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Abstract: Recent studies have demonstrated the usefulness of convolutional neural networks (CNNs)
to classify images of melanoma, with accuracies comparable to those achieved by dermatologists.
However, the performance of a CNN trained with only clinical images of a pigmented skin lesion
in a clinical image classification task, in competition with dermatologists, has not been reported to
date. In this study, we extracted 5846 clinical images of pigmented skin lesions from 3551 patients.
Pigmented skin lesions included malignant tumors (malignant melanoma and basal cell carcinoma)
and benign tumors (nevus, seborrhoeic keratosis, senile lentigo, and hematoma/hemangioma).
We created the test dataset by randomly selecting 666 patients out of them and picking one image
per patient, and created the training dataset by giving bounding-box annotations to the rest of the
images (4732 images, 2885 patients). Subsequently, we trained a faster, region-based CNN (FRCNN)
with the training dataset and checked the performance of the model on the test dataset. In addition,
ten board-certified dermatologists (BCDs) and ten dermatologic trainees (TRNs) took the same tests,
and we compared their diagnostic accuracy with FRCNN. For six-class classification, the accuracy of
FRCNN was 86.2%, and that of the BCDs and TRNs was 79.5% (p = 0.0081) and 75.1% (p < 0.00001),
respectively. For two-class classification (benign or malignant), the accuracy, sensitivity, and specificity
were 91.5%, 83.3%, and 94.5% by FRCNN; 86.6%, 86.3%, and 86.6% by BCD; and 85.3%, 83.5%, and
85.9% by TRN, respectively. False positive rates and positive predictive values were 5.5% and 84.7%
by FRCNN, 13.4% and 70.5% by BCD, and 14.1% and 68.5% by TRN, respectively. We compared the
classification performance of FRCNN with 20 dermatologists. As a result, the classification accuracy
of FRCNN was better than that of the dermatologists. In the future, we plan to implement this system
in society and have it used by the general public, in order to improve the prognosis of skin cancer.
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1. Introduction

Skin cancer is the most common malignancy in Western countries, and melanoma specifically
accounts for the majority of skin cancer-related deaths worldwide [1]. In recent years, many skin
cancer classification systems using deep learning have been developed for classifying images of skin
tumors, including malignant melanoma (MM) and other skin cancer [2]. There are reports that their
accuracy was at the same level as or higher than that of dermatologists [3–5].

The targeted detection range of previous reports was from only malignant melanoma to the entire
skin cancer. Image data used for machine learning were clinical images and dermoscopic images. Up to
now, there has been no report of training a neural network using clinical image data of pigmented skin
lesions and evaluating the accuracy of the system to classify skin cancer, such as MM and basal cell
carcinoma (BCC). When developing a system, it is important to determine the appropriate endpoints
according to the type of skin tumor to be targeted, as well as the method of imaging. When new patients
come to a medical institution with skin lesions as the chief complaint, they are generally concerned not
about whether they are malignant melanomas, but whether they are skin cancers. Therefore, there is a
need to develop a system that can also detect other skin tumors that have a pigmented appearance
similar to malignant melanoma. There are also erythematosus skin malignancies, such as mycosis
fungoides [6], extramammary Paget’s disease [7], and actinic keratosis [8], which is a premalignant
tumor of squamous cell carcinoma. It is often difficult to distinguish these cancers from eczema.
Since we are focusing on the detection of brown to black pigmented skin lesions, including MM, we
have excluded these cancers in this study.

In recent years, with the progress of machine learning technology mainly on deep learning, the
expectations of artificial intelligence has been increasing, and research on its medical application has been
actively progressing [9–12]. In the present study, we used the faster, region-based convolutional neural
network (Faster R-CNN, or FRCNN) algorithm, which is a result of merging region proposal network
(RPN) and Fast R-CNN algorithms, into a single network [13,14]. The pioneering work of region-based
target detection began with the region-based convolutional neural network (R-CNN), including three
modules: regional proposal, vector transformation, and classification [15,16]. Spatial pyramid pooling
(SPP)-net optimized the R-CNN and improved detection performance [16,17]. Fast R-CNN combines
the essence of SPP-net and R-CNN, and introduces a multi-task loss function, which is what makes the
training and testing of the whole network so functional [16,18]. FRCNN merges RPN and Fast R-CNN
into a unified network by sharing the convolutional features with “attention” mechanisms, which
greatly improves both the time and accuracy of target detection [13,16]. Indeed, FRCNN has shown
higher detection performance in the biomedical filed than other state-of-the-art methods, such as
support vector machines (SVMs), visual geometry Group-16 (VGG-16), single shot multibox detectors
(SSDs), and you only look once (YOLO), in terms of time and accuracy [19–21]. In particular, FRCNN
has achieved the best performance for diabetic foot ulcer (DFU) detection; the purpose of the DFU
study was similar to our research goal [21]. Therefore, we ultimately chose the FRCNN architecture
in this study. Moreover, in the medical science field, transductive learning models have widely been
used in addition to supervised learning models [22,23]. Meanwhile, given that diagnosis is a medical
practice and requires authorized training data by medical doctors, we chose supervised learning in the
present study.

Importantly, many mobile phone applications that can detect skin cancers have been developed
and put on the market [24–26]. In those applications, skin cancer detection is performed using
smartphone camera images rather than the magnified images of dermoscopy, which is commonly
used by dermatologists in medical institutions. Our goal is to develop a skin cancer detection system
that can be easily used by people who are concerned about the possibility that the skin lesion is
cancers. Therefore, in this study, we developed a neural network-based classification system using
clinical images rather than dermoscopic images. We evaluated the accuracy of the system and asked
dermatologists to take the same test, in order to compare the accuracy with the deep learning system
we developed.
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2. Materials and Methods

2.1. Patients and Skin Images

This study was approved by the Ethics Committee of the National Cancer Center, Tokyo, Japan
(approval ID: 2016-496). All methods were performed in accordance with the Ethical Guidelines
for Medical and Health Research Involving Human Subjects; with regard to the handling of
data, we followed the Data Handling Guidelines for the Medical AI project. Of approximately
120,000 clinical images taken from 2001 to 2017 at the Department Dermatologic Oncology in the
National Cancer Center Hospital, we extracted 5846 clinical images of brown to black pigmented skin
lesions from 3551 patients. The clinical images were taken by digital cameras and stored as digital
images. Additionally, we confirmed that all images were of sufficient quality that dermatologists
could diagnose (Supplementary Table S1). The target diseases are malignant tumors (MM and BCC)
and benign tumors (nevus, seborrheic keratosis (SK), senile lentigo (SL) and hematoma/hemangioma
(H/H)). The breakdown of the extracted images was 1611 MM images (from 710 patients), 401 BCC
images (from 270 patients), 2837 nevus images (from 1839 patients), 746 SK images (from 555 patients),
79 SL images (from 65 patients), and 172 H/H images (from 147 patients). All malignant tumors
were biopsied and diagnosed histopathologically. Benign tumors were diagnosed clinically using
dermoscopy, and those cases that were still difficult to differentiate were biopsied to make confirmed
diagnosis. All of the images were taken with digital, single-lens reflex cameras, which had at least
4.95 million pixels, a macro lens, and macro ring flash. No dermoscopic images were included in
this study. Out of the 3551 patients, we randomly selected 666 patients, and picked one image per
patient for the test dataset. The remaining 4732 images from 2885 patients were used for training.
The breakdown of the 666 images of the test dataset was 136 MM images (from 136 patients), 44 BCC
images (from 44 patients), 349 nevus images (from 349 patients), 96 SK images (from 96 patients), 15 SL
images (from 15 patients), and 26 H/H images (from 26 patients). The breakdown of the 4732 images of
the training dataset was 1279 MM images (from 566 patients), 344 BCC images (from 222 patients),
2302 nevus images (from 1474 patients), 606 SK images (from 451 patients), 62 SL images (from
51 patients), and 139 H/H images (from 121 patients). We gave bounding-box annotations (where and
what class each lesion is) to all the images, and a dermatologist (S.J.) confirmed their validity.

To reduce each dermatologist’s burden, we randomly sampled 200 images from 666 images and
created tests of 10 patterns, so that each image was selected at least three times (200 images × 10 sets =

2000 images; 2000 ÷ 666 patients = 3). Thus, each test consisted of 200 images. The whole flow diagram
is shown in Figure 1.



Biomolecules 2020, 10, 1123 4 of 13
Biomolecules 2020, 10, x FOR PEER REVIEW 4 of 13 

 

Figure 1. Flow diagram of this study: extracting the pictures of pigment lesions, annotation of lesions 

in images, deep learning with a convolutional neural network (CNN), and evaluation by the test 

dataset. 

2.2. Training of a Deep Learning Model 

With regard to the deep learning architecture, we placed the highest priority on accuracy and 

rapidity in choosing a model, because accurate and prompt classification is required in the medical 

field. As a result of various comparison, we finally selected the FRCNN; this model stably showed 

high classification accuracy, robustness, and rapidity [13,14,27–29]. Then, we trained an FRCNN 

model with the training dataset. We used Visual Geometry Group-16 (VGG-16) [30] as its backbone, 

and a Momentum stochastic gradient descent (SGD) [31] optimizer with learning rate of 1 × 10-3 and 

momentum of 0.9. We used weight decay of 5 × 10-4 and the batch size was 4. The model was trained 

for 100 epochs, and the learning rate was decreased by a factor of 10 after 40 and 80 epochs finished. 

Images of BCC, SL, and H/H were twice oversampled during training. Horizontal flip, random distort 

[32], 90 and 180 degree rotations, random cropping, and zoom were used for data augmentation. We 

used Chainer [33], ChainerCV [34], and Cupy [35] for the implementation of our network. 

2.3. Test-Time Augmentation 

During inference, we used test-time augmentation. Specifically, an input image underwent 

transformations of horizontal flip (two patterns); 72 degree rotations (five patterns); and 1×, 1.2×, or 

1.4× zoom (three patterns), yielding 30 patterns of images in total. Predictions were made on all 30 

images, and the predicted region with the highest confidence among all predictions was selected as 

the final prediction for that input image. 

2.4. Model Validation and Verification 

Data base of skin images

n >120,000

MM, BCC, 

SK, Nevus, H/H, SL

n = 5846

Extraction of  

pigmented skin lesions

Annotation

Deep Learning with CNN

n = 4732

n = 666 (Randomized selection)

test set #1-10  

200 images/set  Total : 2000

Figure 1. Flow diagram of this study: extracting the pictures of pigment lesions, annotation of lesions in
images, deep learning with a convolutional neural network (CNN), and evaluation by the test dataset.

2.2. Training of a Deep Learning Model

With regard to the deep learning architecture, we placed the highest priority on accuracy and
rapidity in choosing a model, because accurate and prompt classification is required in the medical
field. As a result of various comparison, we finally selected the FRCNN; this model stably showed
high classification accuracy, robustness, and rapidity [13,14,27–29]. Then, we trained an FRCNN model
with the training dataset. We used Visual Geometry Group-16 (VGG-16) [30] as its backbone, and
a Momentum stochastic gradient descent (SGD) [31] optimizer with learning rate of 1 × 10−3 and
momentum of 0.9. We used weight decay of 5 × 10−4 and the batch size was 4. The model was trained
for 100 epochs, and the learning rate was decreased by a factor of 10 after 40 and 80 epochs finished.
Images of BCC, SL, and H/H were twice oversampled during training. Horizontal flip, random
distort [32], 90 and 180 degree rotations, random cropping, and zoom were used for data augmentation.
We used Chainer [33], ChainerCV [34], and Cupy [35] for the implementation of our network.

2.3. Test-Time Augmentation

During inference, we used test-time augmentation. Specifically, an input image underwent
transformations of horizontal flip (two patterns); 72 degree rotations (five patterns); and 1×, 1.2×,
or 1.4× zoom (three patterns), yielding 30 patterns of images in total. Predictions were made on all
30 images, and the predicted region with the highest confidence among all predictions was selected as
the final prediction for that input image.
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2.4. Model Validation and Verification

Our model (FRCNN), 10 board-certified dermatologists (BCDs), and 10 trainees (TRNs) were
assessed using 10 patterns of tests, and we compared their performances. We compared the
results in two patterns: a six-class classification (judge what class each sample is) and a two-class
classification (judge whether each sample is benign or malignant). We calculated the accuracy
for both six- and two-class classifications by the following formula: accuracy (%) = (total number
of correct predictions)/(total number of all samples) × 100. For two-class classification, we also
calculated sensitivity, specificity, false negative rates, false positive rates, and positive predictive values.
The accuracy of two- and six-class classification was compared with the equivalent of each other using
a paired t-test, and p-values < 0.05 were considered significant.

3. Results

3.1. Six-Class Classification of FRCNN, BCDs, and TRNs

The results (200 questions × 10 tests) of six-class classification of FRCNN, BCD, and TRN are
shown in Table 1. The accuracy of the six-class classification of FRCNN was 86.2% (1724/2000), while
those of BCD and TRN were 79.5% (1590/2000) and 75.1% (1502/2000), respectively. The accuracy of
six-class classification of each examinee is shown in Table 2. Except for test #2, FRCNN had higher
accuracy than the dermatologists. The standard deviation of the accuracy of six-class classification of
FRCNN was 2.80%, and that of the dermatologists was 4.41%. The accuracy of six-class classification
by FRCNN (86.2 ± 2.95%) was statistically higher than that of BCD (79.5 ± 5.27%, p = 0.0081) and TRN
(75.1 ± 2.18%, p < 0.00001). The accuracy of six-class classification by BCD was not statistically higher
than that of TRN (p = 0.070) (Figure 2).

Table 1. The results of six-class classification of the faster, region-based CNN (FRCNN); board-certified
dermatologists (BCDs); and trainees (TRNs). Gray cells indicate correct answers.

FRCNN

Prediction

True
diagnosis

MM BCC Nevus SK H/H SL Total

MM 327 9 48 21 0 3 408

BCC 6 108 12 6 0 0 132

Nevus 42 6 967 30 3 0 1048

SK 21 9 36 223 0 0 289

H/H 3 0 18 0 57 0 78

SL 0 0 0 3 0 42 45

Total 399 132 1081 283 60 45 2000

BCDs

Prediction

True
diagnosis

MM BCC Nevus SK H/H SL Total

MM 340 12 22 26 3 5 408

BCC 10 104 3 14 1 0 132

Nevus 131 11 823 68 11 4 1048

SK 18 24 17 225 0 5 289

H/H 9 1 6 1 61 0 78

SL 0 1 0 7 0 37 45

Total 508 153 871 341 76 51 2000
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Table 1. Cont.

TRNs

Prediction

True
diagnosis

MM BCC Nevus SK H/H SL Total

MM 327 15 42 12 8 4 408

BCC 22 87 6 12 5 0 132

Nevus 136 17 812 57 20 6 1048

SK 26 17 37 191 1 17 289

H/H 8 1 16 2 51 0 78

SL 1 0 3 7 0 34 45

Total 520 137 916 281 85 61 2000

MM: malignant melanoma; BCC: basal cell carcinoma; SK: seborrheic keratosis; H/H: hematoma/hemangioma; SL:
senile lentigo.

Table 2. The accuracy of six-class classification for each examinee. The best accuracy for each test (test
#1–10) is shown in gray.

TEST # FRCNN BCD TRN

1 90.00% 84.00% 76.50%

2 82.50% 86.00% 72.00%

3 84.50% 83.50% 74.50%

4 90.00% 79.00% 74.50%

5 83.00% 78.00% 73.00%

6 86.50% 85.50% 75.00%

7 88.00% 70.50% 79.00%

8 86.50% 79.50% 75.00%

9 82.50% 73.50% 78.00%

10 88.50% 75.50% 73.50%
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the accuracy of the FRCNN surpassed that of BCDs and TRNs.
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3.2. Two-Class Classification of FRCNN, BCDs, and TRNs

The results of two-class classification (benign or malignant) of FRCNN, BCDs, and TRNs are
shown in Table 3. Malignant tumors include MM and BCC, and benign tumor includes nevus, SK,
SL, and H/H. The accuracy of two-class classification of the FRCNN was 91.5% (1829/2000), while
those of BCDs and TRNs were 86.6% (1829/2000) and 85.3% (1705/2000), respectively. The accuracy of
two-class classification by the FRCNN (91.5 ± 1.79%) was also statistically higher than that of BCDs
(86.6 ± 4.01%, p = 0.0083) and TRNs (85.3 ± 2.18%, p < 0.001). The accuracy of two-class classification
by BCD was not statistically higher than that of the TRNs (p = 0.40) (Figure 3).

Table 3. The results of two-class classification (benign or malignant) of the FRCNN, BCDs, and TRNs.
Gray cells indicate correct answers.

FRCNN

Prediction

malignant benign Total

True diagnosis
malignant 450 90 540

benign 81 1379 1460

Total 531 1469 2000

BCDs

Prediction

malignant benign Total

True diagnosis
malignant 466 74 540

benign 195 1265 1460

Total 661 1339 2000

TRNs

Prediction

malignant benign Total

True diagnosis
malignant 451 89 540

benign 206 1254 1460

Total 657 1343 2000
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3.3. Two-Class Classification of FRCNN, BCDs, and TRNs

The accuracy of six-class classification of each examiner is shown in Table 4. BCDs had the highest
accuracy in test #2, and the BCDs and FRCNN had the same accuracy in test #6. In all the tests other
than #2 and #6, FRCNN had the highest accuracy among all examiners. The standard deviation of the
accuracy of two-class classifications of FRCNN was 1.69%, and those of BCDs and TRNs were 9.79%
and 3.13%, respectively.

Table 4. The accuracy of two-class classification for each examinee. The best accuracy for each test (test
#1–10) is shown in gray. The accuracy of the BCDs was the best in test #2. In test #6, the BCDs and
FRCNN achieved the same accuracy.

TEST # FRCNN BCD TRN

1 93.50% 89.50% 85.00%

2 88.50% 92.00% 86.00%

3 91.00% 89.00% 85.00%

4 93.50% 87.00% 80.50%

5 89.50% 84.50% 85.50%

6 91.50% 91.50% 85.50%

7 92.50% 83.50% 89.00%

8 92.00% 86.50% 86.50%

9 89.50% 81.50% 86.00%

10 93.00% 80.50% 83.50%

3.4. Summary of Classification Conducted by FRCNN, BCDs, and TRNs

We show the summary of the classification accuracy, sensitivity, specificity, false negative rates, false
positive rates, and positive predictive values by FRCNN, BCDs, and TRNs in Table 5. FRCNN achieved
highest accuracy and sensitivity. On the other hand, BCDs achieved the highest specificity. The false
negative rates of all of them are almost the same, but the false positive rates of the dermatologists
(BCDs: 13.4%; TRNs: 14.1%) were higher than that of the FRCNN (5.5%). The false positive rates of the
dermatologists were higher than that of the FRCNN, and the positive predictive values of them were
lower (BCDs: 70.5%, TRNs: 68.5%) than that of the FRCNN (84.7%).

Table 5. Summary of classification accuracy, sensitivity, specificity, false negative rates, false positive
rates, and positive predictive values by the FRCNN, BCDs, and TRNs.

FRCNN BCDs TRNs

Accuracy (six classes) 86.2 79.5 75.1
Accuracy (two classes) 91.5 86.6 85.3

Sensitivity 83.3 86.3 83.5
Specificity 94.5 86.6 85.9

False negative 16.7 13.7 16.5
False positive 5.5 13.4 14.1

Positive predictive value 84.7 70.5 68.5

4. Discussion

In this study, we developed a classification system by deep learning for brown to black pigmented
skin lesions, as the target disease. Then, the same test dataset was used for examining 20 dermatologists,
and the accuracy of them was compared with that of the FRCNN. The results showed that only one
out of 20 dermatologists had higher accuracy than the FRCNN in six-class classification. The skin
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tumor classification system using deep learning showed better results in both six- and two-class
classification accuracy than BCDs and TRN dermatologists. Many similar tests have been reported
in previous research [3,36,37], and it is considered that the machine learning algorithm has reached
dermatologist-level accuracy in skin lesion classification [4,5,36]. In the present study, although the
FRCNN and the dermatologists had similar results in terms of sensitivity, false positive rates were
BCDs: 13.4%, TRNs: 14.1%, and FRCNN: 5.5%. It is likely that when the dermatologists were uncertain
whether skin lesions were malignant or benign, they might tend to diagnose them as malignant.
The dermatologists had higher false positive rates, and the positive predictive values were 70.5% by
the BCDs and 68.5% by the TRNs, and lower than 84.7% by the FRCNN. False negative rates have been
regarded as more important than false positive rates in such diagnostic systems for malignancy, but
false positive rates must be carefully monitored. This is because false positive predictions give users
unwanted anxiety. In addition, although the results of the dermatologists varied, the results of the
FRCNN showed less variation. Brinker et al. reported that CNNs indicated a higher robustness of
computer vision compared to human assessment for clinical image classification tasks [3]. This is due
to the lack of concentration during work, which is unique to humans. It is considered that there may
be differences in clinical ability depending on the years of experience of dermatologists.

We think that it is important to determine how to implement these results socially after system
development and connect them to users’ benefit. Depending on the concept of system development,
the endpoint and the type of image data required for the development will change. For example, if the
person who uses the system is a doctor, highly accurate system development closer to a confirmed
diagnosis will be required. Training neural networks that can detect cancers from dermoscopic images
will be also in need. However, for in-hospital use there is already a diagnostic method: biopsy. Biopsy is
a method of taking a part of skin tissue and making a pathological diagnosis. Through a biopsy, it
is possible to make an almost 100% diagnosis (confirmed diagnosis). Moreover, the procedure of
biopsy takes only about 10 min. It is an advantage of dermatologists to be able to perform biopsy more
easily than other department doctors, and it seems that there is no room for new diagnostic functions
of any diagnostic imaging systems in medical institutions. On the other hand, when considering
their use by the general public outside medical institutions, it is difficult to fully demonstrate their
diagnostic performance. This is because the reproducibility of shooting conditions cannot be ensured,
and the shooting equipment is different. Therefore, when using an imaging system outside medical
institutions, it may be better to use the system to call attention to skin cancer rather than focus on
improving diagnostic performance. Also, no one can say that the accuracy of the system needs to be
improved when it is used outside the medical institution.

Mobile phone applications that can detect skin cancer and malignant melanoma have already
been launched in countries around the world [24]. However, usage of such applications for the
self-assessment of skin cancer has been problematic, due to the lack of evidence on the applications’
diagnostic accuracy [38,39]. In addition to the problem of low accuracy, there is also a problem that
they sometimes cannot recognize images well [25]. The reason is that the quality of images may
be lower, and that there is more variability in terms of angles, distances, and the characteristics of
the smartphone [40]. If the shooting conditions are bad, the accuracy is naturally low. This is an
unavoidable task in terms of social implementation, in which the users are general public and the
device used is a mobile phone camera. The main risk associated with the usage of mobile phone
application software by general public is that malignant tumor may be incorrectly classified as low-risk,
and its diagnosis and appropriate treatment are delayed. To solve these problems. and to improve
the accuracy of the application over time, a large dataset is necessary to cover as many image-taking
scenarios, as well as other information (i.e., ages, position of the primary lesion, the period time from
first awareness to visit a dermatologist, etc.) as possible. However, it takes a lot of effort to create such
a dataset. Udrea et al. have succeeded in improving accuracy by changing the learning method and
training, with a large number of skin tumor images taken with a mobile phone [40]. We must be careful
to make users fully aware that mobile phone application software is a system that also has the negative
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aspects. In fact, SkinVision, an application for detecting skin cancers, also states that “assessment does
not intend to provide an official medical diagnosis, nor replace visits to a doctor [40].”

We are also planning a future social implementation system of skin cancer classification to be
used by the general public, with wearable devices, such as mobile phones. The original concept is
to have early skin cancer detection, early treatment, and improved prognosis of skin cancer patients.
In Japan, the incidence of skin cancer is lower than in Western countries, and its awareness is
also low. The proportion of advanced stage cases of melanoma is higher than in Europe and the
United States [41,42]. As a result, many patients tend to have poor outcomes. In recent years, the
prognosis of melanoma has been improved by new drugs, such as immune checkpoint inhibitors
and molecular-targeted therapy [43], but at the same time, the problem of rising medical costs has
arisen [44]. In Japan, there is no official skin cancer screening, and there is no intervention that can be
performed early for the entire Japanese population. Additionally, since melanoma is one of the rarer
skin cancers for Japanese people, it is not well-recognized, and people tend not to see a dermatologist
at the early stages [43]. The average period from first awareness to visit of Japanese melanoma patients
was 69.5 months; the median was 24 months. In other countries, the median period is reported to be
2 months to 9.8 months, which is very different from the reports in Japan [45–48]. The rate of late-stage
is high, due to the longer period from first awareness to visit. Because the stage of disease at the
first visit is highly related to the prognosis of skin cancer [49], early detection of skin cancer is very
important. If skin cancer is detected at an early stage, it will be easier to treat, and the prognosis
will be much better [50]. We think that an intervention that shortens the period from awareness to
visit is essential for improving the skin cancer prognosis. Some mobile phone application software
that is on the market may have diagnosed skin cancers that were not diagnosed as skin cancer by
dermatologists, which helps in the early detection and treatment of skin cancer [38]. In the future,
we think that the intervention of skin image diagnostic application software, as described above, can
solve various problems, such as improving the prognosis of skin cancer and reducing the treatment
costs. Also, by reducing the waiting time for patients and unnecessary visits to outpatient clinics, and
facilitating consultations, medical treatment will be efficient [40]. It would be of great value if such an
image diagnosis system actually improved the prognosis after social implementation. Such application
software has not appeared yet, and we hope we can create such an application in the future.

There are several limitations to this study. First, although all malignant tumors were biopsied and
diagnosed histopathologically, benign tumors were confirmed as benign using biopsy, or for those not
excised were deemed clinically benign. Second, the neural network was trained using clinical images
of brown to black pigmented skin lesions from only our institution, and biases may exist in those data
(e.g., portion of disease, type of camera). It will be necessary for future work to check whether the
neural network generalizes well with images taken outside our institution. Third, in the present study,
we showed only the ability of judging clinical images, but in routine medical care, human medical
doctors make a definitive diagnosis by taking biopsies and other clinical information into consideration.
Therefore, it is risky to judge that artificial intelligence (AI) is superior to human medical doctors based
on this study. Further validation is essential; we need to make a careful judgment on how to implement
our findings in society. In addition, this is only the first step, and there is no doubt that large-scale
verification will be required as the next step, according to the suitable social implementation method.
Lastly, although we used the FRCNN architecture in the present study, we need to carefully choose the
best method for achieving our goal, because deep learning technologies have recently been progressing
massively [51]. In particular, FRCNN has been reported to have difficulty identifying objects from
low-resolution images, due to its weak capacity to identify local texture [52]. We plan to improve the
algorithm appropriately, according to the direction of our social implementation.

5. Conclusions

We have developed a skin cancer classification system for brown to black pigmented skin lesions
using deep learning. The accuracy of the system was better than that of dermatologists. It successfully
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detected not only malignant melanoma, but also basal cell carcinoma. System development that fits
the needs of society is important. We would like to seek the best method for the early detection of skin
cancer and improvement of the prognosis.
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