused on the brain regions of embryos. Nradd was sufficient to
significantly enhance apoptosis on its own and also acted together with wnt8-mediated β-
catenin signaling, which is activated in hs:Wnt8 transgenic embryos by giving a heat shock
at 60% epiboly (Figure 5B,C). In contrast to Nradd, Nradd-DDD and Nradd-GSD could
neither inhibit canonical Wnt signaling in the 7xTcf:mCherry Wnt reporter line (Figure 5D)
nor induce apoptosis in zebrafish embryos (Figure 5E,F). Thus, Nradd appears to promote
apoptosis together with Wnt/β-catenin signaling and both the C-terminal death domain
and the N-glycosylated N-terminal domain are essential for its apoptotic function.

3.6. Zebrafish Nradd Promotes Apoptosis in Human Embryonic and Neuroblastoma Cell Lines

The nradd gene has been inactivated by mutation and is nonfunctional in humans
(NRADDP, Gene ID: 100129354). To test whether zebrafish Nradd is functional in hu-
mans, first we transfected human embryonic kidney 293T (HEK293T) cells with the ze-
brafish Nradd. Nradd significantly induced apoptosis but did not act together with Wnt3a
(Figure 6A,B). Moreover, zebrafish Nradd was able to significantly enhance apoptosis in
human neuroblastoma SH-SY5Y cells, again independently of Wnt3a (Figure 7A,B). These
results suggest that while the apoptotic role of Nradd is conserved across vertebrates, its
additive effect with Wnt signaling is not conserved.
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localizes to the surface of cell-derived giant plasma membrane vesicles (GPMVs) and overlaps with the plasma membrane 
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Figure 4. Nradd localizes to the plasma membrane and interacts with the Wnt–receptor complex (A) Nradd-EGFP (green)
and RFP-GPI (red) localize at the plasma membrane of the enveloping layer cells of zebrafish embryos at 4 hpf (dome
stage). (B) In U2OS cells, Fz8a-EGFP (green) co-localizes with the CellMask Deep Red (red) at the plasma membrane while
Nradd-mRuby (yellow) localizes to the ER, but a significant fraction of it is in the plasma membrane, as seen from the
zoom-in inset image. Arrows indicate protein transport from the ER to the plasma membrane. (C) Nradd-EGFP (green)
localizes to the surface of cell-derived giant plasma membrane vesicles (GPMVs) and overlaps with the plasma membrane
marker Atto647N-PE (red). (D) Nradd-GFP co-immunoprecipitates with Lrp6-HA in HEK293T cells. Three independent
experiments were performed. (E) Fluorescence cross-correlation spectroscopy (FCCS) measurements show cross-correlation
percentages between Fz8a-Lrp6, Fz8a-Nradd and Lrp6-Nradd, with/without Wnt3a stimulation at the plasma membrane.
Nradd co-diffuses with Fz8a and Lrp6 at the membrane and this co-diffusion is enhanced by Wnt3 stimulation. EGFP and
mCherry proteins were used as negative controls and their cross-correlation percentage is 1.70%.
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 Figure 5. Nradd acts together with Wnt/β-catenin signaling to promote apoptosis during development. (A) Schematic
representation shows domain structures of wt Nradd, Nradd without the death domain (Nradd death domain deleted
(DDD)) and Nradd without the N-glycosylated N-terminal region (Nradd glycosylation site deleted (GSD)). (B) Anti-cleaved
caspase 3 staining of control, Wnt8a activated, nradd mRNA-injected and Wnt8a activated+nradd mRNA-injected zebrafish
embryos at 24 hpf. Sections are counterstained for DAPI. The inset shows a representative embryo with four different
regions indicated with black rectangles that are used for counting the cleaved caspase 3-positive cells. The embryo image is
created with BioRender.com. Scale bar: 20 µm. nradd mRNA (250 pg) induces apoptosis in zebrafish embryos compared
to control group and also acts together with Wnt8a to further enhance apoptosis. The experiment was performed in
hs:Wnt8 transgenic embryos where Wnt8a expression is induced by giving a heat shock at 60% epiboly. Four independent
experiments were conducted. (C) Quantification of cleaved caspase 3-positive apoptotic cells shown in (B). Numbers
represent average number of apoptotic cells counted from four different regions of 20 embryos for each group. Error bars
are SD, ** indicates p < 0.01 and *** indicates p < 0.001. (D) WMISH showing the loss of capacity in nradd DDD (250 pg)
and nradd GSD (250 pg) mRNA to inhibit canonical Wnt signaling. mCherry WMISH shows downregulation of signaling
in the transgenic 7xTcf:mCherry Wnt/β-catenin reporter embryos by wt nradd (58/61). Overexpression of nradd DDD
(44/46) or nradd GSD (51/52) cannot inhibit Wnt/β-catenin signaling. Three independent experiments were conducted.
(E) Anti-cleaved caspase 3 staining of control (100 pg), wt nradd (250 pg), nradd DDD (250 pg) and nradd GSD (250 pg)
mRNA-injected zebrafish embryos at 24 hpf. Sections are counterstained for DAPI. The inset shows a representative embryo
with four different regions indicated with black rectangles that are used for counting the cleaved caspase 3-positive cells.
Scale bar: 20 µm. nradd mRNA (250 pg) induces apoptosis in zebrafish embryos compared to control group, while nradd
DDD or nradd GSD cannot. Three independent experiments were conducted. (F) Quantification of cleaved caspase 3-positive
apoptotic cells shown in (E). Numbers represent average number of apoptotic cells counted from four different regions of
20 embryos for each group. Error bars are SD, * indicates p < 0.05 and ** indicates p < 0.01.
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annexin V-FITC (x-axis). Nradd significantly enhances apoptosis. (B) Percentage of apoptotic cells, * indicates p < 0.05, **** 
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Figure 6. Zebrafish Nradd promotes apoptosis in human embryonic kidney cells. (A) Apoptosis assay on HEK293T cells
using flow cytometry after staining with annexin V-FITC and 7AAD. Representative scatter plots of 7AAD (y-axis) vs.
annexin V-FITC (x-axis). Nradd significantly enhances apoptosis. (B) Percentage of apoptotic cells, * indicates p < 0.05, **** is
p < 0.0001 and ns is non-significant. All experiments were performed in five replicates. Three independent experiments
were conducted.
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cytometry after staining with annexin V-FITC and 7AAD. Representative scatter plots of 7AAD (y-axis) vs. annexin V-
FITC (x-axis). Nradd significantly induces apoptosis. (B) Percentage of apoptotic cells, * indicates p < 0.05, ** is p < 0.01 
and ns is non-significant. All experiments were performed in five replicates. Three independent experiments were con-
ducted. 

4. Discussion 
Owing to its essential roles in embryonic development and the maintenance of tissue 

homoeostasis, Wnt/β-catenin signaling is tightly regulated by various pathway modula-
tors. Here, we characterize the functional role of Nradd, a poorly characterized homo-
logue of p75NTR, in pathway regulation during zebrafish development. Our data suggest 
that Nradd i) is a Wnt/β-catenin target during zebrafish development, ii) can suppress 
Wnt/β-catenin signaling during development and in mammalian cells, iii) efficiently in-
hibits Wnt8-mediated ventralization of the mesoderm and posteriorization of the neu-
roectoderm, iv) localizes at the plasma membrane and physically interacts with the Wnt–
receptor complex, v) promotes apoptosis by acting together with Wnt/β-catenin signaling 
during development and vi) can also enhance apoptosis in mammalian cells. 

Neuronal survival and innervation rely on the presence of developing neuronal pop-
ulations that receive accurate trophic factors from neighboring cells and activate intracel-
lular signaling pathways [58]. Nevertheless, neuronal cell death exhibits an essential cell 
death program by which a neuron directs its own destruction and is essential for the 
proper development and functioning of the nervous system [59]. The death receptor, or 
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4. Discussion

Owing to its essential roles in embryonic development and the maintenance of tissue
homoeostasis, Wnt/β-catenin signaling is tightly regulated by various pathway modula-
tors. Here, we characterize the functional role of Nradd, a poorly characterized homologue
of p75NTR, in pathway regulation during zebrafish development. Our data suggest that
Nradd i) is a Wnt/β-catenin target during zebrafish development, ii) can suppress Wnt/β-
catenin signaling during development and in mammalian cells, iii) efficiently inhibits
Wnt8-mediated ventralization of the mesoderm and posteriorization of the neuroecto-
derm, iv) localizes at the plasma membrane and physically interacts with the Wnt–receptor
complex, v) promotes apoptosis by acting together with Wnt/β-catenin signaling during
development and vi) can also enhance apoptosis in mammalian cells.

Neuronal survival and innervation rely on the presence of developing neuronal popu-
lations that receive accurate trophic factors from neighboring cells and activate intracellular
signaling pathways [58]. Nevertheless, neuronal cell death exhibits an essential cell death
program by which a neuron directs its own destruction and is essential for the proper
development and functioning of the nervous system [59]. The death receptor, or so-called
extrinsic apoptosis, pathway is one of the essential mechanisms of neuronal cell death [60].
The pathway is mediated by the interaction of death ligands with TNFRSF death receptors
at the cell surface and further recruitment of Fas-associated death domain protein (FADD),
which in turn leads to autoproteolytic cleavage and the activation of initiator caspases and
downstream executioner caspases including caspase 3 [61]. Aberrant regulation of the death receptor
signaling pathway has been associated with neuronal death in neurodevelopmental disorders,
neurodegenerative conditions such as traumatic brain injury, amyotrophic lateral sclerosis and
stroke and psychiatric disorders [62,63]. p75NTR, a pleiotropic signaling molecule, can act as a
co-receptor for various receptors, including Trk, sortilin and Nogo, and mediate a variety of
cellular functions from survival and axonal growth to apoptosis through several signaling
pathways [29,64–67]. Our results unravel Wnt/β-catenin signaling as a novel interaction
partner of Nradd, a p75NTR homolog, in the regulation of apoptosis during embryonic
development. Wnt signaling regulates the early and late stages of apoptosis during the de-
velopment of various organs, including the brain, the limbs and the heart [68–71]. During
neural development, the ability of Wnt signaling to facilitate or prevent apoptosis is highly
dependent on the cellular context and other signaling pathways that integrate apoptosis
with other cellular processes [72]. Wnt signaling has been associated with neurotrophin signal-
ing in the coordination of neuronal development and differentiation [73,74]. Wnt/β-catenin
signaling has previously been shown to regulate expression of the death receptors DR6
and TROY in the brain epithelium to mediate blood–brain barrier development in the
central nervous system [75]. An elegant work has recently shown that cells with abnormal
Wnt/β-catenin activity are eliminated via apoptosis with the involvement of cadherin
proteins and Smad signaling and this elimination is required for proper anterior–posterior
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patterning [76]. Our results support this finding that Wnt/β-catenin signaling can induce
apoptosis during development and further unravel that Nradd can potently enhance the
apoptosis-promoting role. Since Nradd is both a feedback inhibitor of Wnt/β-catenin
signaling and can potently induce apoptosis in the zebrafish brain during development,
it will be very interesting to further analyze which specific cells of the brain undergo
apoptosis upon Nradd expression.

p75NTR has been shown to promote the apoptosis of neurons and oligodendrocytes
in development, regeneration and pathological conditions [67,77–80]. Several studies
have unraveled the roles of p75NTR structural domains in the activation of death receptor
signaling. The extracellular domain of p75NTR appears to be responsible for the confor-
mational changes that propagate the signal to its death domain, which further recruits
the interactors of various signaling pathways [81–83]. The death domain is also necessary
for p75NTR-induced neuronal apoptosis [83,84]. The induction of apoptosis is dependent
on the N-terminal domain that was shown to be modified by N-glycosylation, i.e., the
attachment of an oligosaccharide to the protein in the ER [27]. Our functional analysis with
the Nradd constructs has demonstrated that both the N-glycosylated N-terminal region
and the death domain-containing C-terminal region are necessary for the suppression
of Wnt/β-catenin signaling and the induction of apoptosis. Thus, we suggest that the
N-terminal region undergoing N-glycosylation and the C-terminal death domain are key
regions that can be exploited for the control of cell death mechanisms.

Mouse NRADD has been reported to induce cell death in primary neuronal cells
and neuroblastoma cell lines [27,85,86]. Our data unravel the apoptotic role of zebrafish
Nradd in both human embryonic and neuroblastoma cell lines and further suggest that
Nradd induces early apoptosis characterized mainly by alterations occurring at the plasma
membrane. Unlike encoding for a transmembrane protein in mice and zebrafish, the human
NRADD gene carries inactivating mutations that have converted it into a pseudogene in
humans. Strikingly, our data show that zebrafish Nradd can not only inhibit Wnt/β-
catenin signaling but also promote apoptosis in human embryonic and cancer cell lines,
indicating that Nradd has an evolutionarily conserved function in the regulation of Wnt
signaling and apoptosis. It is possible that human p75NTR homologs might compensate
for the absence of Nradd in humans. While Nradd appears to act together with Wnt
signaling to enhance apoptosis during development, Wnt activation does not further
enhance Nradd-mediated apoptosis in human cells. The activation of Wnt/β-catenin
signaling could, however, sensitize human melanoma cells to apoptosis induced by the
TNF-related apoptosis-inducing ligand (TRAIL/APO2L) [87]. In contrast, the secreted Wnt
inhibitor Dkk3 has been found to induce Fas death receptor signaling in human ovarian
cancer cells, suggesting a proapoptotic role for Dkk3 [88]. Furthermore, death receptor
signaling can contrariwise regulate Wnt signaling. Several inhibitors of NGF and NGF
receptors, such as Ro 08-2750 (targets NGF), K252a (targets TrkA) and LM11A-31 (targets
P75), have been shown to increase β-catenin expression and cell migration in ovarian cancer
cells [89]. Thus, we believe that the relationship between Nradd and Wnt signaling in the
regulation of apoptosis mechanisms is context dependent. Future studies on understanding
the relationship between Nradd and Wnt signaling regulation in different contexts, such as
neurodevelopment, neurodegeneration and cancer, are very likely to constitute a promising
approach for the development of disease-specific therapies.

The role of Wnt/β-catenin signaling in neural development starts at the early induc-
tion of the neural plate and continues throughout subsequent patterning of the neuroec-
toderm during CNS development [90]. Our results reveal Nradd as a new player in this
process with a robust capacity to modify canonical Wnt-mediated posteriorization of the
neuroectoderm. Moreover, the pathway is known to be actively involved in the modulation
of the synaptic function to maintain the basal neural activity [91]. Consequently, alterations
in Wnt signaling have been implicated in many neurodegenerative and neuro-oncological
diseases, raising the importance of the specific pathway targeting for efficient treatment
strategies [92–97]. Besides, the misexpression of pseudogenes has been linked to various
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human diseases, including several cancers [98–103]. For example, deletion of the PTENP1
pseudogene locus in melanoma enhances miRNA-mediated suppression of PTEN and
tumor progression [104]. Overexpression of a PTENP1 transgene could restore its tumor
suppressor activity and inhibit tumor growth [105]. Therefore, the ability of Nradd to mod-
ulate Wnt signaling in human cells offers a promising target for therapeutic interventions
in neurological disorders.

5. Conclusions

Our study reveals the death receptor-encoding nradd, a homolog of p75NTR, as a
Wnt target during development and an inhibitor of the Wnt/β-catenin signaling pathway
in zebrafish embryos and mammalian cells. Nradd can potently suppress canonical Wnt-
mediated phenotypes in mesodermal and neuroectodermal patterning during zebrafish
gastrulation. By physically interacting with the Wnt–receptor complex at the plasma
membrane, Nradd acts together with Wnt/β-catenin signaling to promote apoptosis
during development. Moreover, human embryonic and neuroblastoma cells undergo
apoptosis upon Nradd overexpression. Thus, by both fine-tuning pathway activation at
the plasma membrane and regulating cell death, the Wnt modulator Nradd might serve
as an attractive target for the discovery of therapeutic interventions against Wnt-related
human diseases.
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