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Abstract: Salinity is an abiotic stress that affects agriculture by severely impacting crop growth and,
consequently, final yield. Considering that sea levels rise at an alarming rate of >3 mm per year,
it is clear that salt stress constitutes a top-ranking threat to agriculture. Among the economically
important crops that are sensitive to high salinity is tomato (Solanum lycopersicum L.), a cultivar
that is more affected by salt stress than its wild counterparts. A strong body of evidence in the
literature has proven the beneficial role of the quasi-essential metalloid silicon (Si), which increases
the vigor and protects plants against (a)biotic stresses. This protection is realized by precipitating in
the cell walls as opaline silica that constitutes a mechanical barrier to the entry of phytopathogens.
With respect to Si accumulation, tomato is classified as a non-accumulator (an excluder), similarly to
other members of the nightshade family, such as tobacco. Despite the low capacity of accumulating
Si, when supplied to tomato plants, the metalloid improves growth under (a)biotic stress conditions,
e.g., by enhancing the yield of fruits or by improving vegetative growth through the modulation of
physiological parameters. In light of the benefits of Si in crop protection, the available literature data
on the effects of this metalloid in mitigating salt stress in tomato are reviewed with a perspective on
its use as a biostimulant, boosting the production of fruits as well as their post-harvest stability.
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1. Introduction

Plants are sessile organisms and, therefore, they are continuously exposed to the surrounding
environment. In order to carry out vital processes, such as photosynthesis, as well as vegetative and
reproductive growth, plants need to adapt to the changing environment. They do so by activating a
whole array of physiological processes, resulting from changes at the transcriptional and translational
level [1,2], as well as from the activation of metabolic branches, leading to the synthesis of specialized
metabolites [3–5].
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Environmental conditions can be stable for a certain period, but they can also suddenly change.
In this case, living organisms need to adapt to their new environmental conditions if these prevent
them from achieving the successful completion of their life cycle [6]. Such unfavorable conditions are
collectively referred to as environmental stresses.

Stress adaptation can take several aspects, depending on the type of altered environmental
condition. If the stress is temporary and occurs suddenly, the plant will adapt to the new situation
through non-permanent changes in its morphology or physiology. Therefore, these changes can be
reversed if the environmental conditions return to normal and, in this case, acclimation occurs [7,8].
On the other hand, if the non-optimal conditions become common in a specific location, then plants
need to adopt strategies to exploit their new environment in the most efficient manner and transmit
these changes to their progeny. In this case, evolutionary adaptation takes place [9]. For example, some
plant species can be specifically adapted to grow on volcano soils [10,11], littorals with high salinity
conditions [12], or heavy metal-contaminated areas [13].

Stresses are generally divided into two different classes, depending on whether they entail the
interaction with a living organism or not. The latter includes abiotic stresses that are caused by
environmental changes, such as water stress, exposure to extreme temperatures, excess or lack of
nutrients, high salinity, presence of heavy metals and ultraviolet radiation. Biotic stresses involve
interactions with other organisms, such as another plant that will compete for nutrients and space,
as well as animals and pathogenic bacteria or fungi, to name a few. Very often biotic and abiotic
stresses can occur simultaneously: abiotic stresses tend to weaken plant’s defenses, making it more
vulnerable to pests and pathogens. However, the simultaneous occurrence of abiotic and biotic stresses
can increase the resistance to pathogens in plants [14].

Among the abiotic stresses, salinity deserves particular attention, in light of its deleterious
effects on crop growth and yield [15]. The next paragraphs will treat (1) the problem of salt
stress with the physiological impairments it causes to plants; (2) the response of cultivated tomato
(Solanum lycopersicum L.) as an example of an economically relevant crop sensitive to excessive salinity;
and (3) the mitigatory effects of silicon (Si) in S. lycopersicum, a Si non-accumulator.

2. Salinity Stress

Soil salinization is defined as the accumulation of salts in the soil solution that can be measured as
the total dissolved solids (TDS) or the electrical conductivity [16], while sodicity is the predominance
of Na+ ions that saturate the ion exchange sites in the soil instead of other ions, such as Mg2+ and
Ca2+ [17]. Na+ ions damage soils because they disrupt the formation of macro-aggregates and promote
colloidal dispersion, subsequently destroying the soil macro-structure.

Soil salinization has become a major concern for the past few years in the whole world since it is
one of the consequences of climate change with the rise of the ocean’s level. Indeed, saltwater intrusion
in groundwater dramatically increases the salt level present in soils, making them salty and unsuitable
for agricultural production [18]. Coastal regions are most at risk, where it is estimated that sea levels
rise at an average of 3.4 mm per year (https://ec.europa.eu/knowledge4policy/foresight/topic/climate-
change-environmental-degradation_en). Additionally, soil salinization can increase because of storms
and tsunamis that could directly flood soils.

Salinization can also occur in lands far from coastal regions due to several natural factors, such as
the nature of the parent rock, or the irrigation ratio applied to soils and their evapotranspiration.
The last factor is the main reason that causes arid and semi-arid soils to suffer from salinization.
When there is not enough precipitation, the water rich in salts rises from the groundwater by capillarity,
favoring the accumulation of salts in the upper layer of the soil, where they continually accumulate in
the absence of precipitation. These natural events cause what is referred to as primary salinization,
which is different from secondary salinization, determined, instead, by human intervention [19].

https://ec.europa.eu/knowledge4policy/foresight/topic/climate-change-environmental-degradation_en
https://ec.europa.eu/knowledge4policy/foresight/topic/climate-change-environmental-degradation_en
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Irrigation is one of the major causes of soil salinization, especially in soils with high rates of
evapotranspiration. This can be caused by irrigation with saline or brackish water. The problem can
also occur when soils are irrigated with non-saline water or by rainfall with insufficient drainage
conditions, or when watered in an inappropriate way, especially in areas with high evapotranspiration
rates [20].

Some authors have attempted to model the salinity problem in the entire world, but because
of inconsistencies in the available data, it was difficult to merge them to have a global overview of
the situation, principally because of differences in soil classification among countries [21]. It was,
however, estimated by the FAO in 2000 that 397 million ha were affected by salinity and 434 million ha
by sodicity (http://www.fao.org/soils-portal/soil-management/management-of-some-problem-soils/
salt-affected-soils/more-information-on-salt-affected-soils/en/). Unfortunately, more updated values
do not exist for a worldwide overview [22].

To avoid salinization, irrigation has to be provided in sufficient amounts in order to leach the
excess deposit of salts in the upper layers of the soil. However, irrigation water should be of good
quality and leaching should be optimal. With respect to the first aspect, several costly techniques
can be used for water desalinization or water recycling, such as inverted osmosis or electrodialysis;
however, these are still in development [23].

Salts have two effects on plants. First, they play a role in water uptake due to the osmotic effect.
Since soluble salts lower the osmotic potential, water is more difficult to be taken up by the roots.
Therefore, plants must adopt special strategies to take up water from soil, despite its low water potential.
The other effect of salts on plants is the potential toxic effect, especially for NaCl. Na+ is a competitor
with other cations, such as Ca2+ and can compete for root cell wall binding sites. This causes disruption
of essential physiological mechanisms, such as primary growth, by affecting pectin cross-linking [24].
At the cell wall level, such changes are reflected by a decreased stability and subsequent increase in
rigidity. In maize leaves exposed to NaCl stress, the apoplast pH transiently alkalizes in response to
chloride and triggers changes in protein abundances, notably related to the general phenylpropanoid
pathway, hemicellulose biosynthesis and sucrose catabolism [25]. Notably, the transient alkalinization
of the leaf apoplast causes a decreased extractability of free coumaric and ferulic acids, because they
are cross-linked to hemicelluloses, resulting in an increased cell wall rigidification [25]. The increased
rigidity of the cell wall is reflected by the reduced size of the leaves and roots. As an example, hemp
(Cannabis sativa L.) leaves subjected to salt stress showed an increased expression of genes involved
in lignification (phenylalanine ammonia lyase-PAL and cinnamyl alcohol dehydrogenase-CAD) and
cellulose biosynthesis (secondary cell wall cellulose synthase genes-CesA4), a result indicating stiffening
of the cell wall [26].

At the morphological levels, salt stress causes a reduced lumen size of xylem vessels within the
plant’s conductive tissues: such an observation is linked to the decrease in cavitation, which is likely to
occur at a higher frequency under salt stress [26].

Salt stress causes oxidative stress that triggers, in its turn, the formation of reactive oxygen species
(ROS), like the superoxide radicals responsible for DNA, RNA and protein oxidation. They also have
an impact on lipids that constitute the cell membrane and can therefore compromise its composition
and stability [27]. One of the responses of plants at the onset of salt stress is the production of
antioxidant molecules, as well as enzymes scavenging ROS [4]. Examples of the former are phenolic
compounds, whose chemical structure allows hydrogen atom transfer mechanisms (HAT) to occur via
a pure H transfer, or an electron transfer followed by a proton release, or a proton loss followed by an
electron transfer [28]. In Cynara, a plant mainly found in arid and semi-arid regions often subjected
to salinity, NaCl stress induces the synthesis of phenolic substances in proportion to the increase
in salt concentration and this increase in salinity has proven to be a good technique to enhance the
secondary metabolite content in plants grown for nutraceutical use [29]. Among the most common
secondary metabolites found at higher levels in plants stressed by salt are isoorientin, orientin, vitexin,
rutin [30], as well as phenolic acids [31]. Anthocyanins often accumulate in the leaf epidermal cells

http://www.fao.org/soils-portal/soil-management/management-of-some-problem-soils/salt-affected-soils/more-information-on-salt-affected-soils/en/
http://www.fao.org/soils-portal/soil-management/management-of-some-problem-soils/salt-affected-soils/more-information-on-salt-affected-soils/en/
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of plants exposed to salt stress (Figure 1), where they are supposed to help decrease the osmotic
potential by increasing the solute content within the cells [32]. However, it was shown that acyanic
species achieved an osmotic adjustment that was similar to that of red-leafed evergreen species without
synthesizing anthocyanins, thereby suggesting that these pigments are a small component of osmotic
adjustment [33]. The metabolic investment necessary to synthesize anthocyanins and their abundance
in some species suggest roles other than simple osmoprotectants [33].Biomolecules 2020, 10, x 4 of 16 
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Figure 1. Vibratome transversal sections of tomato (Solanum lycopersicum, Micro-Tom cultivar) leaves
exposed to increasing concentrations of NaCl and showing anthocyanins in the epidermal layer of the
abaxial side. Bar: 20 µm (same magnification for all the pictures).

Plants have different sensitivities to salt stress and are broadly classified into glycophytes and
halophytes [34]: the former comprises species that are sensitive to salt stress, while the latter refers
to salt-tolerant ones. The two groups are distinguished by specific physiological and biochemical
mechanisms that, in the case of halophytes, make them resistant to high levels of salinity. For example,
the halophyte Salicornia dolichostachya Moss is characterized by tonoplast H+ pumps whose activities
are not increased by salt treatment, while the related glycophyte spinach (Spinacia oleracea L.) increased
them instead [35].

Among the glycophytes of economic relevance, there is cultivated tomato, S. lycopersicum, which
is affected by high salinity stress with consequent yield losses. In the next paragraph, the response of
cultivated tomato to salt stress is discussed, with emphasis on the use of the cultivar Micro-Tom as an
advantageous experimental model.

The different soil texture is also an important factor playing a central role on salt accumulation
around the root zone and, consequently, on salt uptake by plants. Indeed, as reported by Li and
co-authors, soils with textural layering can store more water than homogeneous soils (composed by a
single layer) by hindering the vertical water movement during the process of infiltration (downwards)
and evaporation (upwards) [36]. Thanks to their hydraulic properties, stratified soils are able to
affect water dynamics with their thickness, composition and spatial organization of the inner layers:
multi-layered soils can affect salt dynamics by diluting the salt ions’ concentration among the layers [36].

Zhai and co-authors have reported that straw mulching, combined with irrigation, significantly
decreases the levels of salinity around the plant root-zone by creating a more favorable environment for
the growth of tomato. More specifically, the application of a layer of organic material to the surface of
soils (mulching) allows the vertical movement of salt from the root zone to the edge of the mulch [37].
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In soils, cations such as Ca2+ and Mg2+ generate stable aggregates with the organic matter
(i.e., with humic acids), which determine the soil properties, such as drainage and porosity. The high
presence of sodium can replace other cations (Ca2+ and Mg2+), thereby altering the interaction with
the organic matter and causing dispersion of soil particles. The application of gypsum (CaSO4) is
considered to be a useful agronomical practice to replace and remove Na+ ions from the root zone [15].

Fertilizers and organic amendments are usually beneficial in mitigating the adverse effects of
salinity, since salt stress inhibits the uptake of important ions, namely of K+, Ca2+ and NO3

− [38].
However, in a study conducted by Mori and colleagues, no major mitigating effects are observed on
cherry tomato subjected to salinity and nitrogen fertilization [39]. Similarly, in another study, the yield
of tomato under CaCl2, NaHCO3 and NH4

+ fertilization remains unaffected in saline conditions,
while glucose content and total soluble solids (TSS) are significantly higher [40].

Organo-mineral fertilizers composed of CaSO4, ground rice bran and humic acid are good
alternatives to mitigate yield loss in tomato cultivated in saline soils, since proline, chlorophyll and
antioxidant enzymes levels increase in stress conditions [38]. Therefore, combinations of organic and
mineral fertilizers bring higher ameliorative effects in crops compared to the same fertilizers used
individually. Indeed, as reported by Al-Yahyai and colleagues, higher yield and fruit quality are
obtained by mixed fertilizers in tomato fruits [41].

3. Tomato as Model to Study the Response to Salt Stress

Cultivated tomato (S. lycopersicum) is a member of the Solanaceae family, which includes potato
(S. tuberosum), pepper (Capsicum annuum L.), tobacco (Nicotiana tabacum L.) and petunia (Petunia sp.).
It is an economically important plant largely cultivated worldwide, since its fruit is a fundamental
constituent of the European diet and largely used in the preparation of several dishes. Its annual
production is around 38 million tons and is principally located in Italy, Spain, Egypt and Turkey [42].

Tomato is easy to grow under laboratory conditions and produces a fleshy fruit (a berry) ideal for
fruit-related studies, such as ripening, ethylene signaling and secondary metabolite production [43].
Tomato fruits are rich in antioxidants, notably carotenoids and vitamins (A and C) [44,45] and are
thus important dietary sources of bioactive compounds. Compared to other model species, such as
Arabidopsis thaliana and Oryza sativa, S. lycopersicum shows unique features: compound leaves,
production of fleshy fruits, sympodial shoots [45,46] and a mostly indeterminate (vine) growth
habit [45,47] (with some exception, see the Micro-Tom cultivar).

The entire genome of S. lycopersicum (the inbred cultivar “Heinz 1706”) was sequenced in 2012 [48],
which allowed the development of a variety of bioinformatic tools for genomics/transcriptomics,
proteomics and metabolomics. As an example, the Tomato Expression Atlas (TEA) developed by
Fernandez-Pozo and colleagues [49] (available at http://tea.solgenomics.net/) is a web-based tool
especially designed to display RNA-Seq data via an “Expression Cube”, which allows users to visualize
and compare the expression profiles of multiple genes simultaneously. More specifically, it displays
the expression pattern of the query transcript, together with highly correlated genes (Figure 2). It also
allows visualizing data through different developmental stages of the fruit.

http://tea.solgenomics.net/
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Figure 2. Example of Tomato Expression Atlas visualization using a phenylalanine ammonia lyase
(PAL) gene (Solyc09g007910) as query. In (a) an expression cube with correlated genes; in (b) expression
images of PAL in the fruit and its tissues at different developmental stages. The bar refers to the
expression intensity in RPM (reads per million).

An eFP (electronic Fluorescent Pictograph) browser was developed by the university of Toronto [50]
(available at http://bar.utoronto.ca/eplant_tomato/). It provides a visual presentation (a heatmap) of
the different plant organs and the associated expression level of the target gene normalized by RPKM
(reads per kilobase per million). This tool is therefore useful to investigate the expression in a defined
plant organ and helps select the target genes in RT-qPCR studies. This approach is for instance useful
to check the expression of genes of choice in a specific organ/tissue prior to the real experiment in the
conditions/cultivars under investigation (Figure 3).

Secretom (available at https://solgenomics.net/secretom) is a database developed by the Solanaceae
Genomics Network and dedicated to tomato cell wall proteomics where it is possible to access datasets
obtained by, e.g., analyzing the glycoproteome of the tomato fruit, the secretome of the interaction
between Phytophthora infestans and tomato, or the cuticular cell wall proteome.

http://bar.utoronto.ca/eplant_tomato/
https://solgenomics.net/secretom
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Figure 3. Example of an electronic Fluorescent Pictograph (eFP) visualization using the PAL gene
Solyc09g007910 as query. The gene is highly expressed in the roots. The image was generated with the
Plant eFP at bar.utoronto.ca/eplant [50]. Data are from [48] and are RPKM-normalized.

Among the databases dedicated to tomato metabolomics, it is worth citing LycoCyc, developed by
the Solanaceae Genomics Network (available at http://pathway.gramene.org/gramene/lycocyc.shtml)
and the Metabolome Tomato database (MoTo DB) [51,52]. LycoCyc allows searching for a specific
compound and then retrieves the information relative to the metabolic pathways and related compounds.
Additionally, MoTo DB is an open access metabolite database dedicated to the tomato fruit and
obtained by combining the literature and experimentally obtained data from cultivated, wild, as well
as transgenic varieties.

Tomato is moderately tolerant to salinity [53] and, although studies have revealed that exogenous
stresses (defined as “eustresses”) can increase the content of functional molecules in its fruits [54],
severe salt stress is accompanied by losses in yield [55]. Domestication has reduced the salt tolerance in
tomato: a recent genome-wide association study for the root Na+/K+ ratio in >360 tomato accessions
has revealed that the highest differences were in a gene coding for a member of the HAK/KUP/KT
(high-affinity K+/K+ uptake/K+ transporter) family [56]. Notably, knocking the gene out in tomato and
the homologs in the distant species rice caused a salt-hypersensitive phenotype [56].

To increase the salinity tolerance in cultivated tomatoes, landraces are studied, which are more
resistant to stresses and equally rich in functional molecules, i.e., antioxidants [44,57]. In this respect,
non-commercial tomatoes, like the fruits from local plants, were shown to have higher contents of
polyphenols and antioxidant compounds than a commercial counterpart [58].

Landraces, as well as ancient and wild varieties are valuable resources for breeding
programs [58–62]. For example, wild relatives from the Galapagos Islands (S. cheesmaniae (L. Riley)
Fosberg and S. galapagense S.C. Darwin and Peralta) are endemic species adapted to the highly saline
coastal areas and a recent screening of 67 accessions revealed that different traits are involved in the high
tolerance to salinity [62]. Tomato landraces from Southern Italy showed higher tolerance to drought
via the constitutive increased activities of catalase, ascorbate peroxidase and glucose-6-phosphate
dehydrogenase [63], while in the wild halophyte (S. chilense) exposed to NaCl, an increase in ethylene
biosynthesis, accompanied by the upregulation of the 1-aminocyclopropane-1-carboxylic acid synthase
(ACCS2) gene, was correlated with a high tolerance to salinity [64].

http://pathway.gramene.org/gramene/lycocyc.shtml
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Among all the tomato cultivars, Micro-Tom is one of the most convenient for experimental
investigations. It is a dwarf, bushy variety with a determinate growth habit, designed for ornamental
purposes that differs from S. lycopersicum by three major dominant loci [65]. Although one of them,
dwarf, is a brassinosteroid-related mutation, it was proven that Micro-Tom is a suitable model to
address questions related to phytohormones, including brassinosteroids [66,67]. The frequency of the
nucleotide mismatch in exons with the sequenced cultivar “Heinz 1706” was calculated to be 0.061% [68].
Because of its small size (10–20 cm in height) [69], reduced ground surface occupation, a rapid life cycle
(70–90 days) and ability to be easily transformed [43,70], it allows high-throughput mutagenesis and
routine experiments [43]. It grows at a high density under fluorescent lights and the space used to grow
thale cress can be easily adapted to grow Micro-Tom plants [43]. Additionally, a database of Micro-Tom
mutants, TOMATOMA [71] (available at http://tomatoma.nbrp.jp/about/aboutEn.jsp), was developed,
which allows browsing of phenotypes and getting information on the metabolite content (amino acids,
carotenoids and ◦Brix). With respect to salt stress, Micro-Tom was shown to accumulate phenolic
compounds in its leaves [72], a result witnessing its suitability to address questions related with the
antioxidant response as a consequence of abiotic stresses. Last, but not least, Micro-Tom is also suitable
to study the interaction with plant growth-promoting bacteria; indeed, a study showed that a bacterium
of the genus Streptomyces isolated from the peanut rhizosphere was capable of alleviating the stress
symptoms in salt-stressed Micro-Tom [73].

4. The Protective Role of Si against Salinity: The Case of Cultivated Tomato

With respect to Si accumulation, plants are usually classified into accumulators (e.g., rice and
horsetail), intermediate-types (nettle and cucumber) and excluders (or non-accumulators, e.g., members
of the nightshade family). Although classified as an excluder, a homolog of the rice aquaporin Lsi1
mediating the entry of Si was recently isolated and characterized in tomato and found to be functional
via expression in rice lsi1 mutants [74]. When overexpressed in tomato, a higher accumulation
of Si was observed in the roots and root cell sap, but not in the shoots. This finding contradicts
previous results showing that the aquaporin was not capable of mediating the entry of Si because
of a spacing of 109 amino acids between the asparagine-proline-alanine (NPA) motifs, instead of
108 required for permeability to the metalloid [75]. It was concluded that what makes tomato an
excluder with respect to Si is the absence of a functional Si efflux transporter Lsi2 [74]. Despite the
classification into the excluders’ category, tomato shows amelioration of stress symptoms when
supplemented with Si and silica nanoparticles (N-SiO2). For example, Si together with salicylic acid
activated the antioxidant systems of tomatoes stressed by a high pH (by, e.g., upregulating the genes
peroxidase, ascorbate peroxidase, superoxide dismutase and catalase) and decreased the concentration
of abscisic acid in the shoots and roots [76]. Interestingly, in germinating tomato seeds exposed to
drought, Si supplementation contributed to decrease the activity of peroxidase, while increasing that
of superoxide dismutase and catalase [77]. Under water stress, Si contributed to lower the decrease in
chlorophyll and carotenoids and improved photosynthetic parameters (PSII maximum photochemical
efficiency, photosynthetic electron transport rate and upregulation of photosynthesis-related genes) [78].
Additionally, Si ameliorated the response of tomato against the plant pathogenic bacterium Ralstonia
solanacearum by stimulating, at the gene level, pathogen-associated molecular pattern-triggered
immunity, resistance to oxidation and water-deficits and by increasing the content of lignin-thioglycolic
acid, which strengthens the cell walls of roots [79].

Under salt stress (150 mM NaCl), Si (2 mM Na2SiO3) increased the content of K, Ca and Mg and
decreased that of Na and Cl in tomato roots, stems and leaves. This was not mediated by a reduced
translocation from root to stem or stem to leaves, but to a salt dilution effect triggered by an improved
growth, i.e., a higher shoot biomass accumulated under salt stress and Si application [80]. A previous
study showed that the metalloid mitigated the loss in dry biomass in salt-stressed tomato plants. It also
proved that leaf turgor potential improved in the presence of Si [81]. This last observation is due to the
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precipitation of Si as opaline silica in the cell walls of epidermal cells, which creates a layer hindering
water loss under abiotic stress.

Cao and colleagues investigated the impact of Si on tomatoes subjected to drought stress under
PEG treatment for 12 days and found that the metalloid alleviated the negative effect of PEG by
increasing significantly the root absorbing surface area and promoting radial hydraulic conductivity
through a decrease in the cortex-to-root diameter ratio [82]. Proline, soluble proteins and the sugar
content of roots were also higher, with a peak reached at the beginning of stress application in Si-treated
plants, while the O2

− and H2O2 production were lower. Additionally, Si application delayed the
decline of SOD and CAT activities compared to stressed plants.

Results concerning the protective impact of Si on the photosynthetic machinery were obtained by
Muneer and colleagues who performed a proteome analysis on tomato chloroplasts after supplying
high concentrations of Si (2.5 mM), which is beyond the solubility limit [83]. They observed a positive
effect of Si supplementation on oxidative damage, chlorophyll content and photosynthesis, especially
at higher salinity (50 mM). Proteomics showed an increased amount of PSI and PSII complexes, as well
as of cytochrome b6/f and ATP-synthase in Si-supplemented plants, compared to non-supplemented,
salt-stressed plants.

The beneficial effects of Si application were also studied in relation with the post-harvest stability
of tomato fruits obtained from plants cultivated in moderate salinity conditions (50 mM) and treated
or not with potassium silicate, 2 mM [84]. In particular, Costan and co-authors supplied further Si by
dipping tomato fruits in a sodium silicate solution (5000 mg L−1) and then they compared different
parameters, such as TSS, weight and total phenolic content (TPC), against control fruits submerged in
a dH2O solution, after 15 days of storage [84]. The authors showed a 42% increase in TSS and weight
in the treated fruits as compared to the control ones, as well as a decrease in TPC in control fruits equal
to 37%. Interestingly, fruits obtained from plants supplemented with Si and not dipped in sodium
silicate also showed improvements in their qualitative parameters, in particular in fruit firmness [84].

The results shown therefore confirm that Si fertilization can alleviate the harmful effects of high
salinity in tomato plants and prove that the post-harvest treatment with this metalloid is an interesting
approach to increase the shelf-life of the fruits, while maintaining the qualitative parameters.

The constant search for new methods to improve crop yield and to alleviate the negative effect of
stresses in plants has motivated the experimentation of new technologies in agriculture, for example
nanotechnologies. A strong body of evidence in the literature has proven the beneficial roles of
nanoparticle applications on plants, especially in increasing the yield and quality of crops [85].
The peculiar nanoscale size allows these materials to have a large surface area, as well as a high
solubility and reactivity [86,87]. Thanks to these features, nanoparticles are able to penetrate in leaves
and roots by different ways, such as through the cuticle as well as the stomata symplastic and apoplastic
pathways [88]. When used as fertilizers, nanomaterials can act as carriers by encapsulating nutrients
directly or these can be coated with a polymer film [89].

Concerning tomato plants, different studies have shown the use of nanofertilizers to improve
their growth and yield. For instance, Shankramma and co-authors tested fertilizers enriched with
iron oxide nanoparticles and showed a general improvement in growth parameters, in particular
in seed germination, as well as in root and shoot lengths [90]. Marchiol and co-workers proposed
hydroxyapatite nanoparticles (N-HA) as an innovative tomato fertilizer, showing a strong boost in root
elongation together with non-toxic effects [91].

With respect to Si, Haghighi and Pessarakli tested both Si (as silicate) and N-SiO2 on cherry
tomato plants exposed to different salt concentrations (i.e., 0, 25 and 50 mM) and observed that Si and
N-SiO2 significantly increased the stomata conductance, growth, water uptake and root volume in
plants exposed to salinity [92]. Although N-SiO2 application did not show substantial differences as
compared to Si, these particles are interesting because they show the properties of nano-materials and
the beneficial effects of Si. González-Moscoso and co-authors studied the positive actions of N-SiO2 in
alleviating the deleterious effects of arsenic at different concentrations on tomato plants. The authors
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observed a decrease in the oxidation-reduction potential (ORP), corresponding to a higher antioxidant
potential in plants treated with N-SiO2 than in the control plants [93].

Due to the proven role of Si in plant protection against a wide range of exogenous stresses,
the use of N-SiO2 can provide an effective way to improve crops’ performance [94], especially under a
changing environment.

Si fertilization may bring beneficial effects in tropical and subtropical areas where leaching and
intensive crop cultivation practices cause depletion of Si from soils. Therefore, this type of fertilization
could represent a source of Si able to support poor soils, where the insufficiency of Si may be a limiting
factor, contributing to lower yields [95].

In soilless cultures, Si enrichment of irrigation solutions was proven to be beneficial by Jarosz and
colleagues, who showed an increase in fruit yield and a higher content of Si in leaves [96].

As previously reported by Wang and Xing, finding the optimal combination between irrigation and
fertilization may allow a significant increase in yield in tomato cultures [97]. The authors showed that
a higher fruiting rate can be achieved by a better combination of the temporal and spatial distribution
of water and nutrients during plant growth.

Taking into account these pieces of evidence, the optimal combination of Si fertilization, mulching
and spatial/temporal mineral and organic fertilization will represent a step forward towards contrasting
the excessive salinity in different soils and improve the yield of tomato cultivars.

5. Future Perspectives

The use of Si in agriculture practices has increased in the last years, due to its proven beneficial
effect on crop yield, as well as by alleviating the negative effects caused by different stresses, such as
high salinity or drought [98]. Si is included in the category of biostimulants [99,100]. Its application can
be particularly interesting in combination with eustress [54]; for example, on crops growing on mildly
saline soils. Mild salinity can act as eustressor, contributing to boost the production of functional
molecules in fruits. Si can also provide a sustainable approach to preserve good yields and biomass
production under mild salinity. Additionally, it will be interesting to study the effects of Si fertilization
on the growth and yield of non-commercial ancient varieties. Indeed, some studies in the literature
have demonstrated the interesting nutraceutical potential of such plants, which can thrive in wild
environments [59]. For example, non-commercial varieties of tomatoes cultivated in Italy were shown
to have higher contents of antioxidant compounds with respect to commercial ones [58,60]. By growing
in the wild and, therefore, being continuously exposed to (a)biotic stressors, the yield of such plants
cannot meet the demands of the market. However, Si fertilization can be used as a sustainable practice
in regional agricultural programs aimed at valorizing such non-commercial varieties, to increase their
yield and for the manufacture of products with enhanced organoleptic and nutraceutical characteristics.
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