

1 Article

- 2 Synthesis and inhibitory studies of phosphonic acid
- ³ analogues of homophenylalanine and phenylalanine
- 4 towards Alanyl Aminopeptidases
- 5

8

6 Supplementary Materials

7 **Table of Contents**

9	Section S1. The characterization data of the compounds 2c-2h and 8a-8e
10	Section S2. The characterization data of the compounds 3c-3h and 9a-9e4
11	Section S3. The characterization data of the compounds 4e-4h, 10a and 10b6
12	Section S4. The characterization data of the compounds 4b, 4c, 10c-10e7
13	Section S5. The characterization data of the compounds 6b-6h and 13a-13e8
14	Section S6. The characterization data of the compounds 14c, 14f, 14h, 16d and 16e11
15 16	Figure S1. ¹ H (A), ¹³ C (B) and ¹⁹ F (C) NMR spectra for 3-(4-fluorophenyl)propyl-3-(4-fluorophenyl) propionate (5d)13
17 18	Figure S2. ¹ H (A), ¹ H- ³¹ P HMQC (B) and ¹ H- ¹³ C HMQC (C) NMR spectra for 1-amino-3-(4-fluorophenyl)propylphosphonic acid (15d)
19 20	Section S7. Molecular docking simulations of the inhibitors 15c, 15f, 17b and 17c binding to active site of pAPN (PDB: 4FKE)
21 22	Figure S7-1. Binding mode of the 1-amino-3-(3-fluorophenyl)propylphosphonic acid (compound 15c) with the pAPN
23 24	Figure S7-2. Binding mode of the 1-amino-3-(3,4-difluorophenyl)propylphosphonic acid (compound 15f) with the pAPN
25 26	Figure S7-3. Binding mode of the 1-amino-2-(2-bromo-5-fluorophenyl)ethylphosphonic acid (compound 17b) with the pAPN
27 28	Figure S7-4. Binding mode of the 1-amino-2-(3-bromo-4-fluorophenyl)ethylphosphonic acid (compound 17c) with the pAPN
29 30	Section S8. Molecular docking simulations of the inhibitors 15f, 15g and 17c binding to active site of hAPN (PDB: 4FYT)
31 32	Figure S8-1. Binding mode of the 1-amino-3-(3,4-difluorophenyl)propylphosphonic acid (compound 15f) with the hAPN

33	Figure S8-2. Binding mode of the 1-amino-3-(4-trifluoromethylphenyl)propylphosphonic acid
34	(compound 15g) with the hAPN
35	Figure S8-3. Binding mode of the 1-amino-2-(3-bromo-4-fluorophenyl)ethylphosphonic acid
36	(compound 17c) with the hAPN
37	Section S9. X-Ray analysis of compounds 13a, 13c and 14c
38 39	Figure S9. Molecular structures of (13a)(A), (13c) (B) and (14c) (C) in the asymmetric part of unit cell
40 41	Table S9-1. Crystal parameters and experimental details of the X-Ray data collection for structure 13a, 13c and 14c. 21
42	Table S9-2. Selected geometric parameters for crystal structure 13a (Å, º). 22
43	Table S9-3. Selected hydrogen-bond parameters for structure 13a
44	Table S9-4. Selected geometric parameters for crystal structure 13c (Å, ^o)25
45	Table S9-5. Selected geometric parameters for crystal structure 14c (Å, ^o)
46	Table S9-6. Selected hydrogen-bond parameters for structure 14c
47 48	Section S10. Characterization of the Final Compounds 15a-15h and 17a-17e by ¹ H, ¹³ C, ¹⁹ F, ³¹ P NMR
49	Figure S10-1. ¹ H(A), ³¹ P (B) NMR spectra for compound 15a
50	Figure S10-2. ¹ H (A), ¹³ C (B), ¹⁹ F (C), ³¹ P (D) NMR spectra for compound 15b
51	Figure S10-3. ¹ H (A), ¹³ C (B), ¹⁹ F (C), ³¹ P (D) NMR spectra for compound 15c
52	Figure S10-4. ¹ H (A), ¹³ C (B), ¹⁹ F (C), ³¹ P (D) NMR spectra for compound 15d
53	Figure S10-5. ¹ H (A), ¹³ C (B), ¹⁹ F (C), ³¹ P (D) NMR spectra for compound 15e
54	Figure S10-6. ¹ H (A), ¹³ C (B), ¹⁹ F (C), ³¹ P (D) NMR spectra for compound 15f
55	Figure S10-7. ¹ H(A), ¹³ C (B), ¹⁹ F (C), ³¹ P (D) NMR spectra for compound 15g
56	Figure S10-8. ¹ H (A), ¹³ C (B), ¹⁹ F (C), ³¹ P (D) NMR spectra for compound 15h
57	Figure S10-9. ¹ H(A), ¹³ C (B), ¹⁹ F (C), ³¹ P (D) NMR spectra for compound 17a
58	Figure S10-10. ¹ H (A), ¹⁹ F (B), ³¹ P (C) NMR spectra for compound 17b
59	Figure S10-11. ¹ H (A), ¹³ C (B), ¹⁹ F (C), ³¹ P (D) NMR spectra for compound 17c
60	Figure S10-12. ¹ H (A), ¹³ C (B), ¹⁹ F (C), ³¹ P (D) NMR spectra and HPLC (E) for compound 17d.53
61	Figure S10-13. ¹ H (A), ¹³ C (B), ¹⁹ F (C), ³¹ P (D) NMR spectra for compound 17e 55
62	
63 64	

- 65
- 66

67	
68	Section S1. The characterization data of the compounds 2c-2h and 8a-8e.
69	3-(3-fluorophenyl)propionic acid methyl ester (2c) [1]
70	Yellow oil, yield 100%; ¹ HNMR (400 MHz, CDCl ₃), δ = 7.27 – 7.18 (m, 1H, CH _{ar}), 6.96 (d, J = 7.8
71	Hz, 1H, CHar), 6.88 (ddd, J = 6.5, 2.4, 0.4 Hz, 1H, CHar), 3.66 (s, 3H, OCH ₃), 2.94 (t, J = 7.7 Hz, 2H, CH ₂),
72	2.62 (t, $J = 7.8$ Hz, 2H, CH ₂) ppm; ¹³ C NMR (101 MHz, CDCl ₃), $\delta = 173.10$ (s, COOCH ₃), 162.99 (d, $J = 100$
73	245.6 Hz, Car-F), 143.10 (d, <i>J</i> = 7.3 Hz, Car), 130.02 (d, <i>J</i> = 8.3 Hz, Car), 124.01 (d, <i>J</i> = 2.8 Hz, Car), 115.26
74	$(d, J = 21.1 \text{ Hz}, C_{ar}), 113.27 (d, J = 21.0 \text{ Hz}, C_{ar}), 51.77 (s, COOCH_3), 35.39 (s, CH_2), 30.67 (d, J = 1.8 \text{ Hz}), 30.67 (d, J = 1.8 \text{ Hz})$
75	CH ₂) ppm; ¹⁹ F NMR (376 MHz, CDCl ₃), δ = -113.30 – -113.38 (m, 1F) ppm.
76	
77	3-(4-fluorophenyl)propionic acid methyl ester (2d) [1,2]
78	Yellow oil, vield 100%; ¹ H NMR (400 MHz, CDCl ₃), $\delta = 7.14$ (ddd, $I = 8.3$, 5.4, 0.5 Hz, 2H,
79	2xCHar), 6.99 – 6.92 (m, 2H, 2xCHar), 3.65 (s, 3H, OCH ₃), 2.91 (t, <i>J</i> = 7.7 Hz, 2H, CH ₂), 2.59 (t, <i>J</i> = 7.7 Hz,
80	2H, CH ₂) ppm; ¹³ C NMR (101 MHz, CDCl ₃), $\delta = 173.24$ (s, COOCH ₃), 161.57 (d, $J = 244.1$ Hz, Car-F),
81	136.20 (d, $J = 3.2$ Hz, C_{ar}), 129.78 (d, $J = 7.9$ Hz, $2xC_{ar}$), 115.34 (d, $J = 21.2$ Hz, $2xC_{ar}$), 51.71 (s, COOCH ₃),
82	$35.85 (d, J = 1.1 Hz, CH_2)$, $30.19 (d, J = 0.7 Hz, CH_2) ppm; {}^{19}F NMR (376 MHz, CDCl_3)$, $\delta = -116.94 (tt, J = -116$
83	8.7, 5.2 Hz, 1F) ppm.
84	
85	3-(2,4-difluorophenyl)propionic acid methyl ester (2e)
86	Yellow oil, yield 100%; ¹ H NMR (400 MHz, CDCl ₃), δ = 7.16 (ddd, <i>J</i> = 8.5, 6.9, 3.5 Hz, 1H, CH _{ar}),
87	6.81 - 6.73 (m, 2H, 2xCHar), 3.65 (s, 3H, OCH3), 2.92 (t, J = 7.6 Hz, 2H, CH2), 2.60 (t, J = 7.6 Hz, 2H,
88	CH ₂) ppm; ¹³ C NMR (101 MHz, CDCl ₃), δ = 173.07 (s, COOCH ₃), 161.43 (ddd, J = 83.7, 71.4, 11.9 Hz,
89	2xCar-F), 131.24 (dd, J = 9.5, 6.5 Hz, Car), 123.18 (dd, J = 15.8, 3.8 Hz, Car), 111.13 (dd, J = 20.9, 3.8 Hz,
90	Car), 103.84 (dd, J = 26.0, 25.3 Hz, Car), 51.77 (s, COOCH ₃), 34.25 (t, J = 1.4 Hz, CH ₂), 24.13 (d, J = 2.3 Hz,
91	CH ₂) ppm; ¹⁹ F NMR (376 MHz, CDCl ₃), δ = -112.70 – -112.83 (m, 1F), -114.18 (ddd, J = 15.8, 8.7, 3.8 Hz,
92	1F) ppm.
93	
94	3-(3,4-difluorophenyl)propionic acid methyl ester (2f)
95	Yellow oil, yield 100%; ¹ H NMR (400 MHz, CDCl ₃), δ = 7.09 – 6.95 (m, 2H, 2xCH _{ar}), 6.92 – 6.86
96	(m, 1H, CHar), 3.66 (s, 3H, OCH3), 2.89 (t, J = 7.6 Hz, 2H, CH2), 2.59 (t, J = 7.6 Hz, 2H, CH2) ppm; ¹³ C
97	NMR (101 MHz, CDCl ₃), δ = 172.95 (s, COOCH ₃), 149.66 (ddd, J = 129.2, 117.3, 12.6 Hz, 2xCar-F),
98	137.47 (dd, J = 5.6, 3.9 Hz, Car), 124.24 (dd, J = 6.1, 3.5 Hz, Car), 117.23 (ddd, J = 16.9, 2.4, 0.6 Hz, 2xCar),
99	51.81 (s, COOCH ₃), 35.46 (d, <i>J</i> = 1.0 Hz, CH ₂), 30.12 (d, <i>J</i> = 1.4 Hz, 30.12 (d, <i>J</i> = 1.4 Hz) ppm; ¹⁹ F NMR
100	(376 MHz, CDCl ₃), $\delta = -137.88137.99$ (m, 1F), $-141.39141.51$ (m, 1F) ppm.
101	
102	3-(4-trifluoromethylphenyl)propionic acid methyl ester ($2g$) [1a,1b,3,4]
103	Yellow oil, yield 100%; ¹ H NMR (400 MHz, CDCl ₃), δ = 7.42 (dd, <i>J</i> = 91.2, 8.2 Hz, 4H, 4xCH _{ar}),
104	3.66 (s, 3H, OCH ₃), 3.00 (t, <i>J</i> = 7.7 Hz, 2H, CH ₂), 2.64 (t, <i>J</i> = 7.7 Hz, 2H, CH ₂) ppm; ¹³ C NMR (101 MHz,
105	CDCl ₃), $\delta = 172.97$ (s, COOCH ₃), 144.64 (q, $J = 1.3$ Hz, C _a r), 128.73 (s, 2xC _a r), 125.53 (q, $J = 3.8$ Hz,
106	$C_{ar}-CF_3$), 125.23 (s, C_{ar}), 125.06 (s, C_{ar}) 124.32 (q, $J = 271.8$ Hz, $C_{ar}-CF_3$), 51.83 (s, $COOCH_3$), 35.85 (d, $J = 271.8$ Hz, $C_{ar}-CF_3$), 51.83 (s, $COOCH_3$), 35.85 (d, $J = 271.8$ Hz, $C_{ar}-CF_3$), 51.83 (s, $COOCH_3$), 35.85 (d, $J = 271.8$ Hz, $C_{ar}-CF_3$), 51.83 (s, $COOCH_3$), 35.85 (d, $J = 271.8$ Hz, $C_{ar}-CF_3$), 51.83 (s, $COOCH_3$), 35.85 (s, C_{ar}) (s, $C_{ar}-CF_3$), 51.83 (s, $COOCH_3$
107	0.5 Hz, CH ₂), 30.19 (s, CH ₂) ppm; ¹⁹ F NMR (376 MHz, CDCl ₃), δ = -62.32 (s, 3F, CF ₃) ppm.
108	
109	3-(2-trifluoromethylphenyl)propionic acid methyl ester (2h) [1a,5]
110	Yellow oil, yield 100%; ¹ H NMR (400 MHz, CDCl ₃), δ = 7.62 (d, <i>J</i> = 7.9 Hz, 1H, CH _{ar}), 7.46 (t, <i>J</i> =
111	7.6 Hz, 1H, CHar), 7.31 (dd, $J = 16.4$, 7.8 Hz, 2H, 2xCHar), 3.68 (s, 3H, OCH ₃), 3.13 (t, $J = 8.7$ Hz, 2H,
112	CH ₂), 2.62 (t, $J = 7.8$ Hz, 2H, CH ₂) ppm; ¹³ C NMR (101 MHz, CDCl ₃), $\delta = 173.35$ (s, COOCH ₃), 139.28
115	$(q, J = 1.7 \text{ Hz}, \text{Car}), 132.03 (q, J = 1.1 \text{ Hz}, \text{Car}), 131.02 (s, \text{Car}), 128.66 (q, J = 29.8 \text{ Hz}, \text{Car}-\text{CF}_3), 126.57 (s, Car), 126.57 (s,$
114	Car), 126.19 (q, $J = 5.7$ Hz, Car), 124.59 (q, $J = 273.7$ Hz, Car-CF3), 51.81 (s, COOCH3), 35.70 (q, $J = 1.1$ Hz, Cu) 20.10 (c, $J = 1.0$ Hz, Cu) 20.10 (c, $J = 1.0$ Hz, Cu) 27.7 Hz, Car-CF3), 51.81 (s, COOCH3), 35.70 (q, $J = 1.1$ Hz, Cu) 20.10 (c, $J = 1.0$ Hz, Cu) 27.7 Hz, Car-CF3), 51.81 (s, COOCH3), 27.7 Hz, Car-CF3), 51.81 (s, CAR-F3), 51.81 (s, C
113 114	CH2), 30.19 (q, $J = 1.9$ Hz, CH2) ppm; ¹⁹ F NMK (376 MHz, CDCl3), $\delta = -59.72$ (s, 3F, CF3) ppm.
110	

117	
118	
119	2-(2-bromo-4-fluorophenyl)acetic acid methyl ester (8a) [6]
120	Yellow oil, yield 100%; ¹ H NMR (400 MHz, CDCl ₃), δ = 7.31 (dd, <i>J</i> = 8.2, 2.7 Hz, 1H, CH _{at}), 7.25
121	$(dd, I = 8.6, 5.9 Hz, 1H, CH_{ar}), 7.00 (td, I = 8.3, 2.6 Hz, 1H, CH_{ar}), 3.75 (s, 2H, CH_2), 3.71 (s, 3H, CH_{ar}), 3.71 (s, 3H, CH$
122	OCH ₃) ppm; ¹³ C NMR (101 MHz, CDCl ₃), δ = 170.91 (d, <i>J</i> = 1.4 Hz, COOCH ₃), 161.64 (d, <i>J</i> = 250.4 Hz,
123	C_{ar} -F), 132.31 (d, $J = 8.5$ Hz, C_{ar}), 130.23 (d, $J = 3.7$ Hz, C_{ar}), 125.03 (d, $J = 9.6$ Hz, C_{ar}), 120.14 (d, $J = 24.5$
124	Hz, C_{ar}), 114.80 (d, $I = 21.0$ Hz, C_{ar}), 52.33 (s, COOCH ₃), 40.69 (s, 2H,CH ₂) ppm; ¹⁹ F NMR (376 MHz,
125	CDCl ₃), $\delta = -112.92112.99$ (m, 1F) ppm.
126	
127	2-(2-bromo-5-fluorophenyl)acetic acid methyl ester (8b) [7]
128	Yellow oil vield 100%: ¹ H NMR (400 MHz, CDCl ₃) δ = 7.50 (dd <i>J</i> = 8.8, 5.3 Hz, 1H, CH _{at}) 7.03
129	$(dd I = 90.30 \text{ Hz} 1 \text{ H} \text{ CH}_{ar}) 6.87 (ddd I = 8.5.81.30 \text{ Hz} 1 \text{ H} \text{ CH}_{ar}) 3.76 (s. 2 \text{ H} \text{ CH}_{ar}) 3.72 (s. 3 \text{ H})$
130	OCH_{2} npm ⁻¹³ C NMR (101 MHz CDCl ₃) $\delta = 170.45$ (d $I = 0.5$ Hz COOCH ₃) 161.87 (d $I = 247.1$ Hz
131	C_{are} F) 136 11 (d I = 8.0 Hz C_{are}) 134 00 (d I = 8.1 Hz C_{are}) 119 21 (d I = 3.4 Hz C_{are}) 118 60 (d I = 23.2
132	$H_{Z}(x_{r}) = 11619 (d_{z} = 22.4 Hz (x_{r})) = 52.40 (s_{r} CH_{2}) = 41.52 (d_{z} = 1.4 Hz COOCH_{2}) nnm : 19E NMR (376)$
132	MH_{7} CDCl ₂) $\delta = -114.57114.64 (m 1F) nnm$
134	Mile, ebels), 6 114.57 114.64 (m, 11) ppm.
135	2-(3-bromo-4-fluorophenyl)acetic acid methylester (8c) [8]
136	Yellow oil vield 100% ¹ H NMR (400 MHz CDCl ₃) $\delta = 7.47$ (dd $J = 6.5, 2.2$ Hz 1H CH ₃) 7.18
137	$(ddd I = 8.2 \ 4.6 \ 2.2 \ Hz \ 1H \ CH_{rr}) \ 7.06 \ (t \ I = 8.4 \ Hz \ 1H \ CH_{rr}) \ 3.69 \ (s \ 3H \ OCH_2) \ 3.57 \ (s \ 2H \ CH_2)$
138	$mm^{-13}C$ NMR (101 MHz CDCl ₂) $\delta = 171.39$ (d $L = 1.3$ Hz COOCH ₂) 158.43 (d $L = 247.0$ Hz C ₂₂ -F)
130	$134 34 (d I = 0.7 Hz C_{rr}) 131 31 (d I = 4.0 Hz C_{rr}) 129.96 (d I = 7.3 Hz C_{rr}) 116 53 (d I = 22.4 Hz C_{rr})$
140	$109.08 (d I = 21.2 Hz C_{ar})$ 52.34 (e CH ₂) 39.95 (e COOCH ₂) npm: 19E NIMR (376 MHz CDCl ₂) $\delta =$
140	109.66 (dd I - 12.9.65 Hz 1E) npm
141 142	-109.00 (dd,) - 12.9, 0.9 Hz, 11) ppm.
142	2-(1-bromo-2-fluorophenyl)2 cetic 2 cid methyl ester (8d) [9]
143	Vellow oil vield 100%: 1H NMR (400 MHz CDCl2) $\delta = 7.26 - 7.21$ (m. 2H. 2x CH2) 7.13 (t. $I = 8.1$
144	Hz 1H CH.) 3.69 (c 2H CH.) 3.61 (c 2H OCH.) npm: 13 C NMR (101 MHz CDCl.) $\delta = 170.69$ (d J
145	-1.1 Hz COOCH ₂) 160.00 (d $I = 251.2 Hz$ C E) 122.50 (d $I = 4.6 Hz$ C) 127.56 (d $I = 2.8 Hz$ C)
140 1/7	= 1.112, COOCINS, 100.00 (d,) = 201.012, Carry, 102.00 (d,) = 4.012, Carry, 127.00 (d,) = 0.012, C
147	I = 2.9 Hz (COC(Hz) npm: 19E NMP (276 MHz, CDC(Lz) & = 114.12 (dd J = 12.8.4.8 Hz, 1E) npm
140	j = 2.9 TZ, COOCTB) ppin, 21 NWK (576 WHZ, CDCB), $0 = -114.12$ (dd, $j = 12.0, 4.0$ TZ, TF) ppin.
149	2 (1 brome 3 fluerenbery) scatic soid methylester (80) [10]
150	2 - (4 - 51 - 51 - 100 + 51 - 100 + 100
151	$(dd I = 9.3, 2.0 Hz, 1H, CH_{\odot})$ 6.94 (dd I = 8.2, 2.0 Hz, 1H, CH_{\odot}), 3.69 (e, 3.H, OCH_{O}), 3.58 (e, 2.H, CH_{O})
152	(uu, j = 5.5, 2.0 Hz, 111, CHar), 0.94 (uu, j = 6.2, 2.0 Hz, 111, CHar), 5.09 (5, 511, OCHs), 5.06 (5, 211, CHz)
153	ppint, we triving (101 minz, CDCi3), $0 = 171.00$ (d, $j = 0.5$ fiz, COCCi13), 159.05 (d, $j = 247.5$ fiz, Car-17), 125.40 (d, $l = 7.1$ Hz, C) 122.56 (d, $l = 0.8$ Hz, C) 126.24 (d, $l = 2.6$ Hz, C) 117.62 (d, $l = 2.7$ Hz
155	135.49 (d, $j = 7.1$ LE, Car), 135.50 (d, $j = 0.0$ LE, Car), 120.54 (d, $j = 5.0$ LE, Car), 117.05 (d, $j = 22.7$ LE,
155	Car), 107.02 (u, $j = 20.0$ Hz, Car), 52.36 (S, CH2), 40.45 (u, $j = 1.0$ Hz, COOCH3) ppH, 57 NWK (570 WHZ, CDCh) $\delta = 107.02$ (dd $I = 0.2, 7.2$ Hz, 1E) ppm
150	CDCI3, $0 = -107.05$ (dd, $j = 9.5, 7.2$ Hz, 1F) ppin.
157	Section S2. The characterization data of the compounds 3c-3h and 9a-9e.
158	3-(3-fluorophenyl)propanol (3c) [1b,11]
159	Colourless oil, yield 100%; ¹ H NMR (400 MHz, CDCl ₃), δ = 7.23 (ddd, <i>J</i> = 13.9, 4.9, 3.8 Hz, 1H,
160	CHar), 6.96 (d, J = 7.6 Hz, 1H, CHar), 6.89 (ddd, J = 13.9, 6.4, 4.9 Hz, 2H, CHar), 3.66 (t, J = 6.4 Hz, 2H,
161	CH ₂), 2.73 – 2.66 (m, 2H, CH ₂), 1.87 (dt, J = 13.7, 6.5 Hz, 2H, CH ₂), 1.68 (s, 1H, OH) ppm; ¹³ C NMR (101
162	MHz, CDCl ₃), δ = 163.02 (d, J = 245.2 Hz, Car-F), 144.48 (d, J = 7.2 Hz, Car), 129.86 (d, J = 8.3 Hz, Car),
163	124.16 (d, J = 2.7 Hz, Car), 115.32 (d, J = 20.8 Hz, Car), 112.82 (d, J = 21.0 Hz, Car), 62.10 (s, CH ₂ OH), 33.94

- 163 124.16 (d, *J* = 2.7 Hz, C_ar), 115.32 (d, *J* = 20.8 Hz, C_ar), 112.82 (d, *J* = 21.0 Hz, C_ar), 62.10 (s, CH₂OH), 33.94 164 (s, CH₂-C_ar), 31.86 (d, *J* = 1.7 Hz, CH₂CH₂CH₂OH) ppm; ¹⁹F NMR (376 MHz, CDCl₃), δ = -113.30 –
- 165 -113.39 (m, 1F) ppm.
- 166

167	
168	3-(4-fluorophenyl)propanol (3d) [12,13]
169	Colourless oil, vield 100%; ¹ H NMR (400 MHz, CDCl ₃), δ = 7.14 (ddd, <i>J</i> = 8.3, 5.4, 0.5 Hz, 2H,
170	2xCH _{ar}), 6.95 (t, $J = 8.8$ Hz, 2H, $2x$ CH _{ar}), 3.66 (t, $J = 6.4$ Hz, 2H, CH ₂), 2.70 – 2.65 (m, 2H, CH ₂), 1.89 –
171	1.82 (m, 2H, CH ₂), 1.46 (s, 1H, OH) ppm; ¹³ C NMR (101 MHz, CDCl ₃), δ = 161.35 (d, <i>I</i> = 243.3 Hz,
172	C_{ar} -F), 137.45 (d, $I = 3.2$ Hz, C_{ar}), 129.85 (s, C_{ar}), 129.77 (s, C_{ar}), 115.29 (s, C_{ar}), 115.08 (s, C_{ar}), 62.15 (s,
173	CH ₂ OH) 34 37 (d $I = 1.0$ Hz CH ₂ -C _{ar}) 31 29 (d $I = 0.5$ Hz CH ₂ CH ₂ CH ₂ OH) ppm ⁻¹⁹ F NMR (376 MHz
174	(DCl_2) $\delta = -117.64$ (tt $I = 87.52$ Hz 1F) npm
175	cbclo, o 117.01(tt,) 0.7,0.21E, 11) ppnt.
176	3-(2 A-difluoronhenyl)propanol (30) [14]
177	Colourloss oil viold 100% (11 NMP (400 MHz CDCh) $\delta = 7.17$ 7.11 (m 11 CU) 6.81 6.72
170	Colouriess oil, yield 100%, '11 Nink (400 Minz, CDCl3), $0 = 7.17 = 7.11$ (III, 111, CHar), $0.81 = 0.73$
170	$(\Pi, 2\Pi, 2X \subset \Pi ar), 3.05 (I, J = 0.4 \Pi Z, 2\Pi, C\Pi 2), 2.09 (I, J = 7.7 \Pi Z, 2\Pi, C\Pi 2), 1.07 - 1.00 (III, 2\Pi, C\Pi 2), 1.03$
1/9	(5, 1H, OH) ppm; ¹⁵ C NMR (101 MHZ, CDCl ³), $o = 161.26$ (ddd, $j = 55.0, 42.7, 11.8$ HZ, Car-F), 131.18
180	(dd, J = 9.4, 6.7 Hz, Car), 124.40 (dd, J = 16.2, 3.8 Hz, Car), 111.04 (dd, J = 20.9, 3.8 Hz, Car), 103.71 (dd, J = 20.04, (
181	26.4, 25.1 Hz, Car), 62.04 (s, CH ₂ OH), 32.98 (d, $J = 1.1$ Hz, CH ₂ -Car), 24.83 (d, $J = 2.1$ Hz,
182	CH ₂ CH ₂ CH ₂ OH) ppm; ¹⁹ F NMR (376 MHz, CDCl ₃), δ = -113.58 (ddd, <i>J</i> = 15.1, 8.4, 6.7 Hz, 1F), -114.54
183	(dd, J = 16.2, 8.7 Hz, 1F) ppm.
184	
185	3-(3,4-difluorophenyl)propanol (3f) [15]
186	Colourless oil, yield 100%; ¹ H NMR (400 MHz, CDCl ₃), δ = 7.07 – 6.94 (m, 2H, 2xCH _{ar}), 6.89 –
187	6.85 (m, 1H, CHar), 3.64 (t, <i>J</i> = 6.4 Hz, 2H, CH ₂), 2.71 – 2.57 (m, 2H, CH ₂), 2.33 (s, 1H, OH), 1.87 – 1.80
188	(m, 2H, CH ₂) ppm; ¹³ C NMR (101 MHz, CDCl ₃), δ = 149.51 (ddd, <i>J</i> = 154.8, 143.1, 12.6 Hz, Car-F),
189	138.80 (dd, $J = 5.4$, 3.9 Hz, Car), 124.25 (dd, $J = 6.0$, 3.5 Hz, 2xCar), 117.15 (d, $J = 16.7$ Hz, Car), 117.05 (dd,
190	<i>J</i> = 16.9, 0.8 Hz, Car), 61.84 (s, CH ₂ OH), 33.92 (s, CH ₂ -Car), 31.26 (d, <i>J</i> = 1.3 Hz, CH ₂ CH ₂ CH ₂ OH) ppm;
191	¹⁹ F NMR (376 MHz, CDCl ₃), δ = -138.34 – -138.45 (m, 1F), -142.18 – -142.31 (m, 1F) ppm.
192	
193	3-(4-trifluoromethylphenyl)propanol (3g) [1b,16,17]
194	Colourless oil, yield 100%; ¹ H NMR (400 MHz, CDCl ₃), δ = 7.41 (dd, <i>J</i> = 91.1, 7.9 Hz, 4H, 4x CH _{ar}),
195	3.67 (t, J = 6.4 Hz, 2H, CH ₂), 2.78 – 2.74 (m, 2H, CH ₂), 1.93 – 1.85 (m, 2H, CH ₂), 1.55 (s, 1H, OH) ppm;
196	13 C NMR (101 MHz, CDCl ₃), δ = 146.05 (q, J = 1.3 Hz, Car), 128.82 (s, 2xCar); 128.35 (q, J = 32.3 Hz, Car)
197	CF3-Car), 125.39 (q, J = 3.8 Hz, 2xCar), 124.42 (q, J = 271.0 Hz, CF3-Car); 62.00 (s, CH2OH), 33.92 (s,
198	CH ₂ -C _{ar}), 31.96 (s, CH ₂ CH ₂ CH ₂ OH) ppm; ¹⁹ F NMR (376 MHz, CDCl ₃), δ = -62.22 (s, 3F, CF ₃) ppm.
199	
200	3-(2-trifluoromethylphenyl)propanol (3h) [18,19]
201	Colourless oil, yield 100%; ¹ H NMR (400 MHz, CDCl ₃), δ = 7.61 (d, J = 7.9 Hz, 1 H, CH _{ar}), 7.46 (t, J
202	= 7.3 Hz, 1H, CHar), 7.34 (d, J = 7.7 Hz, 1H, CHar), 7.28 (t, J = 7.6 Hz, 1H, CHar), 3.71 (t, J = 6.4 Hz, 2H,
203	CH ₂), 2.86 (dd, <i>J</i> = 12.0, 3.9 Hz, 2H, CH ₂), 1.89 (ddd, <i>J</i> = 14.3, 10.3, 6.3 Hz, 2H, CH ₂), 1.66 (s, 1H, OH)
204	ppm; ¹³ C NMR (101 MHz, CDCl ₃), δ = 140.79 (q, J = 1.7 Hz, Car), 131.84 (q, J = 1.1 Hz, Car), 131.14 (s,
205	Car), 128.52 (q, $J = 29.6$ Hz, Car-CF ₃), 126.06 (q, $J = 5.8$ Hz, Car), 126.05 (s, Car), 124.72 (q, $J = 273.8$ Hz,
206	Car-CF ₃), 62.45 (s, CH ₂ OH), 34.59 (d, <i>J</i> = 0.4 Hz, CH ₂ -Car), 28.98 (q, <i>J</i> = 1.8 Hz, CH ₂ CH ₂ CH ₂ OH) ppm;
207	¹⁹ F NMR (376 MHz, CDCl ₃), δ = -59.82 (s, 3F, CF ₃) ppm.
208	
209	2-(2-bromo-4-fluorophenyl)ethanol (9a) [20,21]
210	Colourless oil, vield 100%; ¹ H NMR (400 MHz, CDCl ₃), $\delta = 7.29$ (dd, $I = 8.2, 2.7$ Hz, 1H, CH _{at}),
211	7.24 (dd, $I = 8.5, 6.0$ Hz, 1H, CH _{ar}), 6.97 (td, $I = 8.3, 2.7$ Hz, 1H, CH _{ar}), 3.85 (t, $I = 6.7$ Hz, 2H, CH ₂), 2.98
212	$(t, J = 6.7 \text{ Hz}, 2\text{H}, \text{CH}_2), 1.62 \text{ (s, 1H, OH) ppm} : {}^{13}\text{C} \text{ NMR} (101 \text{ MHz}, \text{CDC}]_3), \delta = 161.24 \text{ (d, } J = 249.2 \text{ Hz})$
213	C_{ar} -F), 133.79 (d, $I = 3.5$ Hz, C_{ar}), 131.98 (d, $I = 8.3$ Hz, C_{ar}), 124.48 (d, $I = 9.4$ Hz, C_{ar}), 120.13 (d, $I = 24.3$
214	Hz, Car), 114.63 (d, J = 20.7 Hz, Car), 62.45 (d, J = 1.4 Hz, CH ₂ OH). 38.52 (s, CH ₂ -Car) ppm: ¹⁹ F NMR (376
215	MHz, CDCl ₃), $\delta = -114.24$ (td, $I = 8.2$, 6.1 Hz, 1F) ppm.
216	

217	
218	
219	2-(2-bromo-5-fluorophenyl)ethanol (9b) [20,22]
220	Colourless oil, yield 100%; ¹ H NMR (400 MHz, CDCl ₃), δ = 7.48 (dd, <i>J</i> = 8.8, 5.4 Hz, 1H, CH _{ar}),
221	7.01 (dd, $J = 9.2$, 3.0 Hz, 1H, CHar), 6.82 (ddd, $J = 8.8$, 7.9, 3.1 Hz, 1H, CHar), 3.87 (t, $J = 6.6$ Hz, 2H, CH ₂),
222	2.98 (t, <i>J</i> = 6.6 Hz, 2H, CH ₂), 1.63 (s, 1H, OH) ppm; ¹³ C NMR (101 MHz, CDCl ₃), δ = 161.94 (d, <i>J</i> = 247.0
223	Hz, Car-F), 140.13 (d, $J = 7.5$ Hz, Car), 134.03 (d, $J = 8.1$ Hz, Car), 118.76 (d, $J = 3.2$ Hz, Car), 118.18 (d, $J = 3.$
224	22.5 Hz, C_{ar}), 115.39 (d, $J = 22.4$ Hz, C_{ar}), 61.80 (d, $J = 0.6$ Hz, CH_2OH), 39.38 (d, $J = 1.3$ Hz, CH_2-C_{ar})
225	ppm; ¹⁹ F NMR (376 MHz, CDCl ₃), $\delta = -114.92114.64$ (td, $J = 14.0, 8.5, 5.5$ Hz, 1F) ppm.
226	
227	2-(3-bromo-4-fluorophenyl)ethanol (9c) [23]
228	Colourless oil, vield 100%; ¹ H NMR (400 MHz, CDCl ₃), $\delta = 7.41$ (dd, $I = 6.6, 2.1$ Hz, 1H, CH _{ar}),
229	7.14 - 7.10 (m, 1H, CH _{ar}), 7.04 (t, $I = 8.4$ Hz, 1H, CH _{ar}), 3.83 (t, $I = 6.5$ Hz, 2H, CH ₂), 2.80 (t, $I = 6.5$ Hz,
230	2H. CH ₂), 1.63 (s, 1H, OH) ppm; ¹³ C NMR (101 MHz, CDCl ₃), δ = 157.97 (d, <i>I</i> = 245.8 Hz, Car-F), 136.17
231	$(d, I = 3.9 \text{ Hz}, C_{ar}), 133.89 \text{ (s, } C_{ar}), 129.55 \text{ (d, } I = 7.0 \text{ Hz}, C_{ar}), 116.46 \text{ (d, } I = 22.1 \text{ Hz}, C_{ar}), 108.98 \text{ (d, } I = 20.9 \text{ Hz})$
232	Hz, C_{ar}), 63.39 (d, $I = 1.4$ Hz, CH ₂ OH), 38.04 (s, CH ₂ - C_{ar}) ppm; ¹⁹ F NMR (376 MHz, CDCl ₃), $\delta = -110.93$
233	(ddd, I = 8.3, 6.7, 5.0 Hz, 1F) ppm.
234	
235	2-(4-bromo-2-fluorophenyl)ethanol (9d) [24.25]
236	Colourless oil, vield 100%; ¹ H NMR (400 MHz, CDCl ₃), $\delta = 7.23 - 7.19$ (m, 2H, 2xCH _{at}), 7.13 (t, $J =$
237	7.9 Hz, 1H, CH _{ar}), 3.83 (t, <i>J</i> = 6.6 Hz, 2H, CH ₂), 2.85 (td, <i>J</i> = 6.6, 0.9 Hz, 2H, CH ₂), 1.57 (s, 1H, OH) ppm;
238	13 C NMR (101 MHz, CDCl ₃), $\delta = 161.20$ (d, $I = 249.8$ Hz, C_{ar} -F), 132.53 (d, $I = 5.6$ Hz, C_{ar}), 127.43 (d, $I = 161.20$ (d, $I = 249.8$ Hz, C_{ar} -F), 132.53 (d, $I = 5.6$ Hz, C_{ar}), 127.43 (d, $I = 161.20$ (d, $I = 249.8$ Hz, C_{ar} -F), 132.53 (d, $I = 5.6$ Hz, C_{ar}), 127.43 (d, $I = 161.20$ (d, $I = 249.8$ Hz, C_{ar} -F), 132.53 (d, $I = 5.6$ Hz, C_{ar}), 127.43 (d, $I = 161.20$ (d, $I = 249.8$ Hz, C_{ar} -F), 132.53 (d, $I = 5.6$ Hz, C_{ar}), 127.43 (d, $I = 161.20$ (d, $I = 5.6$ Hz, C_{ar}), 127.43 (d, $I = 5.6$ Hz, $C_{$
239	3.7 Hz, Car, 124.78 (d, I = 16.0 Hz, Car), 120.42 (d, I = 9.6 Hz, Car), 119.11 (d, I = 25.6 Hz, Car), 62.19 (d, I = 16.0 Hz, Car), 120.42 (d, I = 9.6 Hz, Car), 119.11 (d, I = 25.6 Hz, Car), 62.19 (d, I = 16.0 Hz, Car), 120.42 (d, I = 9.6 Hz, Car), 119.11 (d, I = 25.6 Hz, Car), 120.42 (d, I = 9.6 Hz, Car), 119.11 (d, I = 25.6 Hz, Car), 120.42 (d, I = 9.6 Hz, Car), 119.11 (d, I = 25.6 Hz, Car), 120.42 (d, I = 9.6 Hz, Car), 119.11 (d, I = 25.6 Hz, Car), 120.42 (d, I = 9.6 Hz, Car), 119.11 (d, I = 25.6 Hz, Car), 120.42 (d, I = 9.6 Hz, Car), 119.11 (d, I = 25.6 Hz, Car), 120.42 (d, I = 9.6 Hz, Car), 120.42 (d, I = 9.6 Hz, Car), 119.11 (d, I = 25.6 Hz, Car), 120.42 (d, I = 9.6 Hz, Car), 110.11 (d, I = 25.6 Hz, Car), 120.42 (d, I = 9.6 Hz, Car), 120.42 (d, I = 9.6 Hz, Car), 110.11 (d, I = 25.6 Hz, Car), 120.42 (d, I = 9.6 Hz, 120.42 (d, I = 9.6 Hz
240	= 1.3 Hz, CH ₂ OH), 32.23 (d, <i>J</i> = 1.4 Hz, CH ₂ -C _{ar}) ppm; ¹⁹ F NMR (376 MHz, CDCl ₃), δ = -115.37 (t, <i>J</i> = 8.7
241	Hz, 1F) ppm.
242	
243	2-(4-bromo-3-fluorophenyl)ethanol (9e) [9,25]
244	Colourless oil, yield 100%; ¹ H NMR (400 MHz, CDCl ₃), δ = 7.45 (dd, <i>J</i> = 8.0, 7.3 Hz, 1H, CH _{ar}),
245	7.06 (dd, J = 9.5, 2.0 Hz, 1H, CHar), 6.89 (dd, J = 8.2, 1.9 Hz, 1H, CHar), 3.84 (t, J = 6.5 Hz, 2H, CH ₂), 2.82
246	(dd, <i>J</i> = 6.4 Hz, 2H, CH ₂), 1.64 (s, 1H, OH) ppm; ¹³ C NMR (101 MHz, CDCl ₃), δ = 159.10 (d, <i>J</i> = 247.3
247	Hz, Car-F), 140.63 (d, J = 6.7 Hz, Car), 133.48 (d, J = 0.8 Hz, Car), 126.03 (d, J = 3.4 Hz, Car), 117.17 (d, J =
248	21.9 Hz, Car), 106.78 (d, J = 20.8 Hz, Car), 63.13 (d, J = 0.5 Hz, CH2OH), 38.48 (d, J = 1.5 Hz, CH2-Car)
249	ppm; ¹⁹ F NMR (376 MHz, CDCl ₃), δ = -107.51 (dd, <i>J</i> = 9.5, 7.2 Hz, 1F) ppm.
250	Section S3. The characterization data of the compounds 4e-4h, 10a and 10b.
251	3-(2,4-difluorophenyl)propanal (4e) [26]
252	Colourless oil, vield 62%; ¹ H NMR (400 MHz, CDCl ₃), δ = 9.80 (t, <i>J</i> = 1.1 Hz, 1H, CHO), 7.20 –
253	7.12 (m, 1H, CH _{ar}), 6.82 – 6.74 (m, 2H, 2xCH _{ar}), 2.93 (t, $J = 7.6$ Hz, 2H, CH ₂), 2.64 (t, $J = 7.6$ Hz, 2H, CH ₂)
254	ppm; ¹³ C NMR (101 MHz, CDCl ₃), $\delta = 178.83$ (s, CHO), 161.48 (ddd, $I = 89.6, 77.2, 11.9$ Hz, Car-F),
255	131.24 (dd, $J = 9.9$, 6.4 Hz, Car), 122.82 (dd, $J = 15.8$, 3.8 Hz, 2xCar), 111.20 (dd, $J = 21.0$, 3.8 Hz, Car),
256	103.91 (dd, $J = 26.0, 25.3$ Hz, C_{ar}), 34.15 (t, $J = 1.4$ Hz, CH_2-C_{ar}), 23.81 (d, $J = 2.3$ Hz, $CH_2CH_2CH_2$) ppm:
257	¹⁹ F NMR (376 MHz, CDCl ₃), δ = -112.51 (ddd, <i>J</i> = 15.3, 8.2, 7.0 Hz, 1F), -113.99114.08 (m. 1F) ppm.
258	

259 3-(3,4-difluorophenyl)propanal (4f) [27]

260Colourless oil, yield 57%; ¹H NMR (400 MHz, CDCl₃), 9.79 (t, J = 1.1 Hz, 1H, CHO), 7.09 - 6.96261(m, 1H, CHar), 6.90 (dtd, J = 10.2, 4.0, 1.8 Hz, 2H, 2xCHar), 2.90 (t, J = 7.5 Hz, 2H, CH₂), 2.65 (t, J = 7.6262Hz, 2H, CH₂) ppm; ¹³C NMR (101 MHz, CDCl₃), 178.40 (s, CHO), 149.72 (ddd, J = 125.1, 113.1, 12.7263Hz, Car-F), 137.08 (dd, J = 5.6, 4.0 Hz, Car), 124.25 (ddd, J = 6.1, 3.6, 1.2 Hz, 2xCar), 117.28 (ddd, J = 16.4,2647.6, 0.6 Hz, 2xCar), 35.33 (d, J = 1.0 Hz, CH₂-Car), 29.75 (d, J = 1.4 Hz, CH₂CH₂CHO) ppm; ¹⁹F NMR (376265MHz, CDCl₃), δ = -137.69 - -137.85 (m, 1F), -141.15 - -141.27 (m, 1F) ppm.

- 266
- 267 3-(4-trifluoromethylphenyl)propanal (4g) [28]

268 Colourless oil, yield 74%; ¹H NMR (400 MHz, CDCl₃), 9.81 (t, *J* = 0.9 Hz, 1 H, CHO), 7.42 (dd, *J* = 269 94.0, 8.0 Hz, 4 H, 4xCHar), 3.00 (t, J = 7.4 Hz, 2 H, CH2), 2.81 (t, J = 7.3 Hz, 2 H, CH2) ppm; ¹³C NMR (101 270 MHz, CDCl₃), δ = 178.57 (s, CHO), 140.05 (q, J = 1.3 Hz, Car), 129.43 (s, 2xCar); 128.85 (q, J = 31.7 Hz, 271 CF3-Car), 125.78 (q, J = 3.2 Hz, 2xCar), 124.56 (q, J = 271.2 Hz, CF3-Car); 34.36 (s, CH2-Car), 29.47 (s, 272 CH₂CH₂CHO) ppm; ¹⁹F NMR (376 MHz, CDCl₃), δ = -62.33 (s, 3F, CF₃) ppm. 273 274 3-(2-trifluoromethylphenyl)propanal (4h) [29] 275 Colourless oil, yield 51%;¹H NMR (400 MHz, CDCl₃), 9.81 (s, 1H, CHO), 7.63 (d, J = 7.8 Hz, 1H, 276 CHar), 7.48 (t, J = 7.5 Hz, 1H, CHar), 7.33 (dd, J = 18.4, 7.7 Hz, 2H, 2xCHar) 3.14 (t, J = 7.8 Hz, 2H, CH₂), 277 2.70 – 2.66 (m, 2H, CH₂) ppm; ¹³C NMR (101 MHz, CDCl₃), δ = 178.63 (s, CHO), 138.95 (s, C_{ar}), 132.12 278 $(q, J = 0.9 \text{ Hz}, \text{Car}), 130.96 \text{ (s, Car)}, 128.66 \text{ (q, } J = 27.8 \text{ Hz}, \text{Car-CF}_3), 126.69 \text{ (q, } J = 4.8 \text{ Hz}, \text{Car}), 126.24 \text{ (s, } J =$ 279 Car), 124.20 (q, J = 273.3 Hz, Car-CF₃), 35.55 (s, CH₂-Car), 27.52 (q, J = 1.8 Hz, CH₂CH₂CHO) ppm; ¹⁹F 280 NMR (376 MHz, CDCl₃), δ = -59.74 (s, 3F, CF₃) ppm. 281 282 2-(2-bromo-4-fluorophenyl)ethanal (10a) [30] 283 Colourless oil, yield 52%; ¹H NMR (400 MHz, CDCl₃), δ = 9.74 (t, *J* = 1.6 Hz, 1H, CHO), 7.36 (dd, 284 J = 8.2, 2.6 Hz, 1H, CHar), 7.20 (dd, J = 8.5, 5.8 Hz, 1H, CHar), 7.03 (td, J = 8.2, 2.6 Hz, 1H, CHar), 3.84 (d, 285 J = 1.5 Hz, 2H, CH₂) ppm; ¹³C NMR (101 MHz, CDCl₃), -; ¹⁹F NMR (376 MHz, CDCl₃), δ = -112.24 (td, J 286 = 8.0, 5.9 Hz, 1F) ppm. 287 288 2-(2-bromo-5-fluorophenyl)ethanal (10b) [31] 289 Colourless oil, yield 32%; ¹H NMR (400 MHz, CDCl₃), δ = 9.75 (t, *J* = 1.5 Hz, 1H, CHO), 7.56 (dd, 290 J = 8.8, 5.3 Hz, 1H, CHar), 6.97 (dd, J = 8.8, 3.0 Hz, 1H, CHar), 7.03 (td, J = 8.2, 2.6 Hz, 1H, CHar), 6.90 291 (ddd, J = 8.6, 8.0, 3.2 Hz, 1 H, CHar), 3.85 (d, J = 1.5 Hz, 2 H, CH₂) ppm; ¹³C NMR (101 MHz, CDCl₃), δ = 292 197.37 (s, CHO), 162.01 (d, J = 248.0 Hz, Car-F), 134.66 (d, J = 7.8 Hz, Car), 134.25 (d, J = 8.1 Hz, Car), 293 119.17 (d, J = 3.3 Hz, Car), 118.85 (d, J = 23.1 Hz, Car), 116.57 (d, J = 22.3 Hz, Car), 50.35 (d, J = 1.4 Hz, 294 CH₂-C_{ar}) ppm; ¹⁹F NMR (376 MHz, CDCl₃), δ = -114.06 - -114.12 (m, 1F) ppm. 295 Section S4. The characterization data of the compounds 4b, 4c, 10c-10e. 296 3-(2-fluorophenyl)propanal (4b) [32,33] 297 Colourless oil, yield 67.5%; ¹H NMR (400 MHz, CDCl₃), δ = 9.81 (s, 1H, CHO), 7.24 – 7.15 (m, 2H, 298 2xCHar), 7.09 – 6.96 (m, 2H, 2xCHar), 2.97 (t, J = 7.4 Hz, 2H, CH2), 2.77 (t, J = 7.3, 2H, CH2) ppm; ¹³C 299 NMR (101 MHz, CDCl₃), δ = 177.42 (s, CHO), 161.21 (d, *J* = 245.2 Hz, Car-F), 130.71 (d, *J* = 4.8 Hz, Car), 300 128.24 (d, J = 8.1 Hz, Car), 127.16 (d, J = 20.4 Hz, Car), 124.24 (d, J = 3.6 Hz, Car), 115.45 (d, J = 21.9 Hz, 301 Car), 33.92 (d, J = 1.6 Hz, CH₂-Car), 24.38 (d, J = 2.8 Hz, CH₂CH₂CHO) ppm; ¹⁹F NMR (376 MHz, 302 CDCl₃), $\delta = -118.30$ (s, 1F) ppm. 303 304 3-(3-fluorophenyl)propanal(4c) [11] 305 Colourless oil, yield 71%; ¹H NMR (400 MHz, CDCl₃), δ = 9.81 (t, *J* = 1.2 Hz, 1H, CHO), 7.24 (qd, *J* 306 = 7.7, 6.2 Hz, 1H, CHar), 6.99 - 6.96 (m, 1H, CHar), 6.93 - 6.87 (m, 2H, 2xCHar), 2.95 (t, J = 7.7 Hz, 2H, 307 CH₂), 2.68 (t, *J* = 7.7 Hz, 2H, CH₂) ppm; ¹³C NMR (101 MHz, CDCl₃), δ = 178.72 (s, CHO), 162.99 (d, *J* = 308 245.7 Hz, Car-F), 142.70 (d, J = 7.3 Hz, Car), 130.10 (d, J = 8.4 Hz, Car), 124.00 (d, J = 2.8 Hz, Car), 115.30 309 (d, J = 21.2 Hz, Car), 113.41 (d, J = 21.0 Hz, Car), 35.29 (s, CH₂-Car), 30.30 (d, J = 1.8 Hz, CH₂CH₂CHO) 310 ppm; ¹⁹F NMR (376 MHz, CDCl₃), δ = -113.21 (td, *J* = 9.5, 6.3 Hz, 1F) ppm. 311 312 2-(3-bromo-4-fluorophenyl)ethanal (10c) [23] 313 Colourless oil, yield 61%; ¹H NMR (400 MHz, CDCl₃), δ = 9.74 (t, *J* = 1.9 Hz, 1H, CHO), 7.42 – 314 7.38 (m, 1H, CHar), 7.12 – 7.10 (m, 2H, 2xCHar), 3.67 (d, J = 1.9 Hz, 2H, CH₂) ppm; ¹³C NMR (101 MHz, 315 CDCl₃), δ = 198.22 (s, CHO), 158.62 (d, J = 247.6 Hz, Car-F), 134.64 (s, Car), 133.89 (s, Car), 130.24 (d, J = 316 7.3 Hz, Car), 116.94 (d, J = 22.4 Hz, Car), 109.56 (d, J = 21.2 Hz, Car), 49.21 (s, CH2-Car) ppm; ¹⁹F NMR

- 317 (376 MHz, CDCl₃), δ = -109.08 (dd, J = 13.0, 6.5 Hz, 1F) ppm.
- 318

319 2-(4-bromo-2-fluorophenyl)ethanal (10d)

320Colourless oil, yield 67%; ¹H NMR (400 MHz, CDCl₃), δ = 9.73 (dd, J = 2.9, 1.6 Hz, 1H, CHO),3217.28 (d, J = 8.0 Hz, 2H, 2xCHar), 7.06 (t, J = 7.5 Hz, CHar), 3.70 (s, 2H, CH₂) ppm; ¹³C NMR (101 MHz,322CDCl₃), δ = 197.15 (s, CHO), 160.99 (d, J = 251.5 Hz, Car-F), 132.75 (d, J = 4.7 Hz, Car), 127.90 (s, Car),323121.87 (d, J = 9.3 Hz, Car), 119.39 (d, J = 25.1 Hz, Car), 118.74 (d, J = 16.5 Hz, Car), 43.59 (s, CH₂-Car) ppm;324¹⁹F NMR (376 MHz, CDCl₃), δ = -113.97 - -114.02 (m, 1F) ppm.

- 325
- 326 2-(4-bromo-3-fluorophenyl)ethanal (10e) [9]

327 Colourless oil, yield 50%; ¹H NMR (400 MHz, CDCl₃), $\delta = 9.74$ (d, J = 1.9 Hz, 1H, CHO), 7.52 (dd, 328 J = 8.1, 7.2 Hz, 1H, CH_{ar}), 6.99 (dd, J = 9.1, 2.0 Hz, 1H, CH_{ar}), 6.87 (dd, J = 8.1, 2.0 Hz, 1H, CH_{ar}), 3.68 (d, 329 J = 1.9 Hz, CH₂) ppm; ¹³C NMR (101 MHz, CDCl₃), $\delta = 197.86$ (s, CHO), 159.29 (d, J = 248.53 Hz, Ca⁻F), 330 134.00 (s, Car), 126.61 (d, J = 3.6 Hz, Car), 117.87 (d, J = 22.5 Hz, Car), 108.20 (d, J = 20.8 Hz, Car), 98.35 (d, 331 J = 20.5 Hz, Car), 49.68 (s, CH₂-Car) ppm; ¹⁹F NMR (376 MHz, CDCl₃), $\delta = -106.37$ (dd, J = 9.1, 7.2 Hz, 332 1F) ppm.

333 Section S5. The characterization data of the compounds 6b-6h and 13a-13e.

334 Diphenyl 1-{[(N-benzyloxy)carbonyl]amino}-3-(2-fluorophenyl)propylphosphonate(6b) 335 White solid, yield 63%; ¹H NMR (400 MHz, CDCl₃), δ = 7.37 – 6.96 (m, 19H, CH_{ar}), 5.23 (br d, J = 336 10.3 Hz, 1H, NH), 5.13 (d, J = 4.6 Hz, 2H, CH2OC, trans), 5.13 (d, J = 29.0 Hz, 2H, CH2OC, cis), 4.57 -337 4.46 (m, 1H, CHP, trans), 4.39 - 4.26 (m, 1H, CHP, cis), 2.97 - 2.89 (m, 1H, CH2), 2.79 - 2.70 (m, 1H, 338 CH₂), 2.43 – 2.30 (br m, 1H, CH₂), 2.12 – 1.99 (br m, 1H, CH₂) ppm; ¹³C NMR (101 MHz, CDCl₃), δ = 339 161.20 (d, J = 245.2 Hz, Car-F), 155.97 (dd, J = 5.7, 4.8 Hz, CONH), 150.15 (dd, J = 23.5, 9.8 Hz, 2xCar), 340 136.13 (s, Car), 130.90 (d, J = 4.8 Hz, Car), 129.87 (dd, J = 10.9, 0.8 Hz, 4xCar), 128.67 (s, 2xCar), 128.40 (s, 341 2xCar), 128.27 (s, 2xCar), 125.48 (dd, J = 15.0, 1.0 Hz, 2xCar), 124.23 (d, J = 3.6 Hz, 2xCar), 120.59 (dd, J = 342 22.3, 4.1 Hz, 4xCar), 115.45 (d, J = 21.9 Hz, Car), 67.52 (s, CH2Ph), 48.22 (dd, J = 158.1, 10.8 Hz, CHP), 343 30.49 (d, J = 3.4 Hz, CH₂CH₂CHP), 25.68 (dd, J = 14.7, 2.4 Hz, CH₂CH₂CHP) ppm; ¹⁹F NMR (376 MHz, 344 CDCl₃), δ = -118.12 - -118.21 (m, F-H, *cis*), -118.30 - -118.41 (m, F-H, *trans*) ppm; ³¹P NMR (162 MHz, 345 CDCl₃), δ =17.72 (s, 1P, trans), 17.38 (s, 1P, cis) ppm; HRMS (ESI-MS) m/z [MH]⁺ calculated for 346 C29H27FNO5P: 520.1689, found: 520.1691; [M+Na]⁺ calculated for C29H27FNO5PNa: 542.1509, found: 347 524.1150.

348

Diphenyl 1-{[(N-benzyloxy)carbonyl]amino}-3-(3-fluorophenyl)propylphosphonate (6c)
White solid, yield 57%; ¹H NMR (400 MHz, CDCl₃), δ = 7.38 - 6.82 (m, 19H, CH_ar), 5.30 (br d, *J* =
9.0 Hz, 1H, NH), 5.13 (d, *J* = 3.3 Hz, 2H, CH₂OC, *trans*), 5.13 (d, *J* = 28.2 Hz, 2H, CH₂OC, *cis*), 4.59 4.43 (m, 1H, CHP, *trans*), 4.38 - 4.26 (m, 1H, CHP, *cis*), 2.91 - 2.79 (m, 1H, CH₂), 2.79 - 2.67 (m, 1H,
CH₂), 2.41 - 2.28 (br m, 1H, CH₂), 2.15 - 1.99 (br m, 1H, CH₂) ppm; ¹³C NMR (101 MHz, CDCl₃), δ =
163.01 (d, *J* = 245.7 Hz, Car-F), 156.01 (d, *J* = 6.2 Hz, CONH), 150.14 (dd, *J* = 24.0, 9.7 Hz, 2xCar), 136.11
(s, Car), 130.08 (d, *J* = 8.3 Hz, Car), 129.91 (d, *J* = 12.3 Hz, 2xCar), 128.69 (s, 2xCar), 128.45 (s, 2xCar), 128.32

356 (s, 2xCar), 125.54 (d, *J* = 16.2 Hz, 2xCar), 124.26 (d, *J* = 2.8 Hz, 2xCar), 120.57 (dd, *J* = 20.3, 4.0 Hz, 4xCar), 357 115.46 (d, *J* = 21.1 Hz, Car), 113.30 (d, *J* = 21.0 Hz, Car), 67.58 (s, CH₂Ph), 48.13 (d, *J* = 158.2 Hz, CHP), 31.88 (s, CH₂CH₂CHP), 31.77 (d, *J* = 4.6 Hz, CH₂CH₂CHP) ppm; ¹⁹F NMR (376 MHz, CDCl₃), δ = -112.95 - -113.09 (m, F-H, *cis*), -113.18 (td, *J* = 9.2, 6.1 Hz, F-H, *trans*) ppm; ³¹P NMR (162 MHz, CDCl₃), δ =17.70 (s, 1P, *trans*), 17.41 (s, 1P, *cis*) ppm; HRMS (ESI-MS) *m*/z [MH]⁺ calculated for C₂₉H₂₇FNO₅P: 520.1689, found: 520.1741; [M+Na]⁺ calculated for C₂₉H₂₇FNO₅PNa: 542.1509, found: 524.1556.

362 363

Diphenyl 1-{[(N-benzyloxy)carbonyl]amino}-3-(4-fluorophenyl)propylphosphonate (6d)

White solid, yield 37%; ¹H NMR (400 MHz, CDCl₃), $\delta = 7.36 - 6.89$ (m, 19H, CH_{ar}), 5.30 (br d, *J* = 365 10.2 Hz, 1H, NH), 5.13 (d, *J* = 2.7 Hz, 2H, CH₂OC, *trans*), 5.13 (d, *J* = 27.1 Hz, 2H, CH₂OC, *cis*), 4.49 (dtd, *J* = 17.3, 10.6, 3.6 Hz, 1H, CHP, *trans*), 4.29 (dd, *J* = 25.1, 12.6 Hz, 1H, CHP, *cis*), 2.83 (ddd, *J* = 14.3, 9.3, 5.3 Hz, 1H, CH₂), 2.75 - 2.64 (br m, 1H, CH₂), 2.37 - 2.25 (br m, 1H, CH₂), 2.11 - 1.98 (br m, 1H, CH₂) ppm; ¹³C NMR (101 MHz, CDCl₃), $\delta = 161.57$ (d, *J* = 244.1 Hz, Car-F), 156.01 (d, *J* = 6.0 Hz, CONH), 150.16 (dd, *J* = 23.9, 9.7 Hz, 2xCar), 136.13 (s, Car), 136.09 (dd, *J* = 3.3, 0.8 Hz, Car), 130.01 (d, *J* = 6.0 Hz)

370 7.9 Hz, 2xCar), 129.88 (dd, J = 12.2, 0.8 Hz, 4xCar), 128.68 (s, Car), 128.44 (s, 2xCar), 128.30 (s, 2xCar), 371 125.50 (dd, J = 16.0, 1.0 Hz, 2xCar), 120.65 (d, J = 4.1 Hz, 2xCar), 120.45 (d, J = 4.2 Hz, 2xCar), 115.40 (d, J = 21.2 Hz, 2xCar), 67.53 (s, CH2Ph), 48.00 (d, J = 158.0 Hz, CHP), 32.10 (d, J = 4.5 Hz, CH₂CH₂CHP), 373 31.19 (d, J = 13.9 Hz, CH₂CH₂CHP) ppm; ¹⁹F NMR (376 MHz, CDCl₃), $\delta = -116.62 - -116.72$ (m, F-H, 374 *cis*), -116.87 (dq, J = 8.8, 5.4 Hz, F-H, *trans*) ppm; ³¹P NMR (162 MHz, CDCl₃), $\delta = 17.79$ (s, 1P, *trans*), 375 17.53 (s, 1P, *cis*) ppm; HRMS (ESI-MS) *m*/*z* [MH]⁺ calculated for C₂₉H₂₇FNO₅P: 520.1689, found: 376 520.1741; [M+Na]⁺ calculated for C₂₉H₂₇FNO₅PNa: 542.1509, found: 524.1500.

378Diphenyl 1-{[(N-benzyloxy)carbonyl]amino}-3-(2,4-difluorophenyl)propylphosphonate (6e)

379 White solid, yield 37%;¹H NMR (400 MHz, CDCl₃), $\delta = 7.37 - 7.04$ (m, 2H, CH_{ar}), 6.80 - 6.72 (m, 380 16H, CHar), 5.26 (br d, J = 10.4 Hz, 1H, NH), 5.13 (d, J = 3.5 Hz, 2H, CH2OC, trans), 5.13 (d, J = 27.9 Hz, 381 2H, CH2OC, *cis*), 4.54 – 4.42 (m, 1H, CHP, *trans*), 4.29 (dd, *J* = 26.1, 11.6 Hz, 1H, CHP, *cis*), 2.88 (ddd, *J* 382 = 14.3, 9.4, 5.1 Hz, 1H, CH₂), 2.75 - 2.65 (m, 1H, CH₂), 2.38 - 2.26 (br m, 1H, CH₂), 2.10 - 1.96 (br m, 383 1H, CH₂) ppm; ¹³C NMR (101 MHz, CDCl₃), δ = 161.42 (ddd, J = 85.1, 75.3, 11.4 Hz, 2xCar, Car-F), 384 156.00 (d, J = 6.1 Hz, CONH), 150.14 (dd, J = 25.6, 7.5 Hz, 2xCar), 136.10 (s, Car), 131.46 (s, Car), 129.88 385 $(d, J = 10.9 \text{ Hz}, 4xC_{ar}), 129.15 - 127.91 \text{ (m}, 5xC_{ar}), 125.51 \text{ (d}, J = 15.2 \text{ Hz}, 2xC_{ar}), 123.10 \text{ (d}, J = 13.2 \text{ Hz}, 2xC_{ar}),$ 386 Car), 120.56 (d, J = 21.0 Hz, 4xCar), 111.21 (d, J = 22.0 Hz, Car), 103.91 (t, J = 26.2 Hz, Car), 67.59 (s, 387 CH₂Ph), 48.06 (d, J = 158.1 Hz, CHP), 30.51 (s, CH₂CH₂CHP), 25.10 (d, J = 14.5 Hz, CH₂CH₂CHP) 388 ppm; ¹⁹F NMR (376 MHz, CDCl₃), δ = -112.43 – -112.49 (m, F-H, *cis*), -112.64 (dd, *J* = 15.0, 7.3 Hz, F-H, 389 trans), -113.76 – -113.87 (m, F-H, cis), -113.99 (dd, J = 16.8, 8.4 Hz, F-H, trans) ppm; ³¹P NMR (162 390 MHz, CDCl₃), $\delta = 17.60$ (s, 1P, trans), 17.24 (s, 1P, cis) ppm; HRMS (ESI-MS) m/z [MH]⁺ calculated for 391 C₂₉H₂₆F₂NO₅P: 538.1595, found: 538.1605; [M+Na]⁺ calculated for C₂₉H₂₆F₂NO₅PNa: 560.1414, found: 392 560.1414.

393 394

Diphenyl 1-{[(N-benzyloxy)carbonyl]amino}-3-(3,4-difluorophenyl)propylphosphonate(6f)

395 White solid, yield 56%; ¹H NMR (400 MHz, CDCl₃), δ = 7.38 – 6.82 (m, 18H, CH_{ar}), 5.35 (br d, *J* = 396 10.2 Hz, 1H, NH), 5.13 (d, J = 2.7 Hz, 1H, CH2OC, trans), 5.13 (d, J = 27.2 Hz, 1H, CH2OC, cis), 4.48 397 (dtd, J = 17.4, 10.5, 3.3 Hz, 1H, CHP, trans), 4.27 (dd, J = 21.2, 9.9 Hz, 1H, CHP, cis), 2.80 (ddd, J = 14.2, 398 9.3, 5.3 Hz, 1H, CH₂), 2.72 - 2.63 (m, 1H, CH₂), 2.34 - 2.22 (br m, 1H, CH₂), 2.10 - 1.96 (br m, 1H, CH₂) 399 ppm; 13 C NMR (101 MHz, CDCl₃), δ = 156.02 (d, *J* = 6.1 Hz, CONH), 150.27 (dd, *J* = 11.3, 7.7 Hz, 2xCar), 400 149.60 (ddd, J = 136.6, 131.7, 12.6 Hz, 2xCar, Car-F), 137.38 (t, J = 4.7 Hz, Car), 136.07 (s, Car), 129.90 (d, J = 401 12.9 Hz, 4xCar), 128.75 – 128.20 (m, 5xCar), 125.56 (d, J = 16.7 Hz, 2xCar), 124.46 (dd, J = 6.0, 3.5 Hz, Car), 402 120.52 (dd, J = 19.0, 4.1 Hz, $4xC_{ar}$), 117.31 (dd, J = 17.0, 8.6 Hz, $2xC_{ar}$), 67.59 (s, CH2Ph), 47.87 (d, J = 17.0, 8.6 Hz, $2xC_{ar}$), 67.59 (s, CH2Ph), 47.87 (d, J = 17.0, 8.6 Hz, $2xC_{ar}$), 67.59 (s, CH2Ph), 47.87 (d, J = 17.0, 8.6 Hz, $2xC_{ar}$), 67.59 (s, CH2Ph), 47.87 (d, J = 17.0, 8.6 Hz, $2xC_{ar}$), 67.59 (s, CH2Ph), 47.87 (d, J = 17.0, 8.6 Hz, $2xC_{ar}$), 67.59 (s, CH2Ph), 47.87 (d, J = 17.0, 8.6 Hz, $2xC_{ar}$), 67.59 (s, CH2Ph), 47.87 (d, J = 17.0, 8.6 Hz, $2xC_{ar}$), 67.59 (s, CH2Ph), 47.87 (d, J = 17.0, 8.6 Hz, $2xC_{ar}$), 67.59 (s, CH2Ph), 47.87 (d, J = 17.0, 8.6 Hz, $2xC_{ar}$), 67.59 (s, CH2Ph), 47.87 (d, J = 17.0, 8.6 Hz, $2xC_{ar}$), 67.59 (s, CH2Ph), 47.87 (d, J = 17.0, 8.6 Hz, $2xC_{ar}$), 67.59 (s, CH2Ph), 47.87 (s, CA2Ph)), 67.59 (s, CH2Ph), 47.87 (s, CA2Ph)) 403 158.3 Hz), 31.83 (d, J = 4.2 Hz), 31.19 (d, J = 14.3 Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃), δ = -137.48 – 404 -137.64 (m, F-H, trans), -137.66 - -137.85 (m, F-H, cis), -141.07 - -141.22 (m, F-H, trans), -141.29 -405 -141.46 (m, F-H, *cis*) ppm; ³¹P NMR (162 MHz, CDCl₃), δ = 17.58 (s, 1P, *cis*), 17.28 (s, 1P, *trans*) ppm; 406 HRMS (ESI-MS) *m*/*z* [MH]⁺ calculated for C₂₉H₂₆F₂NO₅P: 538.1595, found: 538.1714; [M+Na]⁺ 407 calculated for C₂₉H₂₆F₂NO₅PNa: 560.1414, found: 560.1416. 408

409Diphenyl1-{[(N-benzyloxy)carbonyl]amino}-3-(4-trifluoromethylphenyl)propylphosphonate410(6g)

411 White solid, yield 40%; ¹H NMR (400 MHz, CDCl₃), δ = 7.51 (d, J = 8.1 Hz, 2H, 2xCH_{ar}), 7.43 – 412 7.08 (m, 15H, CH_{ar}), 7.06 (d, J = 8.5 Hz, 2H, 2xCH_{ar}), 5.73 (d, J = 10.2 Hz, 1H, NH), 5.14 (dd, J = 5.9 Hz, 413 2H, CH2OC, trans), 5.14 (d, J = 30.4 Hz, 2H, CH2OC, cis), 4.53 (dtd, J = 17.5, 10.6, 3.5 Hz, 1H, CHP, 414 trans), 4.28 (dd, J = 22.6, 10.3 Hz, 1 H, CHP, cis), 2.89 (ddd, J = 14.3, 9.3, 5.3 Hz, 1 H, CH2), 2.83 - 2.73 (m, 415 1H, CH₂), 2.38 – 2.26 (br m, 1H, CH₂), 2.17 – 2.05 (br m, 1H, CH₂) ppm; ¹³C NMR (101 MHz, CDCl₃), δ 416 = 156.18 (d, J = 6.1 Hz, CONH), 150.16 (dd, J = 27.5, 9.8 Hz, 2xCar), 144.67 (s, Car), 136.20 (s, Car), 129.89 417 (d, J = 15.6 Hz, 4xCar), 128.94 (s, 3xCar), 128.67 (s, 2xCar), 128.72 (q, $J = 32.4 \text{ Hz}, Car-CF_3), 128.41$ (s, 418 2xCar), 128.25 (s, 2xCar), 125.55 (dd, J = 11.5, 7.8 Hz, 2xCar), 124.37 (q, J = 271.8 Hz, CF3-Car), 120.60 (d, J 419 = 4.1 Hz,2xCar), 120.43 (d, J = 4.2 Hz, 2xCar), 67.50 (s, CH2Ph), 48.02 (d, J = 158.5 Hz, CHP), 31.81 (d, J = 420 14.2 Hz, CH₂CH₂CH₂CHP), 31.58 (d, J = 4.5 Hz, CH₂CH₂CHP) ppm; ¹⁹F NMR (376 MHz, CDCl₃), $\delta =$ 421 -62.22 (s, F-H, trans), -62.24 (s, F-H, cis) ppm;³¹P NMR (162 MHz, CDCl₃), δ = 17.65 (s, 1P, trans), 17.34 422 (s, 1P, *cis*) ppm; HRMS (ESI-MS) *m*/*z* [MH]⁺ calculated for C₃₀H₂₇F₃NO₅P: 570.1657, found: 570.1650;
 423 [M+Na]⁺ calculated for C₃₀H₂₇F₃NO₅PNa: 592.1476, found: 592.1459.

- 424
- 425 Diphenyl 1-{[(N-benzyloxy)carbonyl]amino}-3-(2-trifluoromethylphenyl)propylphosphonate
 426 (6h)

427 White solid, yield 64%; ¹H NMR (400 MHz, CDCl₃), δ = 7.61 (d, *J* = 7.8 Hz, 1H, CH_{ar}), 7.44 (t, *J* = 428 7.4 Hz, 1H, CHar), 7.37 – 7.06 (m, 17H, CHar), 5.30 (d, J = 10.4 Hz, 1H, NH), 5.15 (s, 1H, CH₂OC, trans), 429 5.15 (d, J = 25.4 Hz, 1H, CH₂OC, *cis*), 4.57 (dtd, J = 17.4, 10.6, 3.4 Hz, 1H, CHP, *trans*), 4.47 – 4.33 (m, 430 1H, CHP, cis), 3.11 – 3.03 (m, 1H, CH2), 2.94 – 2.83 (m, 1H, CH2), 2.43 – 2.29 (br m, 1H, CH2), 2.10 – 431 1.96 (br m, 1H, CH₂) ppm; ¹³C NMR (101 MHz, CDCl₃), δ =156.11 (d, *J* = 6.2 Hz, CONH), 150.13 (dd, *J* 432 = 21.3, 9.7 Hz, 2xCar), 139.38 (s, 2xCar), 136.14 (s, 2xCar), 132.09 (s, 2xCar), 129.88 (d, J = 10.5 Hz, 4xCar), 433 128.81 - 128.10 (m, $5xC_{ar}$), 127.34 (q, J = 273.8 Hz, CF_3 - C_{ar}), 126.23 (q, J = 5.9 Hz, C_{ar}), 125.51 (d, J = 14.2434 Hz, 2xCar), 120.59 (dd, J = 21.4, 4.0 Hz, 4xCar), 67.57 (s, CH2Ph), 48.39 (d, J = 157.9 Hz, CHP), 32.22 (s, 435 CH₂CH₂CHP), 29.12 (d, *J* = 12.9 Hz, CH₂CH₂CHP) ppm; ¹⁹F NMR (376 MHz, CDCl₃), δ = -59.46 (s, 3F, 436 CF₃, trans), -59.49 (s, 3F, CF₃, cis) ppm;³¹P NMR (162 MHz, CDCl₃), δ = 17.48 (s, 1P, trans), 17.10 (s, 1P, 437 *cis*) ppm; HRMS (ESI-MS) *m*/*z* [MH]⁺ calculated for C₃₀H₂₇F₃NO₅P: 570.1657, found: 570.1656; 438 [M+Na]⁺ calculated for C₃₀H₂₇F₃NO₅PNa: 592.1476, found: 592.1470.

439

440Diphenyl1-{[(N-benzyloxy)carbonyl]amino}-2-(2-bromo-4-fluorophenyl)ethylphosphonate441(13a)

442 White solid, yield 18%; ¹H NMR (400 MHz, CDCl₃), δ = 7.35 – 7.04 (m, 17H, 17xCH_{ar}), 6.84 (td, J = 443 8.2, 2.6 Hz, 1H, CHar), 5.48 (d, J = 10.5 Hz, 1H, NH), 4.95 (d, J = 12.9 Hz, 2H, CH2OC, trans), 4.95 (d, J = 444 37.5 Hz, 2H, CH2OC, cis), 4.93 - 4.81 (m, 1H, CHP, trans), 3.48 (dt, J = 14.2, 4.3 Hz, 1H, CH2), 3.11 (ddd, 445 J = 14.2, 11.7, 9.4 Hz, 1H, CH₂) ppm; ¹³C NMR (101 MHz, CDCl₃), δ = 161.51 (d, J = 250.3 Hz, Car-F), 446 155.68 (d, J = 7.3 Hz, CONH), 150.34 (d, J = 9.8 Hz, Car), 150.06 (d, J = 9.7 Hz, Car), 136.17 (s, Car), 132.41 447 (d, J = 8.4 Hz, Car), 131.50 (dd, J = 16.2, 3.6 Hz, 2xCar), 129.99 (d, J = 1.0 Hz, 2xCar), 129.84 (d, J = 0.8 Hz), 129.84 (d, J = 0.8 Hz),448 2xCar), 128.55 (s, Car), 128.28 (s, Car), 128.10 (s, Car), 125.57 (d, J = 15.8 Hz, 2xCar), 124.91 (d, J = 9.6 Hz, 449 2xCar), 120.56 (dd, J = 16.1, 4.2 Hz, 2xCar), 120.22 (d, J = 24.4 Hz, 2xCar), 114.69 (d, J = 20.8 Hz, 2xCar), 450 67.19 (s, CH2Ph), 48.49 (dd, J = 159.4, 1.0 Hz, CHP), 35.51 (d, J = 6.6 Hz, CH2CHP) ppm; ¹⁹F NMR (376 451 MHz, CDCl₃), δ = -112.52 (dd, J = 14.1, 7.4 Hz, F-H, *cis*), -112.82 (dd, J = 14.1, 7.9 Hz, F-H, *cis*) ppm;³¹P 452 NMR (162 MHz, CDCl₃), δ = 16.76 (s, 1P, *trans*), 16.30 (s, 1P, *cis*) ppm; HRMS (ESI-MS) *m/z* [MH]⁺ 453 calculated for C₂₈H₂₄BrFNO₅P: 584.0638, found: 584.0640; [M+Na]⁺ calculated for C₂₈H₂₄BrFNO₅PNa: 454 606.0457, found: 606.0466.

455

456Diphenyl1-{[(N-benzyloxy)carbonyl]amino}-2-(2-bromo-5-fluorophenyl)ethylphosphonate457(13b)

458 White solid, yield 17%; ¹H NMR (400 MHz, CDCl₃), δ = 7.46 (dd, *J* = 8.8, 5.3 Hz, 1H, CH_{ar}), 7.35 – 459 7.07 (m, 15H, 15xCHar), 7.00 (dd, J = 9.0, 3.0 Hz, 1H, CHar), 6.86 – 6.79 (m, 1H, CHar), 5.37 (d, J = 10.6 460 Hz, 1H, NH), 5.08 – 4.83 (m, 1H, CHP, trans), 4.96 (d, J = 3.0 Hz, 2H, CH₂OC, trans), 4.96 (d, J = 17 Hz, 461 2H, CH2OC, cis), 4.95 (d, J = 37.5 Hz, 2H, CH2OC, cis), 4.93 - 4.81 (m, 1H, CHP, trans), 3.51 (dt, J = 14.4 462 4.3 Hz, 1H, CH₂), 3.11 (ddd, J = 14.2, 11.7, 9.2 Hz, 1H, CH₂) ppm; ¹³C NMR (101 MHz, CDCl₃), δ = 463 161.76 (d, J = 247.4 Hz, Car-F), 155.72 (d, J = 7.1 Hz, CONH), 150.31 (d, J = 9.4 Hz, Car), 150.03 (d, J = 9.7464 Hz, Car), 137.75 (dd, J = 15.9, 7.7 Hz, 2xCar), 136.17 (s, Car), 134.11 (d, J = 8.0 Hz, Car), 129.92 (d, J = 16.8 465 Hz, 2xCar), 128.60 (d, J = 8.5 Hz, 2xCar), 128.29 (d, J = 8.8 Hz, 2xCar), 128.02 (s, Car), 125.58 (d, J = 16.6 466 Hz, 2xCar), 120.54 (dd, J = 16.3, 4.2 Hz, 2xCar), 119.12 (d, J = 3.2 Hz, 2xCar), 118.73 (d, J = 22.7 Hz, 2xCar), 467 116.09 (d, J = 22.6 H, $2xC_{ar}$), 67.23 (s, CH₂Ph), 48.31 (d, J = 160.2 Hz, CHP), 36.40 (d, J = 6.7 Hz, 468 CH₂CHP) ppm; ¹⁹F NMR (376 MHz, CDCl₃), δ = -113.99 – -114.15 (m, F-H, *cis*), -114.37 (dd, *J* = 13.8, 8.3 469 Hz, F-H, trans) ppm;³¹P NMR (162 MHz, CDCl₃), δ = 16.51 (s, 1P, trans), 16.06 (s, 1P, cis) ppm; HRMS 470 (ESI-MS) *m*/*z* [MH]⁺ calculated for C₂₈H₂₄BrFNO₅P: 584.0638, found: 584.0635; [M+Na]⁺ calculated for 471 C₂₈H₂₄BrFNO₅PNa: 606.0457, found: 606.0455.

T/		
473	Diphenyl	1-{[(N-benzyloxy)carbonyl]amino}-2-(3-bromo-4-fluorophenyl)ethylphosphonate
474	(13c)	
475	White solid,	yield 15%; ¹ H NMR (400 MHz, CDCl ₃), δ = 7.42 (dd, J = 6.5, 2.0 Hz, 1H, CH _{ar}), 7.34 -
476	7.01 (m, 16H, 16x	CHar), 6.96 (t, J = 8.4 Hz, 1H, CHar), 5.47 (d, J = 10.5 Hz, 1H, NH), 5.02 (d, J = 13.3 Hz,
477	2H. CH2OC. tran	$(5), 5.02 \text{ (d. } I = 37.8 \text{ Hz}, 2 \text{ H}, \text{CH}_2\text{OC}, cis), 4.79 - 4.65 \text{ (m. 1H, CHP, trans)}, 3.35 - 3.25$

478 (m, 1H, CH₂), 2.96 (dt, J = 14.3, 10.1 Hz, 1H, CH₂) ppm; ¹³C NMR (101 MHz, CDCl₃), δ = 158.29 (d, J = 479 246.8 Hz, Car-F), 155.81 (d, J = 7.3 Hz, CONH), 150.19 (d, J = 9.8 Hz, Car), 149.94 (d, J = 9.7 Hz, Car), 480 136.11 (s, Car), 134.47 (s, Car), 133.48 (dd, J = 14.4, 3.8 Hz, 2xCar), 130.02 (d, J = 0.9 Hz, 2xCar), 129.85 (s, 481 Car), 128.63 (s, 2xCar), 128.35 (s, Car), 128.09 (d, J = 16.6 Hz, 2xCar), 125.72 (d, J = 1.0 Hz, 2xCar), 125.54 (s, 482 Car), 120.55 (dd, J = 20.6, 4.2 Hz, 2xCar), 116.53 (d, J = 22.3 Hz, 2xCar), 108.95 (d, J = 20.9 Hz, 2xCar), 67.37 483 (s, CH2Ph), 49.32 (d, J = 158.5 Hz, CHP), 35.02 (d, J = 5.7 Hz, CH2CHP) ppm; ¹⁹F NMR (376 MHz, 484 CDCl₃), δ = -109.37 (s, F-H, *cis*), -109.62 - -109.70 (m, F-H, *trans*) ppm; ³¹P NMR (162 MHz, CDCl₃), δ = 485 16.84 (s, 1P, trans), 16.41 (s, 1P, cis) ppm; HRMS (ESI-MS) m/z [MH]⁺ calculated for C₂₈H₂₄BrFNO₅P: 486 584.0638, found: 584.0638; [M+Na]⁺ calculated for C₂₈H₂₄BrFNO₅PNa: 606.0457, found: 606.0457.

488 Diphenyl 1-{[(N-benzyloxy)carbonyl}amino}-2-(4-bromo-2-fluorophenyl)ethylphosphonate 489 (13d)

490 White solid, yield 21%; ¹H NMR (400 MHz, CDCl₃), δ = 7.38 – 7.03 (m, 18H, CH_{ar}), 5.37 (d, *J* = 10.4 491 Hz, 1H, NH), 4.98 (d, J = 14.9 Hz, 2H, CH2OC, trans), 4.98 (d, J = 39.5 Hz, 2H, CH2OC, cis), 4.82 - 4.69 492 (m, 1H, CHP, *trans*), 3.38 – 3.29 (m, 1H, CH₂), 3.04 (dt, *J* = 14.0, 10.5 Hz, 1H, CH₂) ppm; ¹³C NMR (101 493 MHz, CDCl₃), δ = 161.24 (d, J = 250.2 Hz, Car-F), 155.72 (d, J = 7.1 Hz, CONH), 150.23 (d, J = 9.6 Hz, 494 Car), 149.97 (d, J = 9.7 Hz, Car), 136.11 (s, Car), 132.63 (d, J = 4.9 Hz, 2xCar), 130.00 (d, J = 1.0 Hz, 2xCar), 495 129.85 (d, J = 0.8 Hz, Car), 128.61 (s, 2xCar), 128.33 (s, Car), 128.08 (s, 2xCar), 127.61 (d, J = 3.7 Hz, 2xCar), 496 125.69 (d, J = 1.2 Hz, Car), 125.52 (d, J = 0.9 Hz, 2xCar), 120.57 (dd, J = 21.1, 4.2 Hz, 2xCar), 119.15 (d, J = 21.1, 4497 25.4 Hz, 2xC_{ar}), 67.31 (s, CH₂Ph), 48.50 (d, *J* = 159.5 Hz, CHP), 29.37 (d, *J* = 5.8 Hz, CH₂CHP) ppm;¹⁹F 498 NMR (376 MHz, CDCl₃), δ = -114.32 (t, *J* = 8.4 Hz, F-H, *trans*), -114.43 (t, *J* = 7.8 Hz, F-H, *cis*) ppm;³¹P 499 NMR (162 MHz, CDCl₃), δ = 16.61 (s, 1P, *trans*), 16.16 (s, 1P, *cis*) ppm; HRMS (ESI-MS) *m*/*z* [MH]⁺ 500 calculated for C₂₈H₂₄BrFNO₅P: 584.0638, found: 584.0758; [M+Na]⁺ calculated for C₂₈H₂₄BrFNO₅PNa: 501 606.0457, found: 606.0462.

502

487

172

503Diphenyl1-{[(N-benzyloxy]carbonylamino}-2-(4-bromo-3-fluorophenyl)ethylphosphonate504(13e)

505 White solid, yield 20%; ¹H NMR (400 MHz, CDCl₃), δ = 7.38 (t, *J* = 7.7 Hz, 1H, CH_{at}), 7.34 – 7.27 506 (m, 5H, 5xCHar), 7.24 – 7.10 (m, 7H, CHar), 7.04 (d, J = 8.4 Hz, 2H, 2x CHar), 7.00 (dd, J = 9.3, 1.8 Hz, 1H, 507 CHar), 6.88 (dd, J = 8.2, 1.6 Hz, 1H, CHar), 5.41 (d, J = 10.3 Hz, 1H, NH), 5.02 (d, J = 14.1 Hz, 2H, 508 CH2OC, trans), 5.02 (d, J = 38.6 Hz, 2H, CH2OC, cis), 4.74 (dtd, J = 17.9, 10.4, 4.4 Hz, 1H, CHP, trans), 509 3.36 – 3.26 (m, 1H, CH₂), 3.04 (dt, J = 14.4, 10.0 Hz, 1H, CH₂) ppm; ¹³C NMR (101 MHz, CDCl₃), δ = 510 158.97 (d, J = 248.0 Hz, Car-F), 155.72 (d, J = 6.9 Hz, CONH), 150.03 (dd, J = 24.2, 9.7 Hz, 2xCar), 137.79 511 (dd, J = 14.3, 7.0 Hz, 2xCar), 136.03 (s, Car), 133.57 (d, J = 0.7 Hz, 2xCar), 130.03 (d, J = 1.0 Hz, 2xCar), 512 129.87 (d, J = 0.4 Hz, Car), 128.65 (s, Car), 128.40 (s, Car), 128.11 (s, Car), 125.69 (d, J = 1.2 Hz, Car), 125.52 513 $(d, J = 0.9 \text{ Hz}, 2xC_{ar}), 120.57 (dd, J = 21.1, 4.2 \text{ Hz}, 2xC_{ar}), 119.15 (d, J = 25.4 \text{ Hz}, 2xC_{ar}), 67.31 (s, CH2Ph),$ 514 48.50 (d, *J* = 159.5 Hz, CHP), 29.37 (d, *J* = 5.8 Hz, CH₂CHP) ppm; ¹⁹F NMR (376 MHz, CDCl₃), δ = 515 -106.68 (t, J = 7.7 Hz, F-H, cis), -106.92 (t, J = 8.2 Hz, F-H, cis) ppm;³¹P NMR (162 MHz, CDCl₃), δ = 516 16.75 (s, 1P, trans), 16.31 (s, 1P, cis) ppm; HRMS (ESI-MS) m/z [MH]⁺ calculated for C₂₈H₂₄BrFNO₅P: 517 584.0638, found: 584.0629; [M+Na]⁺ calculated for C₂₈H₂₄BrFNO₅PNa: 606.0457, found: 606.0464.

518 Section S6. The characterization data of the compounds 14c, 14f, 14h, 16d and 16e.

519 Dimethyl 1-{[(N-benzyloxy)carbonyl]amino}-3-(3-fluorophenyl)propylphosphonate (14c)

- 520 White solid, yield 63%; ¹H NMR (400 MHz, CDCl₃), δ = 7.37 7.27 (m, 5H, 5xCH_{ar}), 7.20 (dd, J =
- 521 15.1, 7.6 Hz, 1H, CHar), 6.94 6.83 (m, 3H, 3xCHar), 5.22 (d, J = 9.6 Hz, 1H, NH), 5.13 (d, J = 3.6 Hz, 2H,
- 522 CH2OC, trans), 5.13 (d, J = 28.0 Hz, 2H, CH2OC, cis), 4.18 4.07 (m, 1H, CHP, trans), 3.71 (t, J = 11.0

523 Hz, 6H, 2xCH₃), 2.82 – 2.73 (m, 1H, CH₂), 2.69 – 2.60 (m, 1H, CH₂), 2.19 – 2.07 (m, 1H, CH₂), 1.95 – 1.81 524 $(m, 1H, CH_2)$ ppm; ¹³C NMR (101 MHz, CDCl₃), $\delta = 162.99$ (d, J = 245.6 Hz, C_{ar} -F), 156.13 (d, J = 5.3 Hz, 525 CONH), 143.31 (d, J = 7.4 Hz, Car), 136.26 (s, Car), 129.99 (d, J = 8.3 Hz, Car), 128.64 (s, 2xCar), 128.40 (s, 526 2xCar), 128.37 (s, Car), 124.21 (d, J = 2.8 Hz, Car), 115.39 (d, J = 21.0 Hz, Car), 113.18 (d, J = 21.0 Hz, Car), 527 67.39 (s, CH2Ph), 53.40 (d, J = 7.1 Hz, OCH3), 53.23 (d, J = 6.5 Hz, OCH3), 46.93 (d, J = 156.3 Hz, CHP), 528 31.89 (d, J = 12.0 Hz, CH₂CH₂CHP), 25.68 (d, J = 3.3 Hz, CH₂CH₂CHP) ppm; ¹⁹F NMR (376 MHz, 529 CDCl₃), δ = -113.24 (dd, *J* = 14.0, 8.4 Hz, F-H, *cis*), -113.35 (td, *J* = 9.3, 6.1 Hz, F-H, *trans*) ppm; ³¹P NMR 530 $(162 \text{ MHz}, \text{CDCl}_3), \delta = 27.45 \text{ (s, 1P, trans)}, 26.97 \text{ (s, 1P, cis) ppm; HRMS (ESI-MS) } m/z \text{ [MH]}^+ \text{ calculated}$ 531 for C19H23FNO5P: 396.1376, found: 396.1380; [M+Na]+ calculated for C19H23FNO5PNa: 418.1196, 532 found: 418.1165. 533 534 Dimethyl 1-{[(N-benzyloxy)carbonyl]amino}-3-(3,4-difluorophenyl)propylphosphonate(14f) 535 Colourless oil, yield 65%; ¹H NMR (400 MHz, CDCl₃), δ = 7.38 – 7.28 (m, 5H, 5xCH_ar), 7.02 (dt, J = 536 10.3, 8.4 Hz, 1H, CHar), 6.95 (ddd, J = 11.1, 7.6, 2.0 Hz, 1H, CHar), 6.87 – 6.82 (m, 1H, CHar), 5.18 (d, J = 537 10.4 Hz, 1H, NH), 5.12 (d, J = 2.8 Hz, 2H, CH2OC, trans), 5.12 (d, J = 27.3 Hz, 2H, CH2OC, cis), 4.16 -538 4.03 (m, CHP, trans), 3.71 (t, J = 10.8 Hz, 6H, 2xCH₃), 2.74 (ddd, J = 14.5, 9.6, 5.2 Hz, 1H, CH₂), 2.67 -539 2.53 (m, 1H, CH₂), 2.15 - 2.04 (m, 1H, CH₂), 1.92 - 1.77 (m, 1H, CH₂) ppm; ¹³C NMR (101 MHz, 540 CDCl₃), δ = 156.13 (d, *J* = 5.3 Hz, CONH), 149.63 (ddd, *J* = 245.9, 124.2, 12.3 Hz, 2xCar-F), 137.70 -541 137.55 (m, Car), 136.21 (s, Car), 128.65 (s, 2xCar), 128.40 (s, 2xCar), 128.21 (s, 2xCar), 124.41 (dd, J = 6.0, 3.5 542 Hz, Car), 117.25 (dd, J = 16.9, 9.5 Hz, Car), 67.42 (s, CH2Ph), 53.40 (d, J = 7.1 Hz, OCH3), 53.20 (d, J = 6.6 543 Hz, OCH₃), 46.67 (dd, J = 156.3, 10.5 Hz, CHP, trans/cis), 31.56 (d, J = 2.3 Hz, CH₂CH₂CHP), 31.28 (d, J 544 = 13.2 Hz, CH₂CH₂CH₂CH₂CH₂) ppm; ¹⁹F NMR (376 MHz, CDCl₃), δ = -137.85 - -138.02 (m, F-H), -141.46 -545 -141.66 (m, F-H) ppm; ³¹P NMR (162 MHz, CDCl₃), δ = 27.30 (s, 1P, *trans*), 26.82 (s, 1P, *cis*) ppm; 546 HRMS (ESI-MS) *m*/*z* [MH]⁺ calculated for C₁₉H₂₂F₂NO₅P: 414.1282, found: 414.1290; [M+Na]⁺ 547 calculated for C19H22F2NO5PNa: 436.1101, found: 436.1084. 548 549 Dimethyl 1-{[(N-benzyloxy)carbonyl]amino}-3-(2-trifluoromethylphenyl)propylphosphonate 550 (14h) 551 Colourless oil, yield 80%; ¹H NMR (400 MHz, CDCl₃), δ = 7.59 (d, *J* = 7.8 Hz, 1 H, CH_{ar}), 7.44 (t, *J* = 552 7.4 Hz, 1H, CHar), 7.37 - 7.25 (m, 5H, 5xCHar), 5.12 (s, 2H, CH2OC, trans), 5.14 (d, J = 25.3 Hz, 2H, 553 CH2OC, cis), 4.26 – 4.14 (m, CHP), 3.72 (dd, J = 13.0, 10.7 Hz, 6H, 2xCH3), 3.03 – 2.94 (m, 1H, CH2), 554 2.85 – 2.75 (m, 1H, CH₂), 2.21 – 2.09 (m, 1H, CH₂), 1.93 – 1.76 (m, 1H, CH₂) ppm; ¹³C NMR (101 MHz, 555 CDCl₃), δ = 156.20 (d, *J* = 5.3 Hz, CONH), 139.60 (s, Car), 136.27 (s, Car), 132.02 (d, *J* = 1.0 Hz, Car), 131.39 556 (s, Car), 128.64 (s, 2xCar), 128.33 (s, 2xCar), 128.10 (dd, *J* = 6.0, 3.5 Hz, 2xCar), 126.44 (s, Car), 126.16 (q, *J* = 557 5.7 Hz, Car), 124.64 (q, J = 273.8 Hz, CF3-Car), 67.41 (s, CH2Ph), 53.32 (dd, J = 8.4, 7.1 Hz, 2xOCH3), 47.24 558 (d, J = 156.3 Hz, CHP), 32.05 (d, J = 3.3 Hz, CH₂CH₂CHP), 29.19 (d, J = 13.0 Hz, CH₂CH₂CHP) ppm; ¹⁹F 559 NMR (376 MHz, CDCl₃), δ = -59.53 (s, 3F, CF₃) ppm; ³¹P NMR (162 MHz, CDCl₃), δ = 27.19 (s, 1P, 560 trans), 26.66 (s, 1P, cis) ppm; HRMS (ESI-MS) m/z [MH]⁺ calculated for C₂₀H₂₃F₃NO₅P: 446.1344, 561 found: 446.1340; [M+Na] + calculated for C20H23F3NO5PNa: 468.1164, found: 468.1168. 562 563 Dimethyl 1-{[(N-benzyloxy)carbonyl]amino}-2-(4-bromo-2-fluorophenyl)ethylphosphonate 564 (16d) 565 Colourless oil, yield 57%; ¹H NMR (400 MHz, CDCl₃), δ = 7.36 – 7.27 (m, 5H, 5xCH_ar), 7.23 – 7.13 566 (m, 2H, 2xCHar), 7.07 (t, J = 8.0 Hz, 1H, CHar), 5.08 (d, J = 10.1 Hz, 1H, NH), 4.98 (d, J = 37.2 Hz, 2H, 567 CH2OC, trans), 4.98 (d, J = 12.5 Hz, 2H, CH2OC, cis), 4.45 – 4.30 (m, CHP), 3.75 (dd, J = 15.1, 10.6 Hz, 568 6H, 2xCH₃), 3.14 (dt, J = 13.2, 4.3 Hz, 1H, CH₂), 2.87 (dt, J = 13.9, 10.6 Hz, 1H, CH₂) ppm; ¹³C NMR (101 569 MHz, CDCl₃), δ = 161.20 (d, *J* = 250.0 Hz, Car-F), 155.79 (d, *J* = 5.9 Hz, CONH), 136.19 (s, Car), 132.48 (d,

- 570 $J = 4.9 \text{ Hz}, \text{ C}_{ar}$, 128.58 (s, 2xC_{ar}), 128.30 (s, 2xC_{ar}), 127.99 (s, 2xC_{ar}), 127.55 (d, $J = 3.5 \text{ Hz}, \text{ C}_{ar}$), 122.89 (t, J = 3.5 Hz), 123.80 (t, J =
- 571 = 15.1 Hz, Car), 119.08 (d, J = 25.5 Hz, Car), 67.20 (s, CH₂Ph), 53.60 (d, J = 6.8 Hz, OCH₃), 53.36 (d, J = 6.5 572 Hz, OCH₃), 47.39 (d, J = 157.4 Hz, CHP), 29.17 (d, J = 3.6 Hz, CH₂CHP) ppm; ¹⁹F NMR (376 MHz,
- 572 The, overlas, 47.5° (d, f = 107.4 Hz, CH), 25.17 (d, f = 5.0 Hz, CH2CH) ppH, -1 Hvin (570 WHz, 573 CDCl₃), $\delta = -114.63$ (t, f = 8.4 Hz, 1F) ppm; ³¹P NMR (162 MHz, CDCl₃), $\delta = 26.26$ (s, 1P, *trans*), 25.70 (s,

- 574 1P, *cis*) ppm; HRMS (ESI-MS) *m*/*z* [MH]⁺ calculated for C₁₈H₂₀BrFNO₅P: 460.0325, found: 460.0314;
 575 [M+Na]⁺ calculated for C₁₈H₂₀BrFNO₅P Na: 482.0144, found: 482.0197.
- 576
- 577 Dimethyl 1-{[(N-benzyloxy)carbonyl]amino}-2-(4-bromo-3-fluorophenyl)ethylphosphonate 578 (16e)
- 579 Colourless oil, yield 63.5%; ¹H NMR (400 MHz, CDCl₃), δ = 7.39 (t, *J* = 7.7 Hz, 1H, CH_{ar}), 7.36 -580 7.26 (m, 5H, 5xCHar), 7.24 – 7.18 (m, 1H, CHar), 6.93 (ddd, J = 9.3, 8.7, 1.4 Hz, 1H, CHar), 5.26 (d, J = 10.1 581 Hz, 1H, NH), 5.01 (d, J = 35.7 Hz, 2H, CH2OC, trans), 5.01 (d, J = 11.2 Hz, 2H, CH2OC, cis), 4.42 - 4.30 582 (m, CHP), 3.72 (dd, J = 19.0, 10.6 Hz, 6H, 2xCH₃), 3.18 – 3.09 (m, 1H, CH₂), 2.82 (dt, J = 14.4, 9.9 Hz, 583 1H, CH₂) ppm; ¹³C NMR (101 MHz, CDCl₃), δ = 158.94 (d, J = 247.6 Hz, Car-F), 155.83 (d, J = 5.9 Hz, 584 CONH), 138.37 (dd, J = 14.2, 6.8 Hz, Car), 136.15 (s, Car), 128.61 (s, 2xCar), 128.34 (s, 2xCar), 128.00 (s, 585 2xCar), 126.17 (d, J = 3.4 Hz, Car), 117.50 (d, J = 22.2 Hz, Car), 107.41 (d, J = 20.9 Hz, Car), 67.27 (s, 586 CH₂Ph), 53.54 (d, *J* = 7.3 Hz, OCH₃), 53.26 (d, *J* = 6.6 Hz, OCH₃), 48.00 (d, *J* = 157.2 Hz, CHP), 35.32 (d, 587 *J* = 3.3 Hz, CH₂CHP) ppm; ¹⁹F NMR (376 MHz, CDCl₃), δ = -107.17 (dd, *J* = 9.2, 7.4 Hz, 1F) ppm; ³¹P 588 NMR (162 MHz, CDCl₃), $\delta = 26.38$ (s, 1P, *trans*), 25.79 (s, 1P, *cis*) ppm; HRMS (ESI-MS) m/z [MH]⁺ 589 calculated for C18H20BrFNO5P: 460.0325, found: 460.0327.
- 590

592 propionate (5d).

⁵⁹¹ **Figure S1.** ¹H (**A**), ¹³C (**B**) and ¹⁹F (**C**) NMR spectra for 3-(4-fluorophenyl)propyl-3-(4-fluorophenyl)

14 of 58

Figure S2. ¹H (**A**), ¹H-³¹P HMQC (**B**) and ¹H-¹³C HMQC (**C**) NMR spectra for 1-amino-3-(4-fluorophenyl)propylphosphonic acid (**15d**).

596

Section S7. Molecular docking simulations of the inhibitors 15c, 15f, 17b and 17c binding to active site of pAPN (PDB: 4FKE).

- **Figure S7-1.** Binding mode of the 1-amino-3-(3-fluorophenyl)propylphosphonic acid (compound
- **15c**) with the pAPN. The isomer (*S*) is on the left side (**A**), when the (*R*)-isomer is on the right side
- 601 (**B**). The colouring scheme is identical as in Figure 1.

- **Figure S7-2.** Binding mode of the 1-amino-3-(3,4-difluorophenyl)propylphosphonic acid (compound
- **15f**) with the pAPN. The isomer (*S*) is on the left side (**A**), when the (*R*)-isomer is on the right side
- 611 (**B**). The colouring scheme is identical as in Figure 1.

- 612 Figure S7-3. Binding mode of the 1-amino-2-(2-bromo-5-fluorophenyl)ethylphosphonic acid
- 613 (compound **17b**) with the pAPN. The isomer (*S*) is on the left side (**A**), when the (*R*)-isomer is on the
- 614 right side (**B**). The colouring scheme is identical as in Figure 1. The bromine atom is shown as dark
- 615 red sphere.

- Figure S7-4. Binding mode of the 1-amino-2-(3-bromo-4-fluorophenyl)ethylphosphonic acid
- (compound **17c**) with the pAPN. The isomer (*S*) is on the left side (**A**), when the (*R*)-isomer is on the right side (**B**). The colouring scheme is identical as in Figure 1. The bromine atom is shown as dark red sphere.

- Section S8. Molecular docking simulations of the inhibitors 15f, 15g and 17c binding to active site of hAPN (PDB: 4FYT).
- Figure S8-1. Binding mode of the 1-amino-3-(3,4-difluorophenyl)propylphosphonic acid (compound
- **15f**) with the hAPN. The isomer (S) is on the left side (A), when the (R)-isomer is on the right side
- (**B**). The colouring scheme is identical as in Figure 1.

- 646 Figure S8-2. Binding mode of the 1-amino-3-(4-trifluoromethylphenyl)propylphosphonic acid
- 647 (compound **15g**) with the hAPN. The isomer (*S*) is on the left side (**A**), when the (*R*)-isomer is on the
- right side (**B**). The colouring scheme is identical as in Figure 1.

- 649 Figure S8-3. Binding mode of the 1-amino-2-(3-bromo-4-fluorophenyl)ethylphosphonic acid
- (compound **17c**) with the hAPN. The isomer (*S*) is on the left side (**A**), when the (R)-isomer is on the
- right side (**B**). The colouring scheme is identical as in Figure 1. The bromine atom is shown as dark
- 652 red stick.

669 Figure S9. Molecular structures of

667

А

B

- 670 diphenyl 1-{[(N-benzyloxy)carbonyl]amino}-2-(2-bromo-4-fluorophenyl)ethylphosphonate (13a)(A),
- 671 diphenyl 1-{[(N-benzyloxy)carbonyl]amino}-2-(3-bromo-4-fluorophenyl)ethylphosphonate (13c) (B)
- 672 and dimethyl 1-{[(N-benzyloxy)carbonyl]amino}-3-(3-fluorophenyl)propylphosphonate (14c) (C) in
- 673 the asymmetric part of unit cell. Displacement ellipsoids are drawn at the 50% probability level.
- 674 The geometry around the P atom is distorted tetrahedral, the angles varying from 116.38 (10) ° to
- 675 104.49 (9) ° in molecule **13a**, 115.20 (8)° to 102.02 (8)° in **13c** and 114.22 (16)° to 102.41 (14)° in **14c**. All
- angles involving the non-ester O atom are larger than the others. This corresponds well with other
- 677 substituted aminophosphonic groups. The arrangement of phenyl groups occurs in molecules 13a
- and 13c (oxygen 04 and O5). In molecule 14c we can observe the same arrangement of methyl
 groups. All phenylrings are planar within experimental error.
 - 20 C19 C18 C24 09 C8 05 05 C28 Br1 C27 C28 F1(C24 Br 03 04 C17 22 11 C21 C18 16 C20

680 Table S9-1. Crystal parameters and experimental details of the X-Ray data collection for structure
681 13a, 13c and 14c.

	13a	13c	14c
Crystal data			
Chemical formula	C28H24BrFNO5P	C28H24BrFNO5P	C19H23FNO5P
$M_{ m r}$	584.36	584.36	395.35
Crystal system, space group	Monoclinic, P21/c	Monoclinic, P21/n	Monoclinic, P21/c
Temperature (K)	293	100	293
a, b, c (Å)	13.3129 (7), 10.4517 (4), 19.9282(12)	8.8213 (2), 15.2255 (3), 19.0081(4)	, 11.4935 (12), 18.2514 (16), 10.0442 (11)
β (°)	104.460 (6)	91.843 (2)	111.988 (13)
<i>V</i> (Å ³)	2685.0 (2)	2551.63 (9)	1953.7 (4)
Ζ	4	4	4
μ (mm ⁻¹)	1.64	1.72	0.18
Crystal size (mm)	$0.5 \times 0.3 \times 0.1$	$0.4 \times 0.25 \times 0.1$	$0.3 \times 0.2 \times 0.1$
Data collection			
Absorption correction	Multi-scan	Multi-scan	_
Tmin, Tmax	0.889, 1.000	0.898, 1.000	
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	17793,5237,2460	17121,4996,3862	13191, 3833, 1264
Rint	0.035	0.026	0.144
$(\sin \theta / \lambda)_{max}$ (Å ⁻¹)	0.617	0.617	0.617

$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.034, 0.073, 0.76	0.025, 0.063, 0.95	0.052, 0.071, 0.78
No. of reflections	5237	4996	3833
No. of parameters	334	334	246
$\Delta ext{Qmax}$, $\Delta ext{Qmin}$ (e Å ⁻³)	0.39, -0.49	0.32, -0.33	0.20, -0.23

682 **Table S9-2.** Selected geometric parameters for crystal structure 13a (Å, $^{\circ}$).

F1-C7	1.363 (3)	C11-C16	1.367 (3)
P1-O3	1.4574 (15)	C12-C13	1.372 (5)
P1-O4	1.5701 (16)	C12-H12	0.9300
P1-O5	1.5823 (16)	C13-C14	1.354 (5)
P1-C2	1.794 (2)	C13-H13	0.9300
Br1-C5	1.890 (2)	C14-C15	1.362 (5)
N1-C1	1.350 (3)	C14-H14	0.9300
N1-C2	1.440 (3)	C15-C16	1.367 (4)
N1-H1	0.8600	C15-H15	0.9300
O1-C1	1.344 (3)	C16-H16	0.9300
O1-C10	1.451 (3)	C17-C18	1.350 (3)
O2-C1	1.202 (3)	C17-C22	1.364 (3)
O4-C17	1.409 (3)	C18-C19	1.385 (4)
O5-C23	1.410 (3)	C18-H18	0.9300
C2-C3	1.538 (3)	C19-C20	1.368 (4)
C2-H2	0.9800	C19-H19	0.9300
C3-C4	1.498 (3)	C20-C21	1.358 (4)
С3—НЗА	0.9700	C20-H20	0.9300
С3—Н3В	0.9700	C21-C22	1.371 (3)
C4-C9	1.381 (3)	C21-H21	0.9300
C4-C5	1.387 (3)	C22-H22	0.9300
C5-C6	1.376 (3)	C23-C28	1.345 (3)
C6-C7	1.349 (4)	C23-C24	1.347 (3)
С6—Н6	0.9300	C24-C25	1.373 (4)
C7-C8	1.360 (4)	C24-H24	0.9300
C8-C9	1.378 (3)	C25-C26	1.324 (4)
C8-H8	0.9300	C25-H25	0.9300
С9—Н9	0.9300	C26-C27	1.361 (4)
C10-C11	1.488 (3)	C26-H26	0.9300

C10-H10A	0.9700	C27-C28	1.421 (4)
C10-H10B	0.9700	C27-H27	0.9300
C11-C12	1.351 (4)	C28-H28	0.9300
O3-P1-O4	114.31 (9)	C16-C11-C10	120.7 (3)
O3-P1-O5	115.56 (9)	C11-C12-C13	120.9 (3)
O4-P1-O5	103.75 (8)	C11-C12-H12	119.5
O3-P1-C2	116.38 (10)	C13-C12-H12	119.5
O4-P1-C2	104.49 (9)	C14-C13-C12	120.5 (4)
O5-P1-C2	100.54 (10)	C14-C13-H13	119.7
C1-N1-C2	120.9 (2)	C12-C13-H13	119.7
C1-N1-H1	119.5	C13-C14-C15	119.5 (4)
C2-N1-H1	119.5	C13-C14-H14	120.3
C1-O1-C10	116.0 (2)	C15-C14-H14	120.3
C17-O4-P1	123.97 (13)	C14-C15-C16	119.3 (4)
C23-O5-P1	121.79 (15)	C14-C15-H15	120.3
O2-C1-O1	125.1 (2)	C16-C15-H15	120.3
O2-C1-N1	125.2 (2)	C11-C16-C15	121.8 (3)
O1-C1-N1	109.7 (2)	C11-C16-H16	119.1
N1-C2-C3	111.73 (18)	C15-C16-H16	119.1
N1-C2-P1	108.55 (15)	C18-C17-C22	122.1 (3)
C3-C2-P1	112.74 (15)	C18-C17-O4	120.3 (2)
N1-C2-H2	107.9	C22-C17-O4	117.5 (2)
C3-C2-H2	107.9	C17-C18-C19	118.6 (3)
P1-C2-H2	107.9	C17-C18-H18	120.7
C4-C3-C2	110.78 (18)	C19-C18-H18	120.7
C4-C3-H3A	109.5	C20-C19-C18	120.2 (3)
C2-C3-H3A	109.5	C20-C19-H19	119.9
C4-C3-H3B	109.5	C18-C19-H19	119.9
C2-C3-H3B	109.5	C21-C20-C19	119.5 (3)
НЗА-СЗ-НЗВ	108.1	C21-C20-H20	120.2
C9-C4-C5	116.9 (2)	C19-C20-H20	120.2
C9-C4-C3	120.3 (2)	C20-C21-C22	121.0 (3)
C5-C4-C3	122.7 (2)	C20-C21-H21	119.5
C6-C5-C4	122.2 (2)	C22-C21-H21	119.5
C6-C5-Br1	116.8 (2)	C17-C22-C21	118.4 (3)

C4-C5-Br1	120.99 (19)	C17-C22-H22	120.8
C7-C6-C5	117.7 (3)	C21-C22-H22	120.8
C7-C6-H6	121.2	C28-C23-C24	122.5 (3)
C5-C6-H6	121.2	C28-C23-O5	116.4 (3)
C6-C7-C8	123.4 (3)	C24-C23-O5	121.1 (2)
C6-C7-F1	118.7 (3)	C23-C24-C25	119.5 (3)
C8-C7-F1	117.9 (3)	C23-C24-H24	120.3
C7-C8-C9	117.7 (3)	C25-C24-H24	120.3
С7-С8-Н8	121.1	C26-C25-C24	120.2 (3)
С9-С8-Н8	121.1	C26-C25-H25	119.9
C8-C9-C4	122.0 (3)	C24-C25-H25	119.9
С8-С9-Н9	119.0	C25-C26-C27	121.3 (4)
С4-С9-Н9	119.0	C25-C26-H26	119.4
O1-C10-C11	111.3 (2)	C27-C26-H26	119.4
O1-C10-H10A	109.4	C26-C27-C28	119.2 (3)
C11-C10-H10A	109.4	C26-C27-H27	120.4
O1-C10-H10B	109.4	C28-C27-H27	120.4
C11-C10-H10B	109.4	C23-C28-C27	117.3 (3)
H10A-C10-H10B	108.0	C23-C28-H28	121.4
C12-C11-C16	118.0 (3)	C27-C28-H28	121.4
C12-C11-C10	121.3 (3)		
O3-P1-O4-C17	0.7 (2)	C5-C4-C9-C8	-1.6 (4)
O5-P1-O4-C17	-125.99 (18)	C3-C4-C9-C8	175.2 (2)
C2-P1-O4-C17	129.07 (19)	C1-O1-C10-C11	92.6 (2)
O3-P1-O5-C23	-71.53 (19)	O1-C10-C11-C12	-116.9 (3)
O4-P1-O5-C23	54.40 (18)	O1-C10-C11-C16	65.1 (3)
C2-P1-O5-C23	162.31 (17)	C16-C11-C12-C13	0.8 (5)
C10-O1-C1-O2	7.5 (3)	C10-C11-C12-C13	-177.3 (3)
C10-O1-C1-N1	-173.87 (18)	C11-C12-C13-C14	0.1 (5)
C2-N1-C1-O2	-8.5 (3)	C12-C13-C14-C15	-1.2 (6)
C2-N1-C1-O1	172.85 (17)	C13-C14-C15-C16	1.4 (6)
C1-N1-C2-C3	-105.3 (2)	C12-C11-C16-C15	-0.6 (5)
C1-N1-C2-P1	129.74 (18)	C10-C11-C16-C15	177.5 (3)
O3-P1-C2-N1	61.02 (18)	C14-C15-C16-C11	-0.5 (5)
O4-P1-C2-N1	-66.05 (16)	P1-O4-C17-C18	-71.9 (3)

O5-P1-C2-N1	-173.37 (14)	P1-O4-C17-C22	109.9(2)
O3-P1-C2-C3	-63.32 (19)	C22-C17-C18-C19	0.2 (4)
O4-P1-C2-C3	169.61 (15)	O4-C17-C18-C19	-177.9 (2)
O5-P1-C2-C3	62.28 (17)	C17-C18-C19-C20	0.3 (4)
N1-C2-C3-C4	62.0 (2)	C18-C19-C20-C21	-0.1 (5)
P1-C2-C3-C4	-175.41 (17)	C19-C20-C21-C22	-0.7 (5)
C2-C3-C4-C9	-93.8 (3)	C18-C17-C22-C21	-0.9 (4)
C2-C3-C4-C5	82.8 (3)	O4-C17-C22-C21	177.2 (2)
C9-C4-C5-C6	0.2 (3)	C20-C21-C22-C17	1.2 (4)
C3-C4-C5-C6	-176.5 (2)	P1-O5-C23-C28	-123.6 (2)
C9-C4-C5-Br1	-179.15 (17)	P1-O5-C23-C24	56.7 (3)
C3-C4-C5-Br1	4.1 (3)	C28-C23-C24-C25	-0.3 (5)
C4-C5-C6-C7	1.1 (4)	O5-C23-C24-C25	179.4 (3)
Br1-C5-C6-C7	-179.5 (2)	C23-C24-C25-C26	-2.3 (5)
C5-C6-C7-C8	-1.1 (4)	C24-C25-C26-C27	3.8 (6)
C5-C6-C7-F1	179.7 (2)	C25-C26-C27-C28	-2.7 (7)
C6-C7-C8-C9	-0.2 (4)	C24-C23-C28-C27	1.3 (5)
F1-C7-C8-C9	179.0 (2)	O5-C23-C28-C27	-178.4 (3)
C7-C8-C9-C4	1.6 (4)	C26-C27-C28-C23	0.1 (6)

684 **Table S9-3.** Selected hydrogen-bond parameters for structure **13a**.

$D-H\cdots A$	<i>D</i> —Н (Å)	H…A (Å)	$D\cdots A(\text{\AA})$	$D-\mathrm{H}\cdots A$ (°)
$N1-H1\cdots O3^{i}$	0.86	2.14	2.881 (2)	144.6
C2-H2···Br1	0.98	3.09	3.660 (2)	118.3

685 Symmetry code(s): (i) -*x*+1, -*y*+1, -*z*+1.

686	Table S9-4. Selected	geometric parameters fo	r crystal structure 13c (Å, ⁰).
				/

F1-C7	1.359 (2)	C11-C16	1.388 (3)
P1-O3	1.4650 (13)	C12-C13	1.379 (3)
P1-O5	1.5815 (14)	C12-H12	0.9300
P1-O4	1.5843 (13)	C13-C14	1.382 (3)
P1-C2	1.8043 (18)	C13-H13	0.9300
Br1–C8	1.8844 (19)	C14-C15	1.379 (3)
N1-C1	1.346 (2)	C14-H14	0.9300
N1-C2	1.451 (2)	C15-C16	1.383 (3)

N1-H1	0.8600	C15-H15	0.9300
O1-C1	1.358 (2)	C16-H16	0.9300
O1-C10	1.446 (2)	C17-C18	1.372 (3)
O2-C1	1.209 (2)	C17-C22	1.383 (3)
O4-C17	1.406 (2)	C18-C19	1.388 (3)
O5-C23	1.419 (2)	C18-H18	0.9300
C2-C3	1.538 (2)	C19-C20	1.382 (3)
C2-H2	0.9800	C19-H19	0.9300
C3-C4	1.512 (2)	C20-C21	1.380 (3)
С3—НЗА	0.9700	C20-H20	0.9300
С3—НЗВ	0.9700	C21-C22	1.384 (3)
C4-C5	1.388 (3)	C21-H21	0.9300
C4-C9	1.390 (3)	C22-H22	0.9300
C5-C6	1.387 (3)	C23-C28	1.378 (3)
C5-H5	0.9300	C23-C24	1.382 (3)
C6-C7	1.369 (3)	C24-C25	1.388 (3)
C6-H6	0.9300	C24-H24	0.9300
C7-C8	1.379 (3)	C25-C26	1.375 (3)
C8-C9	1.385 (3)	C25-H25	0.9300
С9—Н9	0.9300	C26-C27	1.375 (3)
C10-C11	1.502 (3)	C26-H26	0.9300
C10-H10A	0.9700	C27-C28	1.390 (3)
C10-H10B	0.9700	C27—H27	0.9300
C11-C12	1.384 (3)	C28-H28	0.9300
O3-P1-O5	115.77 (8)	C16-C11-C10	118.92 (18)
O3-P1-O4	114.45 (7)	C13-C12-C11	120.70 (19)
O5-P1-O4	103.82 (7)	C13-C12-H12	119.7
O3-P1-C2	115.20 (8)	C11-C12-H12	119.7
O5-P1-C2	102.02 (8)	C12-C13-C14	120.2 (2)
O4-P1-C2	103.93 (8)	C12-C13-H13	119.9
C1-N1-C2	121.61 (16)	C14-C13-H13	119.9
C1-N1-H1	119.2	C15-C14-C13	119.5 (2)
C2-N1-H1	119.2	C15-C14-H14	120.2
C1-O1-C10	115.40 (14)	C13-C14-H14	120.2
C17-O4-P1	128.47 (11)	C14-C15-C16	120.3 (2)

C23-O5-P1	120.40(11)	C14-C15-H15	119.9
O2-C1-N1	125.98 (18)	C16-C15-H15	119.9
O2-C1-O1	124.67 (17)	C15-C16-C11	120.4 (2)
N1-C1-O1	109.33 (16)	C15-C16-H16	119.8
N1-C2-C3	111.67 (15)	C11-C16-H16	119.8
N1-C2-P1	106.64 (12)	C18-C17-C22	121.92 (18)
C3-C2-P1	111.54 (13)	C18-C17-O4	117.18 (17)
N1-C2-H2	109.0	C22-C17-O4	120.78 (17)
C3-C2-H2	109.0	C17-C18-C19	118.88 (19)
P1-C2-H2	109.0	C17-C18-H18	120.6
C4-C3-C2	112.25 (15)	C19-C18-H18	120.6
С4-С3-НЗА	109.2	C20-C19-C18	120.3 (2)
С2-С3-НЗА	109.2	C20-C19-H19	119.9
С4—С3—Н3В	109.2	C18-C19-H19	119.9
C2-C3-H3B	109.2	C21-C20-C19	119.77 (19)
НЗА-СЗ-НЗВ	107.9	C21-C20-H20	120.1
C5-C4-C9	118.90 (17)	C19-C20-H20	120.1
C5-C4-C3	120.79 (17)	C20-C21-C22	120.72 (19)
C9-C4-C3	120.29 (16)	C20-C21-H21	119.6
C6-C5-C4	120.87 (18)	C22-C21-H21	119.6
C6-C5-H5	119.6	C17-C22-C21	118.41 (19)
C4-C5-H5	119.6	C17-C22-H22	120.8
C7-C6-C5	118.91 (18)	C21-C22-H22	120.8
C7-C6-H6	120.5	C28-C23-C24	122.27 (19)
C5-C6-H6	120.5	C28-C23-O5	117.27 (17)
F1-C7-C6	119.45 (17)	C24-C23-O5	120.46 (18)
F1-C7-C8	118.82 (18)	C23-C24-C25	118.2 (2)
C6-C7-C8	121.73 (17)	C23-C24-H24	120.9
C7-C8-C9	119.06 (18)	C25-C24-H24	120.9
C7-C8-Br1	119.88 (14)	C26-C25-C24	120.4 (2)
C9-C8-Br1	121.05 (14)	C26-C25-H25	119.8
C8-C9-C4	120.52 (17)	C24-C25-H25	119.8
С8-С9-Н9	119.7	C25-C26-C27	120.5 (2)
С4-С9-Н9	119.7	C25-C26-H26	119.8
O1-C10-C11	112.81 (15)	C27-C26-H26	119.8

O1-C10-H10A	109.0	C26-C27-C28	120.3 (2)
C11-C10-H10A	109.0	C26-C27-H27	119.9
O1-C10-H10B	109.0	C28-C27-H27	119.9
C11-C10-H10B	109.0	C23-C28-C27	118.3 (2)
H10A-C10-H10B	107.8	C23-C28-H28	120.8
C12-C11-C16	118.84 (19)	C27-C28-H28	120.8
C12-C11-C10	122.13 (18)		
O3-P1-O4-C17	-2.54 (18)	C5-C4-C9-C8	-0.5 (3)
O5-P1-O4-C17	-129.67 (15)	C3-C4-C9-C8	-179.04 (17)
C2-P1-O4-C17	123.95 (15)	C1-O1-C10-C11	83.52 (19)
O3-P1-O5-C23	-62.60 (15)	O1-C10-C11-C12	31.2 (3)
O4-P1-O5-C23	63.70 (14)	O1-C10-C11-C16	-152.81 (18)
C2-P1-O5-C23	171.51 (14)	C16-C11-C12-C13	-0.9 (3)
C2-N1-C1-O2	-8.7 (3)	C10-C11-C12-C13	175.08 (18)
C2-N1-C1-O1	172.92 (14)	C11-C12-C13-C14	0.7 (3)
C10-O1-C1-O2	-1.8 (3)	C12-C13-C14-C15	0.2 (3)
C10-O1-C1-N1	176.61 (14)	C13-C14-C15-C16	-0.8 (3)
C1-N1-C2-C3	-120.37 (18)	C14-C15-C16-C11	0.5 (3)
C1-N1-C2-P1	117.55 (16)	C12-C11-C16-C15	0.4 (3)
O3-P1-C2-N1	48.54 (15)	C10-C11-C16-C15	-175.77 (19)
O5-P1-C2-N1	174.79 (12)	P1-O4-C17-C18	-129.37 (16)
O4-P1-C2-N1	-77.48 (13)	P1-O4-C17-C22	54.6 (2)
O3-P1-C2-C3	-73.63 (15)	C22-C17-C18-C19	1.1 (3)
O5-P1-C2-C3	52.63 (14)	O4-C17-C18-C19	-174.98 (17)
O4-P1-C2-C3	160.35 (12)	C17-C18-C19-C20	-1.1 (3)
N1-C2-C3-C4	59.9 (2)	C18-C19-C20-C21	-0.3 (3)
P1-C2-C3-C4	179.11 (13)	C19-C20-C21-C22	1.8 (3)
C2-C3-C4-C5	91.1 (2)	C18-C17-C22-C21	0.4 (3)
C2-C3-C4-C9	-90.3 (2)	O4-C17-C22-C21	176.33 (16)
C9-C4-C5-C6	0.2 (3)	C20-C21-C22-C17	-1.9 (3)
C3-C4-C5-C6	178.81 (18)	P1-O5-C23-C28	-121.49 (17)
C4-C5-C6-C7	-0.1 (3)	P1-O5-C23-C24	59.3 (2)
C5-C6-C7-F1	179.49 (17)	C28-C23-C24-C25	2.6 (3)
C5-C6-C7-C8	0.3 (3)	O5-C23-C24-C25	-178.27 (17)
F1-C7-C8-C9	-179.72 (17)	C23-C24-C25-C26	-0.9 (3)

C6-C7-C8-C9	-0.5 (3)	C24-C25-C26-C27	-0.9 (3)
F1-C7-C8-Br1	-0.8 (2)	C25-C26-C27-C28	1.3 (3)
C6-C7-C8-Br1	178.38 (15)	C24-C23-C28-C27	-2.3 (3)
C7-C8-C9-C4	0.6 (3)	O5-C23-C28-C27	178.57 (17)
Br1-C8-C9-C4	-178.28 (14)	C26-C27-C28-C23	0.3 (3)

687 **Table S9-5.** Selected geometric parameters for crystal structure 14c (Å, °).

F1-C7	1.365 (4)	C8-C9	1.363 (4)
P1-O3	1.471 (2)	C8-H8	0.9300
P1-O4	1.574 (2)	C9-C10	1.380(4)
P1-O5	1.579 (2)	С9—Н9	0.9300
P1-C2	1.810 (3)	C10-H10	0.9300
N1-C1	1.359 (4)	C11-C12	1.496 (4)
N1-C2	1.436 (3)	C11—H11A	0.9700
N1-H1	0.8600	C11—H11B	0.9700
O1-C1	1.350 (4)	C12-C13	1.381 (4)
O1-C11	1.434 (3)	C12-C17	1.383 (4)
O2-C1	1.198 (4)	C13-C14	1.373 (4)
O4-C18	1.440 (3)	C13-H13	0.9300
O5-C19	1.443 (3)	C14-C15	1.373 (4)
C2-C3	1.533 (4)	C14-H14	0.9300
C2-H2	0.9800	C15-C16	1.377 (4)
C3-C4	1.520 (4)	C15-H15	0.9300
С3—НЗА	0.9700	C16-C17	1.381 (4)
C3—H3B	0.9700	C16-H16	0.9300
C4-C5	1.502 (4)	C17-H17	0.9300
C4—H4A	0.9700	C18-H18A	0.9600
C4—H4B	0.9700	C18-H18B	0.9600
C5-C6	1.382 (4)	C18-H18C	0.9600
C5-C10	1.383 (4)	C19—H19A	0.9600
C6-C7	1.377 (5)	C19—H19B	0.9600
C6-H6	0.9300	C19-H19C	0.9600
C7-C8	1.364 (5)		
O3-P1-O4	115.72 (13)	C7-C8-H8	121.4
O3-P1-O5	114.83 (14)	C8-C9-C10	121.2 (4)

O4-P1-O5	101.59 (14)	С8-С9-Н9	119.4
O3-P1-C2	114.22 (16)	С10-С9-Н9	119.4
O4-P1-C2	102.41 (14)	C9-C10-C5	121.0 (4)
O5-P1-C2	106.52 (15)	C9-C10-H10	119.5
C1-N1-C2	121.0 (3)	C5-C10-H10	119.5
C1-N1-H1	119.5	O1-C11-C12	113.1 (3)
C2-N1-H1	119.5	O1-C11-H11A	109.0
C1-O1-C11	115.4 (3)	C12-C11-H11A	109.0
C18-O4-P1	119.1 (2)	O1-C11-H11B	109.0
C19-O5-P1	121.7 (2)	C12-C11-H11B	109.0
O2-C1-O1	125.7 (4)	H11A-C11-H11B	107.8
O2-C1-N1	125.9 (4)	C13-C12-C17	119.3 (3)
O1-C1-N1	108.5 (3)	C13-C12-C11	117.6 (3)
N1-C2-C3	110.8 (3)	C17-C12-C11	123.1 (3)
N1-C2-P1	112.4 (2)	C14-C13-C12	120.7 (4)
C3-C2-P1	113.0 (2)	C14-C13-H13	119.7
N1-C2-H2	106.8	C12-C13-H13	119.7
C3-C2-H2	106.8	C13-C14-C15	119.9 (4)
P1-C2-H2	106.8	C13-C14-H14	120.1
C4-C3-C2	112.6 (3)	C15-C14-H14	120.1
С4-С3-НЗА	109.1	C14-C15-C16	120.1 (4)
С2-С3-НЗА	109.1	C14-C15-H15	119.9
C4-C3-H3B	109.1	C16-C15-H15	119.9
C2-C3-H3B	109.1	C15-C16-C17	120.0 (4)
НЗА-СЗ-НЗВ	107.8	C15-C16-H16	120.0
C5-C4-C3	114.3 (3)	C17-C16-H16	120.0
C5-C4-H4A	108.7	C16-C17-C12	120.0 (4)
C3-C4-H4A	108.7	C16-C17-H17	120.0
C5-C4-H4B	108.7	C12-C17-H17	120.0
C3-C4-H4B	108.7	O4-C18-H18A	109.5
H4A-C4-H4B	107.6	O4-C18-H18B	109.5
C6-C5-C10	118.4 (4)	H18A-C18-H18B	109.5
C6-C5-C4	121.0 (4)	O4-C18-H18C	109.5
C10-C5-C4	120.6 (4)	H18A-C18-H18C	109.5
C7-C6-C5	118.6 (4)	H18B-C18-H18C	109.5

C7-C6-H6	120.7	O5-C19-H19A	109.5
C5-C6-H6	120.7	O5-C19-H19B	109.5
C8-C7-F1	118.9 (5)	H19A-C19-H19B	109.5
C8-C7-C6	123.7 (4)	O5-C19-H19C	109.5
F1-C7-C6	117.4 (5)	H19A-C19-H19C	109.5
C9-C8-C7	117.1 (4)	H19B-C19-H19C	109.5
С9-С8-Н8	121.4		
O3-P1-O4-C18	-50.3 (3)	C3-C4-C5-C10	-62.7 (4)
O5-P1-O4-C18	74.8 (3)	C10-C5-C6-C7	-1.0 (6)
C2-P1-O4-C18	-175.2 (2)	C4-C5-C6-C7	178.0 (3)
O3-P1-O5-C19	-33.4 (3)	C5-C6-C7-C8	0.9 (6)
O4-P1-O5-C19	-159.1 (2)	C5-C6-C7-F1	-178.9 (3)
C2-P1-O5-C19	94.1 (3)	F1-C7-C8-C9	179.6 (4)
C11-O1-C1-O2	-3.0 (5)	C6-C7-C8-C9	-0.2 (7)
C11-O1-C1-N1	177.1 (2)	C7-C8-C9-C10	-0.5 (7)
C2-N1-C1-O2	-2.9 (6)	C8-C9-C10-C5	0.5 (6)
C2-N1-C1-O1	177.1 (3)	C6-C5-C10-C9	0.3 (6)
C1-N1-C2-C3	141.8 (3)	C4-C5-C10-C9	-178.7 (3)
C1-N1-C2-P1	-90.8 (3)	C1-O1-C11-C12	94.1 (3)
O3-P1-C2-N1	161.2 (2)	O1-C11-C12-C13	167.0(3)
O4-P1-C2-N1	-72.9 (2)	O1-C11-C12-C17	-13.3 (5)
O5-P1-C2-N1	33.3 (3)	C17-C12-C13-C14	-0.1 (6)
O3-P1-C2-C3	-72.6 (3)	C11-C12-C13-C14	179.6 (3)
O4-P1-C2-C3	53.3 (3)	C12-C13-C14-C15	0.8 (6)
O5-P1-C2-C3	159.5 (2)	C13-C14-C15-C16	-0.7 (6)
N1-C2-C3-C4	-59.1 (4)	C14-C15-C16-C17	0.0 (6)
P1-C2-C3-C4	173.9 (2)	C15-C16-C17-C12	0.7 (6)
C2-C3-C4-C5	170.6 (3)	C13-C12-C17-C16	-0.6 (6)
C3 - C4 - C5 - C6	118.3 (4)	C11-C12-C17-C16	179.6 (3)

 Table S9-6.
 Selected hydrogen-bond parameters for structure 14c.

D-H···A	<i>D</i> —Н (Å)	H…A (Å)	$D\cdots A$ (Å)	$D-\mathrm{H}\cdots A$ (°)
$N1-H1\cdotsO3^{i}$	0.86	2.07	2.916 (3)	167.4
С11—Н11В…О1¤	0.97	2.49	3.298 (4)	140.4
C18-H18C-02i	0.96	2.64	3.243 (4)	121.6

C19-H19B···O1 ⁱⁱⁱ 0.96 2.53 3.474 (4) 166.3	
--	--

- 689 Symmetry code(s): (i) *x*, -*y*+1/2, *z*-1/2; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) *x*, -*y*+1/2, *z*+1/2.
- 690 Section S10. Characterization of the Final Compounds 15a-15h and 17a-17e by ¹H, ¹³C, ¹⁹F, ³¹P NMR.
- 691 Figure S10-1. ${}^{1}H(A)$, ${}^{31}P(B)$ NMR spectra for compound 15a.

692 Figure S10-2. ¹H (A), ¹³C (B), ¹⁹F (C), ³¹P (D) NMR spectra for compound 15b.

693 Figure S10-3. ¹H (A),¹³C (B), ¹⁹F (C), ³¹P (D) NMR spectra for compound 15c.

694 **Figure S10-4.** ¹H (**A**), ¹³C (**B**), ¹⁹F (**C**), ³¹P (**D**) NMR spectra for compound **15d**.

695 **Figure S10-5.** ¹H (**A**), ¹³C (**B**), ¹⁹F (**C**), ³¹P (**D**) NMR spectra for compound **15e**.

696 Figure S10-6. ¹H (A),¹³C (B), ¹⁹F (C), ³¹P (D) NMR spectra for compound 15f.

A

697 **Figure S10-7.** ¹H (**A**),¹³C (**B**), ¹⁹F (**C**), ³¹P (**D**) NMR spectra for compound **15**g.

698 Figure S10-8. ¹H (A), ¹³C (B), ¹⁹F (C), ³¹P (D) NMR spectra for compound 15h.

699 Figure S10-9. ¹H (A), ¹³C (B), ¹⁹F (C), ³¹P (D) NMR spectra for compound 17a.

48 of 58

700 **Figure S10-10.** ¹H (**A**), ¹⁹F (**B**), ³¹P (**C**) NMR spectra for compound **17b**.

706

708 **Figure S10-11.** ¹H (**A**),¹³C (**B**), ¹⁹F (**C**), ³¹P (**D**) NMR spectra for compound **17c**.

715 **Figure S10-12.** ¹H (**A**),¹³C (**B**), ¹⁹F (**C**), ³¹P (**D**) NMR spectra and HPLC (**E**) for compound **17d**.

722 **Figure S10-13.** ¹H (**A**),¹³C (**B**), ¹⁹F (**C**), ³¹P (**D**) NMR spectra for compound **17e**.

- a) DeLong, M.A.; Amburgey, J.; Taylor, C.; Wos, J.A.; Soper, D.L.; Wang, Y.; Hicks, R. Synthesis and in vitro evaluation of human FP-receptor selective prostaglandin analogues. *Bioorg. Med. Chem. Lett.* 2000, *10*, 1519–1522. https://doi.org/10.1016/S0960-894X(00)00273-0; b) Hamilton, G.S.; Wu, Y.-Q.; Limburg, D.C.; Wilkinson, D.E.; Vaal, M.J.; Li, J.-H.; Thomas, C.; Huang, W.; Sauer, H.; Ross, D.T.; et al. Synthesis of N -Glyoxyl Prolyl and Pipe colyl Amides and Thioesters and Evaluation of Their In Vitro and In Vivo Nerve Regenerative Effects. *J. Med. Chem.* 2002, *45*, 3549–3557. https://doi.org/10.1021/jm010556c; c) Cao, W.; Liu, X.; Peng, R.; He, P.; Lin, L.; Feng, X. Catalytic asymmetric cross-dehydrogenative coupling: activation of C–H bonds by a cooperative bimetallic catalyst system. *Chem. Commun.* 2013, *49*, 3470. https://doi.org/10.1039/c3cc41315b
- Sanford, A.B.; Thane, T.A.; McGinnis, T.M.; Chen, P.-P.; Hong, X.; Jarvo, E.R. Nickel-Catalyzed Alkyl-Alkyl Cross-Electrophile Coupling Reaction of 1,3-Dimesylates for the Synthesis of Alkylcyclopropanes. *J. Am. Chem. Soc.* 2020, 142, 5017–5023. <u>https://doi.org/10.1021/jacs.0c01330</u>
- Shimogaki, M.; Fujita, M.; Sugimura, T. Metal-Free Enantioselective Oxidative Arylation of Alkenes: Hypervalent-Iodine-Promoted Oxidative C-C Bond Formation. *Angew. Chemie Int. Ed.* 2016, 55, 15797– 15801. <u>https://doi.org/10.1002/anie.201609110</u>
- 4. Lin, X.; Wang, Y.; Hu, Y.; Zhu, W.; Dou, X. Diboron-Mediated Rhodium-Catalysed Transfer Hydrogenation of Alkenes and Carbonyls. *European J. Org. Chem.* **2020**, 2020, 1046–1049. https://doi.org/10.1002/ejoc.202000049
- 5. González-Sebastián, L.; Flores-Alamo, M.; García, J.J. Nickel-Catalyzed Reductive Hydroesterification of Styrenes Using CO 2 and MeOH. *Organometallics* **2012**, *31*, 8200–8207. <u>https://doi.org/10.1021/om300819d</u>
- 6. Woodward, D.F; Wang, J.W. Prostaglandin E receptor antagonists. *United States Patent Application Publication, US/2010/0256385 A1,* **2010**, Page/column 4
- Chaumontet, M.; Piccardi, R.; Audic, N.; Hitce, J.; Peglion, J.-L.; Clot, E.; Baudoin, O. Synthesis of Benzocyclobutenes by Palladium-Catalyzed C-H Activation of Methyl Groups: Method and Mechanistic Study. J. Am. Chem. Soc. 2008, 130, 15157–15166. <u>https://doi.org/10.1021/ja805598s</u>
- 8. Gagnon, L.; Grouix, B. Substituted aromatic compounds and pharmaceutical compositions for the prevention and treatment of osteoporosis. *WO*/2011/6054728 A1, **2016**, Paragraph 00136
- 9. Chao, J.; Jain, R.; Hu. L.; Lewis, J.G.; Baribault, H.; Caldwell, J. Hormon receptor modulators for treating metabolic conditions and disorders, *WO*/2018/039386 A1, **2018**, Page/column 306
- Eidam, H.S.; Raha, K.; Gong, Z.; Guan, H.; Wu, C.; Yang, H.; Yu, H.; Zhang, Z.; Cheung, M. Novel compounds as rearranged during transfection (RET) inhibitors. *United States Patent Application Publication* US 2014/0275111 A1, 2014, Paragraph 0358; 0359
- Cinelli, M.A.; Li, H.; Chreifi, G.; Martásek, P.; Roman, L.J.; Poulos, T.L.; Silverman, R.B. Simplified 2-Aminoquinoline-Based Scaffold for Potent and Selective Neuronal Nitric Oxide Synthase Inhibition. *J. Med. Chem.* 2014, 57, 1513–1530. <u>https://doi.org/10.1021/jm401838x</u>
- 12. Xu, G.-F.; Yang, X.-L.; Lei, P.; Liu, X.; Zhang, X.-B.; Ling, Y. Synthesis and fungicidal activity study of novel daphneolone analogs with 2,6-dimethylmorpholine. *Chinese Chem. Lett.* **2016**, *27*, 555–558. https://doi.org/10.1016/j.cclet.2016.01.045
- Zhou, Y.; Li, Z.; Liu, Y.; Huo, J.; Chen, C.; Li, Q.; Niu, S.; Wang, S. Regulating Hydrogenation Chemoselectivity of α,β-Unsaturated Aldehydes by Combination of Transfer and Catalytic Hydrogenation. *ChemSusChem* 2020, *13*, 1746–1750. <u>https://doi.org/10.1002/cssc.201902629</u>
- 14. Sibley, G.E.M.; Malmström, L.J.; Larsson, J.M. 2-amino-1,3,4-thiadazine and 2-amino-1,3,4-oxadiazine based antifungial agents. *WO*/2017/009651*A*1, **2017**, Page column 159;160
- 15. Desai, J.; Wang, Y.; Wang, K.; Malwal, S.R.; Oldfield, E. Isoprenoid Biosynthesis Inhibitors Targeting BacterialCellGrowth. *ChemMedChem* **2016**, *11*, 2205–2215. <u>https://doi.org/10.1002/cmdc.201600343</u>
- Chen, X.; Zhang, Y.; Wan, H.; Wang, W.; Zhang, S. Stereose lective organocatalytic oxidation of alcohols to enals: a homologation method to prepare polyenes. *Chem. Commun.* 2016, *52*, 3532–3535. <u>https://doi.org/10.1039/C5CC10093C</u>
- 17. Gurak, J.A.; Engle, K.M. Practical Intermolecular Hydroarylation of Diverse Alkenes via Reductive Heck Coupling. *ACS Catal.* **2018**, *8*, 8987–8992. <u>https://doi.org/10.1021/acscatal.8b02717</u>

- Farndon, J.J.; Ma, X.; Bower, J.F. Transition Metal Free C–N Bond Forming Dearomatizations and Aryl C– H Aminations by in Situ Release of a Hydroxylamine-Based Aminating Agent. J. Am. Chem. Soc. 2017, 139, 14005–14008. <u>https://doi.org/10.1021/jacs.7b07830</u>
- 19. Falck, J.R.; Paudyal, M.P.; Kürti, L. Direct C-H amination and Aza-annulation, United States Patent Application Publication, US 2019/0152892 A1, 2019, Paragraph 0132; 0214; 0215
- 20. Wu, T.; Kang, X.; Bai, H.; Xiong, W.; Xu, G.; Tang, W. Enantioselective Construction of Spiro Quaternary Carbon Stereocenters via Pd-Catalyzed Intramolecular α-Arylation. *Org. Lett.* **2020**, *22*, 4602–4607. <u>https://doi.org/10.1021/acs.orglett.0c01129</u>
- 21. Yang, X.Y.; Lin, H.S.; Matsuo, Y. Highly Selective Synthesis of Tetrahydronaphthaleno[60]fullerenes via Fullerene-Cation-Mediated Intramolecular Cyclization. *J. Org. Chem.* **2019**, *84*, 16314–16322. https://doi.org/10.1021/acs.joc.9b02618
- 22. Xing, S.; Gu, N.; Wang, X.; Liu, J.; Xing, C.; Wang, K.; Zhu, B. Substitution-Controlled Selective Formation of Hexahydrobenz[e]isoindoles and 3-Benzazepines via In(OTf) 3 -Catalyzed Tandem Annulations. *Org. Lett.* **2018**, *20*, 5680–5683. <u>https://doi.org/10.1021/acs.orglett.8b02406</u>
- 23. Chen, S.; He, H.; Lagu, B.; Qin, H.; Wu, Ch.; Xiao, Y.; Tricyclic Sulfonamide derivatives, *WO*/2015/102929A1, **2015**, Page column 135-136
- 24. Brown, M.F.; Marfat, A.; Melnick, M.J.; Reilly, U. C-linked Hydroxamic acid derivatives useful as antibacterial agents. *WO*/2011/045703 A2, **2011**
- Kuwada, T.; Yoshinaga, M.; Ishizaka, T.; Wakasugi, D.; Shirokawa, S.; Hattori, N.; Shimazaki, Y.; Miyakoshi, N. 1,2,4-Triazolone derivative. United States Patent Application Publication, US 2013/0197217A1, 2013
- 26. Barda, D.A.; Henry, K.J.; Huang, J.; Joseph, S.; Lin, H-S.; Richett, M.E. 7-phenyl-isoquinoline-5-sulfonylamino derivatives as inhibitors of AKT (Proteinkinase B). WO/2005/054202 A1, 2005, Page column 28
- Uto, Y.; Ogata, T.; Harada, J.; Kiyotsuka, Y.; Ueno, Y.; Miyazawa, Y.; Kurata, H.; Deguchi, T.; Watanabe, N.; Takagi, T.; et al. Novel and potent inhibitors of stearoyl-CoA desaturase-1. Part I: Discovery of 3-(2-hydroxyethoxy)-4-methoxy-N-[5-(3-trifluoromethylbenzyl)thiazol-2-yl]benzamide. *Bioorg. Med. Chem. Lett.* 2009, *19*, 4151–4158. <u>https://doi.org/10.1016/j.bmcl.2009.05.119</u>
- 28. Assaoui, H.; Boss, C.; Gude, M.; Koberstein, R.; Sifferlen, T. 5,6,7,8-tetrahydro-imidazo[1,5-A] pyrazine derivatives. *WO*/2008/078291A1, **2008**, Page/Page column 52
- 29. Matsumoto, T.; Katayama, N.; Mabuchi, H. Tyrosine phosphatase inhibitors. *United States Patent Application Publication, US 2003/0144338 A1, 2003*
- 30. Chernyak, N.; Buchwald, S.L. Continuous-Flow Synthesis of Monoarylated Acetaldehydes Using Aryldiazonium Salts. J. Am. Chem. Soc. 2012, 134, 12466–12469. <u>https://doi.org/10.1021/ja305660a</u>
- Baker, S.J.; Zhang, Y.-K.; Akama, T.; Lau, A.; Zhou, H.; Hernandez, V.; Mao, W.; Alley, M.R.K.; Sanders, V.; Plattner, J.J. Discovery of a New Boron-Containing Antifungal Agent, 5-Fluoro-1,3-dihydro-1-hydroxy-2,1- benzoxaborole (AN2690), for the Potential Treatment of Onychomycosis. J. Med. Chem. 2006, 49, 4447–4450. https://doi.org/10.1021/jm0603724
- Huang, R.; Chen, X.; Mou, C.; Luo, G.; Li, Y.; Li, X.; Xue, W.; Jin, Z.; Chi, Y.R. Carbene -Catalyzed α-Carbon Amination of Chloroaldehydes for Enantioselective Access to Dihydroquinoxaline Derivatives. *Org. Lett.* 2019, 21, 4340–4344. <u>https://doi.org/10.1021/acs.orglett.9b01520</u>
- Houjeiry, T.I.; Poe, S.L.; McQuade, D.T. Synthesis of Optically Active 4-Substituted 2-Cyclohexenones. Org. Lett. 2012, 14, 4394–4397. <u>https://doi.org/10.1021/ol301874x</u>

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).