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Abstract: Immunogenic cell death (ICD) refers to a unique form of cell death that activates an
adaptive immune response against dead-cell-associated antigens. Accumulating evidence indicates
that the efficacy of conventional anticancer agents relies on not only their direct cytostatic/cytotoxic
effects but also the activation of antitumor ICD. Common anticancer ICD inducers include certain
chemotherapeutic agents (such as anthracyclines, oxaliplatin, and bortezomib), radiotherapy,
photodynamic therapy (PDT), and oncolytic virotherapies. However, most chemotherapeutic reagents
are inefficient or fail to trigger ICD. Therefore, better understanding on the molecular determinants of
chemotherapy-induced ICD will help in the development of more efficient combinational anticancer
strategies through converting non- or relatively weak ICD inducers into bona fide ICD inducers.
In this study, we found that sequential, but not concurrent, treatment of cancer cells with interferon
β (IFNβ), a type I IFN, and cisplatin (an inefficient ICD inducer) can enhance the expression of
ICD biomarkers in cancer cells, including surface translocation of an endoplasmic reticulum (ER)
chaperone, calreticulin (CRT), and phosphorylation of the eukaryotic translation initiation factor
alpha (eIF2α). These results suggest that exogenous IFNβ may activate molecular determinants that
convert cisplatin into an ICD inducer. Further bioinformatics and in vitro experimental analyses
found that interferon regulatory factor 1 (IRF1) acted as an essential mediator of surface CRT exposure
by sequential IFNβ-cisplatin combination. Our findings not only help to design more effective
combinational anticancer therapy using IFNβ and cisplatin, but also provide a novel insight into the
role of IRF1 in connecting the type I IFN responses and ICD.
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1. Introduction

Accumulating evidence indicates that the efficacies of conventional anticancer agents rely on
not only their direct cytostatic/cytotoxic effects but also the activation of tumor-targeting immune
responses [1]. One such response is immunogenic cell death (ICD), indicating that dying cancer cells
can elicit an effective antitumor immune response through the release of damage-associated molecular
patterns (DAMPs). DAMPs are recognized by antigen-presenting cells (APCs) such as dendritic
cells (DCs), which subsequently activate tumor antigen-specific T cell responses [2,3]. ICD was
initially discovered through the findings that tumor xenografts in syngeneic immunocompetent mice,
when compared to those in immunodeficient hosts., are more efficiently killed by chemotherapy with
anthracyclines (such as mitoxantrone and doxorubicin) or oxaliplatin [4,5]. In addition, cancer cells
exposed to a lethal dose of ICD inducers in vitro and then inoculated into syngeneic immunocompetent
mice in the absence of adjuvants efficiently protect the animals from a subsequent challenge with living
cancer cells of the same type [6]. The original concept of ICD from earlier studies was restricted to
classical apoptosis [4,5,7–10]. However, accumulating evidence suggests that dying cancer cells through
other forms of cell death, such as autophagy, necroptosis, and pyroptosis, can also induce ICD [11–13].
Given that tumors are often resistant to certain death pathways, the elasticity of multimodal ICD
induction may overcome the anticancer drug resistance.

The release of DAMPs are the hallmark and effectors of ICD. The majority of DAMPs during
ICD display one of the following actions: (1) cell surface exposure of endoplasmic reticulum (ER)
chaperones such as calreticulin (CRT), ERp57, and heat-shock proteins 70/90 kDa (HSP70/90) [7,10,14];
(2) autophagy-mediated secretion of adenosine triphosphate (ATP) [8,11]; and (3) release of the
chromatin-binding protein high-mobility group B1 (HMGB1) and annexin A1 (ANXA1) [15,16].
These DAMPs may function as “eat me” and “find me” signals for professional phagocytes through
interacting with different phagocytic or scavenger receptors including low density lipoprotein
receptor-related protein 1 (LRP1)/cluster of differentiation 91 (CD91) for CRT, purinergic receptors
for ATP, pattern-recognition receptors such as Toll-like receptor 4 (TLR4) for HMGB1, and formyl
peptide receptor (FPR1) for ANXA1. In addition, to prime an adaptive immune response, ICD is
associated with the establishment of immunological memory that has the potential to eradicate
malignant cells that survive chemotherapy via an IFNγ-dependent mechanism [2]. Therefore, it is
believed that these immunological side effects are helpful and desirable for cancer therapy, and a
better understanding of their regulation will facilitate the design of novel combinatorial regimens with
improved clinical efficacy.

ICD can be induced by certain chemotherapeutic agents (such as anthracyclines, oxaliplatin,
and bortezomib), radiotherapy, photodynamic therapy (PDT), and oncolytic virotherapies [1].
However, most chemotherapeutic agents are inefficient or fail to trigger ICD [4,5,9], which is due to
their intrinsic inability to promote the release of one or more of the DAMPs (or the activation of the
underlying stress responses). For example, in contrast with its derivative oxaliplatin, cisplatin cannot
efficiently trigger the expression of ICD biomarkers [17,18]. It is proposed that the effect of cisplatin on
ICD depends on cell type, the concentration used, or treatment duration [19], which suggests that the
potential of a chemotherapeutic agent could be manipulated. Indeed, combinational treatment with
ER stress inducers (such as thapsigargin or tunicamycin), type I IFNs (co-administration of IFNα and
IFNβ), zinc, or vitamin B6 precursor pyridoxine has been found to convert cisplatin into an efficient
ICD inducer [17,20–22].

Currently, ICD induction by a given agent cannot be predicted. Even the molecules with similar
structures or chemical properties do not share the same functional profile to induce ICD. Therefore,
a better understanding on the molecular determinants of chemotherapy-induced ICD will help in
the development of combinational strategies to convert non- and relatively weak ICD inducers into
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bona fide ICD inducers. Our results identified that sequential combination of IFNβ and cisplatin
was more potent to induce the surface CRT exposure compared to a concurrent combination protocol.
Bioinformatics analyses and in vitro experimental validation indicated that IFNβ/IRF1 signaling might
be required for the conversion of cisplatin to a more efficient ICD inducer.

2. Materials and Methods

2.1. Chemicals and Reagents

Roswell Park Memorial Institute-1640 (RPMI-1640) medium (22400071), L-glutamine (25030081),
sodium pyruvate (11360070), and antibiotic-antimycotic solution (penicillin G, streptomycin,
and amphotericin B; 15240062), fetal bovine serum (FBS; 10437028), Lipofectamine RNAiMAX
transfection reagent (13778150), and M-PER mammalian protein extraction reagent (78505) were
purchased from ThermoFisher Scientific (San Jose, CA, USA). The 7-amino-actinomycin D (7-AAD;
420404) was purchased from BioLegend (San Diego, CA, USA). Bio-Rad Protein Assay (5000006)
and precast sodium dodecyl sulfate (SDS)-polyacrylamide gels (4561023, 4561043, and 4561083) were
purchased from Bio-Rad Laboratories (Hercules, CA, USA). Phospho-eIF2α (#9721), IRF1 (#8478),
and JUN (#9165) antibodies were purchased from Cell Signaling Technology (Beverly, MA, USA).
The eIF2α (sc-11386) antibody was purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA).
The phycoerythrin (PE)-conjugated calreticulin (CRT; ab209577) antibody was purchased from
Abcam (Cambridge, MA, USA). β-Actin (GTX109639) and GAPDH (GTX100118) antibodies were
purchased from GeneTex (Hsinchu, Taiwan). Horseradish peroxidase (HRP)-labeled secondary
antibodies (111-035-003, 115-035-003, and 705-035-003) were purchased from Jackson ImmunoResearch
Laboratories (West Grove, PA, USA). The enhanced chemiluminescence (ECL) system (PK-NEL105)
was purchased from Perkin-Elmer (Boston, MA, USA). The cis-Diammineplatinum(II) dichloride
(cisplatin; P4394), 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT; M2128),
and dimethyl sulfoxide (DMSO; D2650 for cell stock storage and D5979 for drug preparation) were
purchased from Sigma (St. Louis, MO, USA). The recombinant human interferon β (IFNβ; 300-02BC)
was purchased from Peprotech (London, UK). ON-TARGETplus JUN siRNA (L-003268-00-0005) and
non-targeting siRNA pool (D-001810-10-05) were purchased from Dharmacon (Lafayette, CO, USA).
Blood/Cell DNA Mini Kit (GB100) and GenepHlow Gel/PCR Kit (DFH100) were purchased from
Geneaid Biotech (New Taipei City, Taiwan). The OneTaq 2X Master Mix with Standard Buffer (M0482S)
was purchased from New England Biolabs (Beverly, MA, USA).

2.2. Cell Culture

The human cervical adenocarcinoma HeLa, human cervical squamous cell carcinoma SiHa,
and human ovarian adenocarcinoma SKOV3 cells were purchased from American Type Culture
Collection (ATCC, Rockville, MD, USA). The mouse lung carcinoma TC-1 [23] cells were
provided by Professor T.-C. Wu (Department of Pathology, Johns Hopkins Medical Institutions,
Baltimore, MD, USA). The mouse ovarian surface epithelial cells (MOSEC) ovarian cancer cells
were prepared as described previously [24]. Cells were cultured at 37 ◦C in RPMI-1640 medium
supplemented with 10% FBS, 1% L-glutamine, 1 mM sodium pyruvate, and 1% antibiotic-antimycotic
solution and incubated in a humidified incubator containing 5% CO2.

2.3. Treatments

For concurrent treatment (cotreatment) of IFNβ and cisplatin, cells were treated simultaneously
with IFNβ and/or cisplatin for the indicated time intervals. For sequential treatment of IFNβ and
cisplatin, cells were treated first with or without IFNβ for 24~72 h and then washed twice with PBS to
remove any residual IFNβ. Cells were subsequently treated with cisplatin (cisplatin or IFNβ+cisplatin)
or left untreated (control or IFNβ) for 4 h (Western blotting for protein expression) and 24 h (flow
cytometry for surface CRT staining). For the experiments of 72-h MTT cell viability assays, IFNβ-treated
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cells were washed, trypsinized, and replated in 96-well plates. One day later, cells were treated with
cisplatin for 72 h.

2.4. Establishment of Interferon Regulatory Factor 1 (IRF1)-Knockout Cells

IRF1-knockout HeLa cells were generated using the clustered, regularly interspaced palindromic
repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system, which was performed by ToolGen
(Seoul, South Korea). The sequence of single-guide (sg)RNA used to target the human IRF1 gene was
CTCGGATGCGCATGAGACCCTGG. The underlined sequence is the protospacer adjacent motif (PAM)
that can be recognized by the Cas9 protein. After transfection with CRISPR/Cas9 plasmids, cells were
serially diluted into 96-well plates for clonal expansion. Two independent clones from different wells
were chosen for further experiments. For the validation of the sgRNA target site, genomic DNA was
extracted and PCR was performed using the following primer pair: GGGTGCCCTACCTCAAG AAG
(forward) and AAAGAAGTCCCTCCCTTCCC (reverse). The PCR products were purified and then
sequenced by the Sanger method using the forward and reverse primers. The results indicated that a
52-bp deletion was generated in two IRF1-knockout clones (Figure S1).

2.5. siRNA Knockdown Analysis

Cells were transiently transfected with human JUN siRNA and non-targeting siRNA
using the Lipofectamine RNAiMAX transfection reagent according to the manufacturer’s
instruction. The transfection mixture was replaced with fresh, regular medium 24 h later and cells
were used for further experiments.

2.6. Flow Cytometry

The antibody (ab209577 from Abcam, Cambridge, MA, USA) for surface CRT staining was
chosen according to previous studies [25]. Cells were detached by trypsinization and washed once by
phosphate-buffered saline (PBS)/1% FBS buffer. Freshly dispersed cell suspension (1 x 106 cells/mL)
was stained in PE-conjugated anti-CRT (1:5000) antibody-containing PBS/1% FBS buffer for 30 min on
ice in the dark. Then, cells were washed twice by PBS/1% FBS and resuspended in 7-AAD-containing
PBS to label the dead cells. The fluorescence was analyzed on the FACSCalibur flow cytometry
system (BD Biosciences, San Jose, CA, USA) or the Muse Cell Analyzer (Millipore, Bedford, MA, USA).
The results were analyzed using FCSalyzer-0.9.18-alpha (https://sourceforge.net/projects/fcsalyzer/)
and 7-AAD-negative cells were gated to exclude dead cells. For the generation of ecto-CRT histograms,
only the attached cells were collected and a total of 10,000 7-AAD-negative cells were acquired for
analysis. For the generation of ecto-CRT/7-AAD dot plots, both attached and floating cells were
collected and a total of 10,000 cells were acquired for analysis.

2.7. Cell Viability Assay

Cells were plated in 96-well plates and treated with drugs. Four hours before cell harvest,
0.5 mg/mL of MTT was directly added to each well. The blue MTT formazan precipitate was then
dissolved in 200 µL of DMSO. The absorbance at 550 nm was measured on a microplate reader
(BioTek, Winooski, VT, USA).

2.8. Western Blot Analysis

Cells were lysed with the M-PER mammalian protein extraction reagent on ice for 30 min.
Cell lysates were then centrifuged at 13,000× g for 20 min at 4 ◦C. Supernatant was collected and
the protein concentration was determined by the Bio-Rad Protein Assay. Equal amounts of protein
(50 µg) are resolved in 7.5–13% precast SDS-polyacrylamide gel and then transferred to a nitrocellulose
membrane. The membrane was incubated with the appropriate primary antibody at 4 ◦C overnight.

https://sourceforge.net/projects/fcsalyzer/
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Then, the membrane was washed and incubated with a horseradish peroxidase-conjugated secondary
antibody for 30 min at room temperature. The immunoblots were visualized by ECL reagent.

2.9. Bioinformatics Analysis of Public Data

The microarray data sets for cisplatin- and oxaliplatin-treated A2780 human ovarian cancer cells
(GSE8057 [26]) and cisplatin- and doxorubicin-treated HeLa human cervical cancer cells (GSE72905 [27]
and GSE30988 [28]) were obtained from the Gene Expression Omnibus (GEO) database at the National
Center for Biotechnology Information (NCBI) [29]. Gene set enrichment analysis (GSEA v4.0.3 software
(Broad institute, Cambridge, MA, USA) was used to analyze these data sets for the enrichment of
50 cancer hallmarks [30–32]. Genes were ranked by running a gene set type permutation test with
Log2 ratio ranking statistics. Default settings were used for other parameters. For the visualization of
overlap hallmarks or genes, the Venn diagrams were generated using the VENNY 2.1 web tool (https:
//bioinfogp.cnb.csic.es/tools/venny/). Pathway construction was performed using the STRING (Search
Tool for the Retrieval of Interacting Genes/Proteins; http://string-db.org/) database [33]. The parameters
were set as follows: organism = homo sapiens; meaning of network edges = molecular action;
active interaction source = experiments and databases; minimum required interaction score = high
confidence (0.700); max number of interactors to show = none; and network display mode =

interactive svg.

2.10. Statistical Analysis

Means and standard deviations of samples were calculated from the numerical data with at
least three replicates. Survival curves were fit using nonlinear regression. Data were analyzed using
Student’s t-test, and p values of <0.05 were considered statistically significant. Other statistical analyses
were performed by the built-in programs in each database used in this study.

3. Results

3.1. Sequential Interferon β (IFNβ) and Cisplatin Treatment Enhances the Surface Calreticulin (CRT) Exposure
in Cancer Cells

The activation of intrinsic type I IFN responses in cancer cells has become a hallmark of ICD [2].
A previous study showed that type I, but not type II, IFNs contribute to chemotherapy-induced ICD,
and exogenous supplementation with type I IFNs (co-administration of IFNα and IFNβ), but not type II
(IFNγ), provokes the potential of cisplatin to induce ICD [20]. In this study, we accidentally found that
exogenous supplementation with IFNβ by the sequential treatment protocol was sufficient to enhance
the ability of cisplatin to induce the expression of ICD biomarkers. As shown in Figure 1A,B, HeLa cells
were treated with the combination of IFNβ and cisplatin, either concurrently or sequentially, and then
translocation of intracellular calreticulin (endo-CRT) to the plasma membrane surface (ecto-CRT,
an ICD indicator [6]) was examined by flow cytometry. Although the statistical analysis suggested that
IFNβ and/or cisplatin significantly induced ecto-CRT in the cotreatment group (Figure 1B), we thought
that the levels of ecto-CRT might not efficiently induce ICD based on the ecto-CRT staining (Figure 1A).
On the other hand, IFNβ and/or cisplatin obviously induced ecto-CRT staining (Figure 1A). The ability
of sequential combination of IFNβ and cisplatin to induce ecto-CRT (1.68 ± 0.05 fold) was higher
than that of concurrent combination (1.16 ± 0.05 fold), or that of IFNβ (1.49 ± 0.09 fold) or cisplatin
(1.39 ± 0.04 fold) mono-treatment. In addition, the effect of sequential IFNβ (100 ng/mL) and cisplatin
(2 µg/mL) treatment on ecto-CRT induction was comparable with that of oxaliplatin at the concentration
of 24 µg/mL (Figure S2). In addition, sequential combination of IFNβ and cisplatin or mono-treatments
did not alter the overall expression of CRT (Figure 1C), suggesting that the induction of ecto-CRT
was not due to the increase of protein expression. ER stress, as indicated by phosphorylation of
eIF2α, is essential for ecto-CRT and serves as a hallmark of ICD [34,35]. We found that sequential
combination of IFNβ and cisplatin efficiently induced eIF2α phosphorylation compared to IFNβ or

https://bioinfogp.cnb.csic.es/tools/venny/
https://bioinfogp.cnb.csic.es/tools/venny/
http://string-db.org/
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cisplatin mono-treatment (Figure 1C). Therefore, sequential, but not concurrent, treatment of IFNβ with
cisplatin induced the expression of ICD biomarkers in HeLa cells. We thought that further investigation
of such phenomena may provide an opportunity to identify potential molecular determinant(s) for
ICD that could be activated by IFNβ pretreatment.

Figure 1. Effects of interferon β (IFNβ) and cisplatin treatment protocols on cell viability and surface
calreticulin expression in HeLa cells. (A) HeLa cells were cotreated with 100 ng/mL IFNβ and 2 µg/mL
cisplatin for 24 h, or sequentially treated with 100 ng/mL IFNβ for 24 h and 2 µg/mL cisplatin for
another 24 h. Surface calreticulin (CRT) (ecto-CRT) staining was performed and analyzed by flow
cytometry. (B) The mean fluorescence of ecto-CRT in (A) was quantified and plotted. p < 0.05 (* or #),
p < 0.01 (** or ##) and p < 0.001 (***) indicate significant differences compared to control samples or
the indicated group. (C) HeLa cells were sequentially treated with 100 ng/mL IFNβ for 24 h and
2 µg/mL cisplatin for another 4 h. Protein expression was analyzed by Western blotting. (D–F) For the
concurrent treatment (cotreatment) protocol (D), HeLa cells were treated with 100 ng/mL IFNβ and the
indicated doses of cisplatin for 72 h. For IFNβ-cisplatin sequential treatment protocol (E), HeLa cells
were treated with 100 ng/mL IFNβ for 24, 48, or 72 h, and then cells were replated in 96-well plates and
treated with the indicated doses of cisplatin for 72 h. Cell viability was examined by MTT assay. For the
cisplatin-IFNβ sequential treatment protocol (F), HeLa cells were treated with 0.25 µg/mL cisplatin
for 24 h, and then cells were replated in 96-well plates and treated with the indicated doses of IFNβ

for 72 h.

To exclude the possibility that different treatment protocols induced different levels of cell death,
cell viability assays were performed. As shown in Figure 1D,E (the left plot), sequential combination
of IFNβ (24 h treatment) and cisplatin (72 h treatment) reduced cell viability in a similar fashion as
concurrent combination. This result supports the idea that the differential effects of treatment protocols
on ICD biomarker expression (24 h treatment of cisplatin) are not the result of the different levels of
cell viability inhibition. Interestingly, sequential treatment with IFNβ had a time-dependent trend to
enhance the cisplatin-induced cell viability inhibition in HeLa cells when the treatment duration of
IFNβ increased (Figure 1E). The enhancement was significantly (p < 0.01) observed when cells were
treated first with IFNβ for 72 h (Figure 1E). In contrast, posttreatment with IFNβ did not alter the
ability of cisplatin to inhibit cell viability (Figure 1F). These results indicate the therapeutic benefit
of sequential IFNβ-cisplatin treatment for cancer therapy by enhancing the cytostatic/cytotoxic and
immunogenic effects of cisplatin.



Biomolecules 2020, 10, 643 7 of 17

To confirm the above observations, several human and murine cervical and ovarian cancer cells
were treated with the combination of IFNβ and cisplatin, either concurrently or sequentially, and cell
viability assay was performed. Interestingly, we found that cotreatment with IFNβ attenuated the
effect of cisplatin on cell viability inhibition in SiHa, SKOV3, and TC-1 cells (Figure 2A). In contrast,
48 h treatment with IFNβ showed a trend of enhancing the effect of cisplatin on cell viability inhibition
in SiHa and SKOV3 cells (Figure 2B). Although cell type-specific effect may exist, these results support
the general benefit of sequential IFNβ-cisplatin treatment for cancer therapy. The effect of sequential
IFNβ-cisplatin treatment on ecto-CRT expression was also investigated. Similar to the results in
HeLa cells, sequential combination with IFNβ could provoke the ability of cisplatin to induce ecto-CRT
expression in SKOV3 and MOSEC cells (Figure 2C). Interestingly, IFNβ alone was sufficient to induce
prominent ecto-CRT expression in SiHa, SKOV3, and TC-1 cells (Figure 2C), suggesting the essential
role of IFNβ signaling in ICD induction. Taken together, sequential combination of IFNβ and cisplatin
is a better way to provoke the potential of cisplatin to induce surface CRT exposure, which is irrelevant
to the extent of induced cell death.

Figure 2. Effects of interferon β (IFNβ) and cisplatin treatment protocols on cell viability and surface
calreticulin expression in cancer cells. (A) SiHa, SKOV3, TC-1, and MOSEC cells were cotreated with
100 ng/mL IFNβ and the indicated doses of cisplatin for 72 h. Cell viability was examined by MTT assay.
(B) SiHa, SKOV3, TC-1, and MOSEC cells were treated with 100 ng/mL IFNβ for 48 h, and then cells
were replated in 96-well plates and treated with the indicated doses of cisplatin for 72 h. Cell viability
was examined by MTT assay. (C) SiHa, SKOV3, TC-1, and MOSEC cells were sequentially treated with
100 ng/mL IFNβ for 24 h and 2 µg/mL cisplatin for another 24 h. Surface CRT (ecto-CRT) staining was
performed and analyzed by flow cytometry. The mean fluorescence of ecto-CRT was quantified and
plotted. p < 0.05 (*), p < 0.01 (**) and p < 0.001 (*** or ###) indicate significant differences compared to
control samples or the indicated group.
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3.2. Gene Set Enrichment Analysis (GSEA) Identifies Potential Molecular Determinants for
Oxaliplatin-Induced Immunogenic Cell Death (ICD)

The above results indicated that treatment first with IFNβ may induce molecular signaling to
provoke the potential of cisplatin to induce the surface CRT exposure. To investigate the potential
molecular determinants of chemotherapy-induced ICD, a bioinformatics strategy was employed to
compare the differences of cisplatin and oxaliplatin in their gene signatures. The microarray data sets for
cisplatin- and oxaliplatin-treated A2780 human ovarian cancer cells (GSE8057 [26]) were obtained from
the NCBI GEO database. GSEA was performed for the enrichment of 50 cancer hallmarks. The common
and specific cancer hallmarks for cisplatin and oxaliplatin are shown in a Venn diagram (Figure 3A).
We found that the type I IFN hallmark (interferon alpha response) was indeed specifically enriched in
oxaliplatin-treated cells. To confirm the above analysis, the gene expression profile of another ICD
inducer, doxorubicin, was analyzed. The microarray data sets for cisplatin- and doxorubicin-treated
HeLa human cervical cancer cells (GSE72905 [27] and GSE30988 [28]) were obtained from the NCBI
GEO database. GSEA was performed for the enrichment of cancer hallmarks. Because there was no
enrichment in cisplatin-treated HeLa cells, the top five hallmarks are shown in Table 1 to compare
the differences between cisplatin and doxorubicin. We found that the type I IFN hallmark was also
enriched in doxorubicin-treated, but not cisplatin-treated, HeLa cells.

Because apoptotic cancer cells by a given therapeutic drug cannot always induce ICD, we thought
that efficient and inefficient ICD inducers may alter different apoptotic genes. Therefore, we analyzed
their leading edge genes of the apoptosis hallmark to compare the differences of apoptosis-related genes
in cisplatin- and oxaliplatin-treated cells. Then, the oxaliplatin-specific, cisplatin-specific, and common
genes were subjected to network construction using the STRING database [36]. We found that
oxaliplatin-specific genes can form a network by a node gene JUN (Figure 3B). Among these genes,
IRF1 is related to type I IFN signaling [37,38]. We also compared the differences of apoptosis-related
genes in cisplatin- and doxorubicin-treated HeLa cells. As shown in Figure 4A, the apoptosis hallmark
was only enriched in doxorubicin-treated cells. Similarly, the leading edge genes can be grouped into
four arms, which were connected by a node gene JUN (Figure 4B). The four arms included genes
related to IFNβ signaling (IFNB1, IRF1, ISG20, and RNASEL), unfolded protein response (UPR) and
apoptosis (ATF3, DDIT3/GADD153, BCL2L11/BIM, BAX, and PMAP1/NOXA), cell cycle (CDKN1A,
CCND1, CCNA1, GADD45A, GADD45B, BTG2, and LEF1), and inflammasomes (IL1A, IL1B, CASP1,
CASP4, SQSTM1, and CYLD). Therefore, we hypothesized that JUN-type I IFN-IRF1 signaling may
play an essential role in chemotherapy-induced ICD.

3.3. Interferon Regulatory Factor 1 (IRF1) Is Required for the Surface Calreticulin (CRT) Exposure Induced by
Sequential Interferon β (IFNβ) and Cisplatin Treatment

According to the above bioinformatics analyses, we first investigated the role of JUN in sequential
IFNβ-cisplatin-induced growth inhibition, surface CRT exposure, and eIF2α phosphorylation by
knocking down its expression using siRNA (Figure 5A). We found that sequential IFNβ-cisplatin
treatment did not induce JUN expression. In addition, knockdown of JUN did not affect sequential
IFNβ-cisplatin-induced IRF1 expression and eIF2α phosphorylation (Figure 5A), the cell viability
inhibition (Figure 5B), or ecto-CRT expression (Figure 5C,D). We then investigated the role of IRF1 in
sequential IFNβ-cisplatin-induced growth inhibition, surface CRT exposure, and eIF2αphosphorylation
using the IRF1-knockout HeLa cells (Figure 6A). As shown in Figure 6B, knockout of IRF1 attenuated
the cell viability inhibition by cisplatin with or without IFNβ pretreatment. Moreover, sequential
IFNβ-cisplatin-induced ecto-CRT expression and eIF2α phosphorylation were attenuated by IRF1
knockout (Figure 6C–E and Figure S3). Therefore, upregulation of IRF1 by IFNβ was required for
sequential IFNβ-cisplatin-induced surface CRT exposure. Interestingly, oxaliplatin-induced surface
CRT exposure was also attenuated in IRF1-knockout HeLa cells (Figure S2), supporting the essential
role of IRF1 in ICD.
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Figure 3. Gene set enrichment analysis (GSEA) for cisplatin- and oxaliplatin-treated A2870 cells. (A) The
microarray data set for oxaliplatin- and cisplatin-treated A2780 human ovarian cancer cells (GSE8057)
was obtained from the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus
(GEO) database. GSEA was performed for the enrichment of 50 cancer hallmarks. The enriched
hallmarks with p < 0.01 and false discovery rate (FDR) with p < 0.25 are shown in the Venn diagram.
(B) The enrichment plots for the apoptosis hallmark in oxaliplatin- and cisplatin-treated A2780 cells.
The leading edge genes are highlighted in the red squares. The overlapping, oxaliplatin-specific,
and cisplatin-specific genes were analyzed using the STRING database for network construction.
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Figure 4. Gene set enrichment analysis (GSEA) for doxorubicin- and cisplatin-treated HeLa cells.
(A) The enrichment plots for the apoptosis hallmark in doxorubicin- and cisplatin-treated HeLa
cells. The leading edge genes are highlighted in the red squares. (B) The leading edge genes in
doxorubicin-treated HeLa cells were analyzed using the STRING database for network construction.

Figure 5. Effects of JUN knockdown on sequential interferon β (IFNβ)-cisplatin treatment-induced
cell viability inhibition and immunogenic cell death (ICD) biomarker expression in HeLa cells.
(A) HeLa cells were transfected with JUN siRNA (si-JUN) or the non-targeting control siRNA (si-NC)
for 24 h, and then sequentially treated with 100 ng/mL IFNβ for 24 h and 2 µg/mL cisplatin for
another 4 h. Protein expressions were analyzed by Western blotting. (B) JUN siRNA-transfected HeLa
cells were treated with 100 ng/mL IFNβ for 48 h, and then cells were replated in 96-well plates and
treated with the indicated doses of cisplatin for 72 h. Cell viability was examined by MTT assay.
(C) JUN siRNA-transfected HeLa cells were sequentially treated with 100 ng/mL IFNβ for 24 h and
2 µg/mL cisplatin for another 24 h. Surface CRT (ecto-CRT) staining was performed and analyzed
by flow cytometry. The mean fluorescence intensity in each treatment (the red line) was compared
with that in untreated si-NC-transfected HeLa cells (the black line). (D) The mean fluorescence of
ecto-CRT in (C) was quantified and plotted. p < 0.001 (***) indicates significant differences compared to
control samples.
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Table 1. The gene set enrichment analysis (GSEA) for cancer hallmarks enriched in cisplatin- and
doxorubicin-treated HeLa cells.

Top 5 Hallmarks Number of Genes
in Pathway

Number of Pathway Genes
Differentially Expressed (% of Total) NES 1 p Value FDR 2

Cisplatin

Angiogenesis 36 9 (25%) 1.13 0.109 1.000
Allograft rejection 199 71 (36%) 1.04 0.210 1.000
KRAS signal DN 187 88 (47%) 1.03 0.247 1.000

Inflammatory response 197 83 (42%) 1.03 0.257 1.000
Spermatogenesis 131 56 (43%) 1.01 0.402 1.000

Doxorubicin

Interferon alpha response 91 48 (53%) 2.72 <0.001 <0.001
Interferon beta response 193 101 (52%) 2.69 <0.001 <0.001

TFNA signaling via NFKB 198 92 (46%) 2.27 <0.001 <0.001
Inflammatory response 198 78 (39%) 2.06 <0.001 <0.001

Complement 197 68 (35%) 1.93 <0.001 <0.001
1 Normalized enrichment score. 2 False discovery rate.

Figure 6. Effects of interferon regulatory factor 1 (IRF1) knockout on sequential interferon β

(IFNβ)-cisplatin treatment-induced cell viability inhibition and immunogenic cell death (ICD) biomarker
expression in HeLa cells. (A) The IRF1 expression in IRF1-knockout (IRF1-KO#1 and IRF1-KO#2) and
parental wildtype (WT) HeLa cells was analyzed by Western blotting. (B) IRF1-knockout (IRF1-KO#1
and IRF1-KO#2) and parental (WT) HeLa cells were treated with 100 ng/mL IFNβ for 48 h, and then cells
were replated in 96-well plates and treated with the indicated doses of cisplatin for 72 h. Cell viability
was examined by MTT assay. (C) IRF1-knockout (IRF1-KO#1) and parental (WT) HeLa cells were
sequentially treated with 100 ng/mL IFNβ for 24 h and 2 µg/mL cisplatin for another 24 h. Surface
CRT (ecto-CRT) staining was performed and analyzed by flow cytometry. The mean fluorescence
intensity in each treatment (the red line) was compared with that in untreated parental HeLa cells
(the black line). (D) The mean fluorescence of ecto-CRT in (C) was quantified and plotted. p < 0.05 (*),
p < 0.01 (** or ##) and p < 0.001 (***) indicate significant differences compared to control samples or
the indicated group. (E) IRF1-knockout (IRF1-KO#1) and parental (WT) HeLa cells were sequentially
treated with 100 ng/mL IFNβ for 24 h and 2 µg/mL cisplatin for another 4 h. Protein expressions were
analyzed by Western blotting.
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4. Discussion

It is currently accepted that the efficacies of conventional chemotherapeutic agents depend on
both the direct cytostatic/cytotoxic effects and indirect immuno-modulating activities including ICD
induction [1]. However, ICD can only be induced by limited chemotherapeutic agents, which cannot
be predicted by their structural and functional similarities [1,4,5,9]. For example, both oxaliplatin and
cisplatin induce cancer cell death, partly by forming inter- and intra-strand DNA adducts. However,
only oxaliplatin can efficiently trigger bona fide ICD [17,18,39]. Interestingly, accumulating evidence
demonstrates that the non- and relatively weak ICD inducers can be converted into bona fide ICD
inducers by combinatorial strategies [17,20–22], which boost their therapeutic values. In this study,
we identify that pretreatment of cancer cells with IFNβ will make them more immunogenic when
exposed to cisplatin later. Such sequential IFNβ-cisplatin treatment-enhanced surface CRT exposure is
dependent on IRF1 expression. Thus, our study provides a novel therapeutic anticancer strategy using
IFNβ as an adjuvant.

Type I IFNs are polypeptides that can activate intracellular antimicrobial programs and influence
the development of innate and adaptive immune responses [38]. The most well-defined type I IFNs are
IFNα and IFNβ. Most cell types produce IFNβ, whereas hematopoietic cells are the major producers
of IFNα. Canonical type I IFN signaling activates the Janus kinase (JAK)-signal transducer and
activator of transcription (STAT) pathway, leading to transcription of IFN-stimulated genes (ISGs) [38].
STATs can cooperate with other transcription factors to regulate target gene expression. The most
established STAT-interacting transcription factors belong to the members of the IFN-regulatory factor
(IRF) family such as IRF1, IRF7, IRF8, and IRF9. Interestingly, IRFs can be induced by type I IFNs
through STAT-dependent pathways [38]. In contrast, IRFs play essential roles in regulating the
induction of IFNα/β gene expression [37]. These findings suggest that a positive feedback regulation
loop of IFNα/β and IRFs may exist. Recently, type I IFN signaling has been demonstrated as a
requirement for doxorubicin-induced ICD [20]. This study found that doxorubicin stimulates the rapid
production of type I IFNs by tumor cells, which is dependent on the endosomal pattern recognition
receptor TLR3. By binding to IFNα and IFNβ receptors (IFNARs) on tumor cells, type I IFNs trigger
autocrine and paracrine circuitries to promote the release of chemokine (C-X-C motif) ligand 10
(CXCL10). Interestingly, this study also found that both type I and type II (IFNγ) IFNs are required
for doxorubicin-induced anticancer immune responses. However, type II IFNs do not participate in
doxorubicin-induced ICD because of their delayed induction (5 days after chemotherapy) compared to
type II IFNs (1~4 days after chemotherapy).

Recombinant IFNβs, including IFNβ-1a (Avonex, Rebif, and Plegridy) and IFNβ-1b (Betaseron and
Extavia), have been approved for treating multiple sclerosis [40,41]. Several clinical trials have shown
the promising results for the application of IFNβ in cancer therapy. For example, a single-institution
matched case-control study in Japan demonstrated that adjuvant therapy with low-dose administration
of IFNβ was beneficial for maintenance therapy in stage II and III melanoma patients without
substantial toxic effects [42]. A multicenter phase I trial showed that combination therapy with IFNβ

and temozolomide was safe and well tolerated and prolonged the patients’ survival in high-grade
gliomas [43]. A phase II trial indicated that IFNβ given after conventional radiation therapy was well
tolerated and had a survival benefit in glioblastoma [44]. However, there were also two independent
phase II trials that suggested that IFNβ had limited clinical efficacy in metastatic melanoma [45,46].
Therefore, the therapeutic applications of recombinant IFNβ relies on further clinical investigations.

IRF1 has been considered a tumor suppressor [47–51]. IRF was identified as a STAT3-inducible
proapoptotic factor that mediated chemosensitization of cervical cancer cells by the pretreatment of a
pleiotropic cytokine, oncostatin M [52]. In addition, IRF1 expression is associated with response to
radio/chemotherapy in cervical cancer patients [52]. Similar to this study, we also found that sequential
IFNβ-cisplatin treatment-induced IRF1 expression was responsible for the enhanced anticancer activity
of cisplatin. Therefore, pre-therapeutic IRF1 expression can be used as a novel predictive biomarker for
chemotherapy responses, and pre-stimulation of IRF1 by cytokine therapy can enhance the efficacy of
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chemotherapeutic agents. It is controversial that IRF1 expression is upregulated by cisplatin, but limits
drug effectiveness in ovarian cancer cells [53]. Mechanistically, cisplatin induces IRF1-dependent and
p53-independent p21 expression and cell cycle arrest. Because cisplatin is more effective in proliferating
cancer cells, the induction of cell cycle arrest may counteract with the anticancer activity of cisplatin [53].
However, this study does not defy the tumor-suppressive role of IRF1 because IRF1 overexpression still
inhibits the transformed phenotypes of ovarian cancer cells [53]. Moreover, higher IRF1 expression is
associated with better progression-free and overall survival in patients with high-grade serous ovarian
carcinoma [54]. Possibly, other factors, such as p21, may also be considered with IRF1 expression for
the effectiveness of chemotherapy.

Our results showed that IRF1 upregulation contributed to the phosphorylation of eIF2α by IFNβ

and IFNβ-cisplatin. However, the linkage between IRF1 and eIF2α phosphorylation is still unsolved.
The eIF2α can be phosphorylated by a family of four kinases, including protein kinase double-stranded
RNA-dependent (PKR), PKR-like ER kinase (PERK), general control non-derepressible-2 (GCN2),
and heme-regulated inhibitor (HRI) [55]. Among them, PKR, PERK, and GCN2 have been shown to
be required for surface CRT exposure in ICD [17,34,56]. It has been reported that the activation of
IRF1 induces PKR expression, which is partially required for IRF1-induced growth inhibition [57].
Therefore, PKR may serve as a mediator for IRF1-dependent eIF2α phosphorylation and surface CRT
exposure in ICD.

ERp57, also known as protein disulfide-isomerase A3 (PDIA3) or glucose-regulated protein, 58 kD
(GRP58), is an ER-localized disulfide isomerase. Although surface ERp57 itself is not immunogenic,
it acts as a co-translocation partner of CRT and controls CRT surface exposure [14,58]. ERp57 can also
interact with STAT3 and inhibits STAT3 signaling, which is enhanced by the ERp57-calreticulin complex
formation [59]. Interestingly, inhibition of STAT3 was shown to enhance ICD [60–62], accounting for
another way to regulate ICD by ERp57. Given the fact that IRF1 is a STAT3-inducible mediator for cell
death enhancement in cervical cancer cells [57], it will be interesting to investigate the role of STAT3
and ERp57 in IRF1-depedent surface CRT exposure in the future.

In conclusion, we found that ICD inducers activate IFNβ-IRF1 signaling, leading to the surface
exposure of CRT in cancer cells. Supplementation of exogenous IFNβ will upregulate IRF1 expression,
which may be required for the conversion of non- and relatively weak ICD inducers into bona fide ICD
inducers. Therefore, IRF1 may act as a molecular determinant for ICD induction. However, it should
be noted that there are limitations to this study. For example, only two ICD biomarkers (eIF2α
phosphorylation and surface CRT exposure) were used. An evaluation of other biomarkers, such as
extracellular ATP and HMGB1 [6], would help to support the conclusion. Most importantly, vaccination
assay, the gold-standard approach to detect ICD [6], was lacking in this study, which warrants
further investigations.
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