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Abstract: Tocotrienol, an analogue of vitamin E has been known for its numerous health benefits
and anti-cancer effects. Of the four isoforms of tocotrienols, gamma-tocotrienol (γT3) has been
frequently reported for their superior anti-tumorigenic activity in both in vitro and in vivo studies,
when compared to its counterparts. In this study, the effect of γT3 treatment in the cytoplasmic
and nuclear fraction of MDA-MB-231 human breast cancer cells were assessed using the label-free
quantitative proteomics analysis. The cytoplasmic proteome results revealed the ability of γT3 to
inhibit a group of proteasome proteins such as PSMA, PSMB, PSMD, and PSME. The inhibition of
proteasome proteins is known to induce apoptosis in cancer cells. As such, the findings from this study
suggest γT3 as a potential proteasome inhibitor that can overcome deficiencies in growth-inhibitory or
pro-apoptotic molecules in breast cancer cells. The nuclear proteome results revealed the involvement
of important nuclear protein complexes which hardwire the anti-tumorigenesis mechanism in breast
cancer following γT3 treatment. In conclusion, this study uncovered the advancing roles of γT3 as
potential proteasomes inhibitor that can be used for the treatment of breast cancer.
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1. Introduction

Breast cancer (BC) is the most common malignancy in women around the world. According
to GLOBOCAN 2018, breast cancer is the most common cancer in women; accounting for 11.6% of
all cancers [1]. In 2018, about 2.1 million newly diagnosed female breast cancer cases were reported
worldwide, which accounts for about 1 in 4 breast cancer cases among women [1]. The same authors
reported that there were 626,679 (6.6%) cases of deaths due to breast cancer worldwide [1]. Hence, the
incidence of breast cancer in women worldwide was reported to be 24.2%, while the mortality rate
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was estimated to be 15% [1]. A similar trend was observed in the United States of America (USA)
where the incidence rate of cancer was reported to have increased over the last decade. In 2018, there
was a total of 1,735,350 new cancer cases and 609,640 cancer-related deaths in the USA [2]. These
global breast cancer data confirmed that this malignancy is a leading concern across the globe and pose
serious threats to the well-being of women worldwide. The rise in the incidences of breast cancer in
these countries could be due to adverse life style changes, which increase the risk for this disease. The
mortality of breast cancer in these regions is increasing, with a lack of proper diagnosis and therapy
being the main reason [3]. The treatment options for a breast cancer patient can vary from one patient
to another, depending on the tumor biology and sub-types (e.g., triple negative or HER2-positive).
Surgery is still the mainstay of treatment in early breast cancer [4]. Cancer treatment modalities such
as chemotherapy, radiotherapy, hormonal therapy, and surgery often cause major side-effects in the
patients [5]. Some of the side-effects associated with breast cancer treatment can affect the quality of
life of these patients, which can affect every part of their bodies. Furthermore, triple-negative breast
cancers do not respond to hormonal therapy [6]. Traditional chemotherapy and radiotherapy can also
kill normal healthy cells along with the cancer cells, which causes severe systemic syndrome such
as nausea, pain, and lethargy [7]. These situations urge the researchers to find alternative strategies
that can be used to effectively prevent and treat breast cancer with negligible side effects. One such
a strategy is the use of bioactive natural compounds to combat carcinogenesis, especially those that
selectively kill cancer cells while having beneficial effects for sustaining health.

Tocotrienols (T3), a member of the vitamin E family, consist of four naturally occurring isoforms,
namely α-, β-, δ-, and γ-tocotrienols. Numerous evidences suggest that tocotrienols are effective
anti-cancer bioactive compounds and its selectivity against cancer cells was demonstrated profoundly
in both cell-based and animal studies. Studies have shown that tocotrienols were able to induce
apoptosis in malignant cells, but not in non-malignant cells [8,9]. This selectivity could be largely due to
the reduced antioxidant defense expressed by these malignant cells when compared to non-malignant
cells [10] or might involve many other unknown factors. The selectivity of T3 for cancer cells might
be dependent on the ability of the former to specifically target and downregulate proteins, which are
abnormally upregulated in carcinogenic but not in normal cells. Research on tocotrienols offers a
promising discovery as this compound has been reported to combat oncogenesis by targeting multiple
cell signaling pathways [11].

One such important pathways that was explored in this study is the ubiquitin–proteasome
pathway, which is one of the major regulatory system for intracellular protein degradation [12].
The ubiquitin–proteasome pathway plays a key role in cancer therapy. Proteasome inhibition was
also reported to potentiate the anti-cancer efficacy of other chemotherapeutic drugs by decreasing
the expression of anti-apoptotic proteins and increasing the levels of pro-apoptotic proteins [13].
Identification of novel compounds that can block the proteolytic activities in cancer cells by inhibiting
the proteasomes is a potent strategy for cancer prevention and treatment [14]. As such, this
research was embarked to identify differentially expressed proteins in MDA-MB-231 cells exposed
to gamma-tocotrienol (γT3) treatment, using label-free quantitative proteomics and functional
bioinformatics strategies to get into the novel insights of anti-cancer mechanisms of γT3 and its
potential therapeutic strategies for breast cancer.

2. Materials and Methods

2.1. Cell Line and Treatment Conditions

The MDA-MB-231 cells were grown in T75 flasks in Dulbecco’s Modified Eagle Medium (DMEM)
supplemented with 10% Fetal Bovine Serum (FBS) in a humidified atmosphere of 5% carbon dioxide
in air at 37 ◦C, until it reaches 70–90% confluency. A total of 5 × 105 cells were seeded in T75 flask
containing 10 mL of complete media. Following cell adherence, the cells were treated with IC50

concentration, 5.8 µg ×mL−1 of γT3, as established previously [15]. Following 24 h of γT3 treatment,
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the cells were washed with 1× PBS solution. A cell scrapper was used to dislodge the attached cells.
The cells were collected in 5 mL PBS and washed with two volumes of ice-cold PBS and centrifuged at
250 × g for 5 min at 4 ◦C. The supernatant was discarded, and the pellets were resuspended in 40 mL of
ice-cold PBS and centrifuged as before. The washing step was repeated twice. The pellet was subjected
to two separate processing steps to extract (i) cytoplasmic proteins and (ii) nuclear proteins.

2.2. Extraction of Protein Fractions

2.2.1. Isolation of Cytoplasmic Fraction

The cytoplasmic protein fractions were extracted using the CHEMICON®’s cytosol protein
fraction extraction kit (USA-Catalog No. 2900), according to the manufacturers protocol [16]. In brief,
five times the pellet volume of ice-cold 1x cytoplasmic lysis buffer containing 0.5 mM DTT and 1/1,000
dilution of inhibitor cocktail were added to the pellet. The cell pellet was resuspended by gently
inverting the tube and was incubated on ice, for 15 min. Following this step, the cell pellet suspension
was centrifuged at 250 × g for 5 min at 4 ◦C. The supernatant was discarded, and the cell pellet was
resuspended in two volumes of ice-cold 1x cytoplasmic lysis buffer. Using a syringe with a small gauge
needle (27 G), the prepared cell suspension was drawn from a sample tube and the contents were
ejected back into the sample tube. These steps (drawing and ejecting) were repeated approximately five
times. The disrupted cell suspension was centrifuged (8,000 × g for 20 min at 4 ◦C) and the supernatant,
which contains the cytosolic portion of the cell lysate was transferred to a fresh tube and was used for
cytoplasmic proteome analysis.

2.2.2. Isolation of Nuclear Fraction

The nuclear pellet from the cytoplasmic protein extraction step was resuspended in 2/3 of the
original cell pellet volume of ice-cold nuclear extraction buffer containing 0.5 mM DTT and 1/1,000
protease inhibitor cocktail. Using a fresh syringe, with a 27-gauge needle, the pellet was drawn and
ejected into the tube to disrupt the nuclei. Using a rotator or orbital shaker (low speed), the nuclear
suspension was gently agitated at 4 ◦C for 30–60 min. The nuclear suspension was then centrifuged
at 16,000 × g for 5 min at 4 ◦C. The resulting supernatant, which contained the nuclear proteins, was
transferred to a fresh tube and used for nuclear proteomic analysis.

2.3. Determination of Protein Concentration and Trypsin Digestion

The concentration of the extracted protein was determined by a bicinchoninic acid (BCA) assay and
bovine serum albumin (BSA) was used as a protein standard for the calibration curve. Approximately
100 µg of total protein was suspended in 100 ul of 50 mM ammonium bicarbonate (pH 8.0) containing
0.05% RapiGest (Waters Corporation, Milford, MA). The solution was incubated at 80 ◦C for 15 min.
Protein was reduced in the presence of 5 mM dithiothreitol (DTT) at 60 ◦C for 30 min. The protein
was alkylated in the dark in the presence of 10 mM iodoacetamide at room temperature, for 45 min.
Proteolytic digestion was initiated by adding a trypsin gold at a concentration of 100:0.25 (protein to
trypsin) and was incubated at 37 ◦C overnight. Tryptic digestion and RapiGest activity were terminated
by adding a 1 µL concentrated trifluoroacetic acid (TFA) incubated at 37 ◦C for 20 min. The tryptic
peptide solution was centrifuged at 14,000 rpm for 20 min and the supernatant was transferred into a
clean microcentrifuge tube and kept at −80 ◦C until further analysis.

2.4. Liquid Chromatography and Mass Spectrometry Analysis

Digested peptides were analyzed by The DionexTM UltimateTM 3000 RSLCnano from Thermo
ScientificTM. The peptides were desalted and concentrated in a trapping column C18 PepMapTM

100, 5µm, 100Å and were separated by Easy-SprayTM LC Column Acclaim PepMapTM C18 75µm id
× 25 cm, with a 40% acetonitrile gradient over 120 min, at a flow rate of 300 nL/min. Each sample
was injected in triplicates. All spectra were acquired on an Orbitrap Fusion (Thermo ScientificTM) in
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data-dependent mode, with positive ionization. Full scan spectra were collected at a resolution of
120,000, with an automated gain control (AGC) target of 400,000, and the maximum injection time
was 50 ms. The method consisted of a 3 s Top Speed Mode where the precursors were selected for a
maximum 3 s cycle. Only precursors with an assigned monoisotopic m/z and a charge state of 2–7 were
further analyzed for MS/MS. All precursors were filtered using a 20 s dynamic exclusion window and
an intensity threshold of 5,000. The MS2 spectra were analyzed at a resolution of 60,000, with an AGC
target of 100 and a maximum injection time of 250 ms. Precursors were fragmented by high-energy
collision dissociation (HCD) and collision-induced dissociation (CID) at a normalized collision energy
(NCE) of 28% and 30%.

2.5. Protein Identification and Label-Free Quantification

Data generated were processed using the Thermo ScientificTM Proteome DiscovererTM Software
v2.1 with the SEQUEST® HT search engine. The MS ion intensities were calculated based on the
accurate mass and time tag strategy. The accurate alignment of the detected LC retention time and
the m/z value across different analyses and the area under the chromatographic elution profiles of
the identified peptides could be compared among different samples. For protein identification, data
were searched against a Uniprot® human (homo sapiens) database with a 1% FDR criteria using
a Percolator®. Search parameters were set up to two missed cleavage with fixed modification of
carbamidomethylation and variable modification of methionine oxidation, asparagine, and glutamine
deamidation. A fragment tolerance of 0.6 Da and a precursor tolerance of 10 ppm were used with
trypsin as a digestion enzyme. Identified protein with a SEQUEST® HT score more than 200 or an
above 25% sequence coverage or one that had at least two unique peptides, implied a greater confidence
in protein identity.

2.6. Data Acquisition and Statistical Analysis

Statistical analyses were performed using a Perseus Software v1.5.3.1 (Max Planck Institute
of Biochemistry). Each control and treatment samples consisted of three biological replicates and
each biological replicate were injected three times to the LC–MS/MS. Protein file with three technical
replicates in text format (.txt) from Proteome DiscovererTM were uploaded to the Perseus. The data
were log2-transformed to stabilize the variance and scale normalized to the same mean intensity across
the technical replicates. The mean for the three biological replicates from the same samples were
grouped together in the same matrix and filtered for the valid values of at least two, to eliminate
the protein that only presented in one biological replicate. Finally, all biological replicates from all
samples were grouped under the same matrix and the missing values in the data were imputed with
the random number that are drawn from a normal distribution. Normally the missing values represent
a low abundance measurement. The histogram was plotted to get an impression of whether the
ratio distributions are similar for all samples or not. Differently expressed protein between control
and treatment were detected using a t-test. The p-value was adjusted for multiple-testing using the
Benjamin–Hochberg false discovery rate. The Benjamin–Hochberg test was used as it is one of the
powerful procedures that decreases the false discovery rate. Proteins were considered significant
and differentially expressed between the two conditions, with an adjusted p-value < 0.05 and a t-test
difference ≤ −1 or ≥ 1 (= 2-fold change).

2.7. Bioinformatics and Functional Analysis

2.7.1. Venn Diagram Analysis

The cytoplasmic and nuclear protein data sets were further analyzed using the Venn diagram
analysis [17] to identify unique and overlapping proteins between the differentially expressed
cytoplasmic and nuclear proteins, following exposure to γT3. The unique and overlapping differentially
expressed cytoplasmic and nuclear proteins of γT3-treated MDA-MB-231 cells generated from this
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analysis were used to explicate related information that could be associated with the biological
significance of these proteins.

2.7.2. Protein Set Enrichment Analysis

The DAVID (Database for Annotation, Visualization, and Integrated Discovery) bioinformatics
resources [18,19] were used to perform enrichment analysis for the differentially expressed proteins.
The Uniprot ID of differentially expressed proteins were uploaded into the DAVID bioinformatics
resources. Enrichment terms were associated with the differential protein list and the total number
of proteins involved in each term were generated along with the percentage of protein involved.
Modified Fisher Exact p-value (EASE score) were generated for enrichment analysis. The output from
the analysis were used to mine biologically meaningful information, based on their molecular functions
and disease bio-pathways curated from KEGG [20,21] databases. The KEGG is an encyclopedia of
genes and genomes used to assign functional meanings to gene/protein elements, both at the molecular
and higher levels. The differentially expressed cytoplasmic and nuclear proteins were matched with
KEGG pathway databases to generate predicted pathways.

2.7.3. STRING Protein–Protein Interaction Analysis

The functional classification and pathway analysis of significantly different proteins obtained
for supernatant, nuclear, and cytoplasmic proteome were performed using the STRING (Search
Tool for the Retrieval of INteracting Genes/Proteins) functional protein association network
database [22]. The STRING database and its online resources were used to predict functional
interactions between differentially expressed proteins, based on its physical binding and regulatory
interactions. The protein–protein interactions were analyzed by uploading the uniprot IDs into
the multiple protein analysis with Homo Sapiens selected from the organism drop-down option.
The protein–protein interactions were assessed using network edges of evidence, confidence, and
molecular action. The interactions were generated based on sources from text mining, experiments,
databases, co-expression, neighborhood, gene fusion, and co-occurrence. The interaction score was set
to high confidence (0.700) and the K-mean clustering were applied to the analysis to populate protein
groups with similar interactions.

3. Results

3.1. Label-Free Mass Spectrometry Quantification of Cytoplasmic and Nuclear Proteins Isolated from
MDA-MB-231 Cells following Treatment with γT3

Label-free quantification using the Orbitrap Fusion LC–MS/MS (Thermo ScientificTM) was able
to identify cytoplasmic and nuclear proteins that are differentially expressed between γT3-treated
and untreated conditions. The resulting proteomic dataset that constituted about 600 proteins were
further filtered by fold-change differences, significant p-value and false discovery rate (FDR) adjusted
p-value. From the MDA-MB-231 cells cytoplasmic fractions, a total of 112 proteins were identified to be
differentially expressed in response to the γT3 treatment, when compared with the untreated control
(Table 1). Among these differentially expressed cytoplasmic proteins, 60 proteins were up-regulated,
and 52 proteins were down-regulated. As from the MDA-MB-231 cell nuclear fractions, a total of 79
proteins were identified to be differentially expressed in response to the γT3 treatment, when compared
with the untreated control (Table 2). Among these differentially expressed nuclear proteins, 52 were
upregulated and 27 were down-regulated by the treatment.
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Table 1. Differentially expressed cytoplasmic proteins (p < 0.05) in γT3-treated MDA-MB-231 cells
compared with the untreated control.

(A) Up-Regulated Cytoplasmic Proteins

Accession Protein Description Gene Symbol * Fold-Change

P10809 60 kDa heat shock protein, mitochondrial protein HSPD1 1.45
Q9BQE3 Tubulin alpha-1C chain TUBA1C 2.98
P68032 Actin, alpha cardiac muscle 1 ACTC1 1.81
P63267 Actin, gamma-enteric smooth muscle ACTG2 1.81
P62736 Actin, aortic smooth muscle ACTA2 1.81
P62820 Ras-related protein Rab-1A RAB1A 1.71
P30048 Thioredoxin-dependent peroxide reductase PRDX3 1.64
P30084 Enoyl-CoA hydratase, mitochondrial ECHS1 2.15
P34897 Serine hydroxymethyltransferase, mitochondrial SHMT2 1.36
Q99714 3-hydroxyacyl-CoA dehydrogenase type-2 HSD17B10 1.42
P48960 CD97 antigen CD97 1.36
P13637 Sodium/potassium-transporting ATPase subunit α-3 ATP1A3 1.2
P62879 Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2 GNB2 2.16
P04181 Ornithine aminotransferase, mitochondrial OAT 2.47
P36776 Lon protease homolog, mitochondrial LONP1 1.45
P05091 Aldehyde dehydrogenase, mitochondrial ALDH2 1.97
Q15366 Poly(rC)-binding protein 2 PCBP2 2.13
Q14697 Neutral alpha-glucosidase AB GANAB 2.27
P16152 Carbonyl reductase [NADPH] 1 CBR1 1.43
P06396 Gelsolin GSN 1.18
P07954 Fumarate hydratase, mitochondrial FH 1.46
P31040 Succinate dehydrogenase [ubiquinone] flavoprotein subunit SDHA 1.49
P11498 Pyruvate carboxylase, mitochondrial PC 1.12
P07602 Prosaposin PSAP 1.85
P49411 Elongation factor Tu, mitochondrial TUFM 1.7
Q09160 HLA class I histocompatibility antigen HLA-A 3.62
P62942 Peptidyl-prolyl cis-trans isomerase FKBP1A 3.02
Q13733 Sodium/potassium-transporting ATPase subunit α-4 ATP1A4 2.58
P04439 HLA class I histocompatibility antigen HLA-A 3.36
O43399 Tumor protein D54 TPD52L2 1.68
O75396 Vesicle-trafficking protein SEC22b SEC22B 1.12

Q8WUD1 Ras-related protein Rab-2B RAB2B 2.17
P57721 Poly(rC)-binding protein 3 PCBP3 2.31
Q14247 Src substrate cortactin CTTN 1.61
P20340 Ras-related protein Rab-6A RAB6A 1.92
Q15836 Vesicle-associated membrane protein 3 VAMP3 2.19
Q7Z406 Myosin-14 MYH14 2.33
P21926 CD9 antigen CD9 3.74
P05026 Sodium/potassium-transporting ATPase subunit β-1 ATP1B1 1.74
Q14019 Coactosin-like protein COTL1 3.35
P62491 Ras-related protein Rab-11A RAB11A 3.44
Q13740 CD166 antigen ALCAM 1.26
P63000 Ras-related C3 botulinum toxin substrate 1 RAC1 1.62
P15153 Ras-related C3 botulinum toxin substrate 2 RAC2 2.41
P53801 Pituitary tumor-transforming gene 1 protein-interacting protein PTTG1IP 3.76
Q9Y536 Peptidyl-prolyl cis-trans isomerase A-like 4A PPIAL4A 1.15
P61916 NPC intracellular cholesterol transporter 2 NPC2 2.8
P54709 Sodium/potassium-transporting ATPase subunit β-3 ATP1B3 2.65

Q969H8 Myeloid-derived growth factor MYDGF 2.75
P63167 Dynein light chain 1, cytoplasmic DYNLL1 1.85
O15127 Secretory carrier-associated membrane protein 2 SCAMP2 1.78
Q15819 Ubiquitin-conjugating enzyme E2 variant 2 UBE2V2 1.72
P13987 CD59 glycoprotein CD59 1.84
P07108 Acyl-CoA-binding protein DBI 2.14
Q5JXB2 Putative ubiquitin-conjugating enzyme E2 N-like UBE2NL 1.96
P34896 Serine hydroxymethyltransferase, cytosolic SHMT1 2.59
Q969E2 Secretory carrier-associated membrane protein 4 SCAMP4 1.68
P48509 CD151 antigen CD151 1.78
P57735 Ras-related protein Rab-25 RAB25 2.33
P99999 Cytochrome c CYCS 1.79
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Table 1. Cont.

(B) Down-Regulated Cytoplasmic Proteins

Accession Protein Description Gene Symbol * Fold-Change

Q99873 Protein arginine N-methyltransferase 1 PRMT1 -1.23
P12956 X-ray repair cross-complementing protein 6 XRCC6 -1.57
Q01105 Protein SET SET -1.62
P12004 Proliferating cell nuclear antigen PCNA -1.46
P19338 Nucleolin NCL -1.51
Q13200 26S proteasome non-ATPase regulatory subunit 2 PSMD2 -1.08
Q9Y678 Coatomer subunit gamma-1 COPG1 -2.17
Q9UL46 Proteasome activator complex subunit 2 PSME2 -1.63
Q13263 Transcription intermediary factor 1-β TRIM28 -1.82
P05387 60S acidic ribosomal protein P2 RPLP2 -1.06
P20618 Proteasome subunit beta type-1 PSMB1 -1.02
P25787 Proteasome subunit alpha type-2 PSMA2 -2.04
P05455 Lupus La protein SSB -1.65
P05388 60S acidic ribosomal protein P0 RPLP0 -1.46

P0DME0 Protein SETSIP SETSIP -1.49
P36871 Phosphoglucomutase-1 PGM1 -2.65
Q16836 Hydroxyacyl-coenzyme A dehydrogenase, mitochondrial HADH -1.55

Q8NHW5 60S acidic ribosomal protein P0-like RPLP0P6 -1.43
Q02790 Peptidyl-prolyl cis-trans isomerase FKBP4 -2.2
P35270 Sepiapterin reductase SPR -2.13
P25786 Proteasome subunit alpha type-1 PSMA1 -1.23

Q8N163 Cell cycle and apoptosis regulator protein 2 CCAR2 -2.38
P13796 Plastin-2 LCP1 -4.72
P27816 Microtubule-associated protein 4 MAP4 -1.21
P52788 Spermine synthase SMS -1.8
P61289 Proteasome activator complex subunit 3 PSME3 -3.47
P61077 Ubiquitin-conjugating enzyme E2 D3 UBE2D3 -2.15
Q14103 Heterogeneous nuclear ribonucleoprotein D0 HNRNPD -1.64
Q99436 Proteasome subunit beta type-7 PSMB7 -3.68
P53675 Clathrin heavy chain 2 CLTCL1 -2.3
Q13310 Polyadenylate-binding protein 4 PABPC4 -1.39
P54577 Tyrosine-tRNA ligase, cytoplasmic YARS -2.15
Q15257 Serine/threonine-protein phosphatase 2A activator PTPA -3.18
O60506 Heterogeneous nuclear ribonucleoprotein Q SYNCRIP -1.69
O75915 PRA1 family protein 3 ARL6IP5 -3.35
O95373 Importin-7 IPO7 -2.37
P51665 26S proteasome non-ATPase regulatory subunit 7 PSMD7 -1.22
Q99729 Heterogeneous nuclear ribonucleoprotein A/B HNRNPAB -1.48
O15355 Protein phosphatase 1G PPM1G -3.2
P28072 Proteasome subunit beta type-6 PSMB6 -1.31
P29992 Guanine nucleotide-binding protein subunit alpha-11 GNA11 -2.59

Q9UBF2 Coatomer subunit gamma-2 COPG2 -2.84
O75821 Eukaryotic translation initiation factor 3 subunit G EIF3G -2.04
P61086 Ubiquitin-conjugating enzyme E2 K UBE2K -2.08
P09651 Heterogeneous nuclear ribonucleoprotein A1 HNRNPA1 -1.52
O14602 Eukaryotic translation initiation factor 1A EIF1AY -1.42
P61221 ATP-binding cassette sub-family E member 1 ABCE1 -2.82
Q13409 Cytoplasmic dynein 1 intermediate chain 2 DYNC1I2 -2.05
Q9UII2 ATPase inhibitor, mitochondrial ATP5IF1 -3.86
Q969T9 WW domain-binding protein 2 WBP2 -1.7
Q9NR22 Protein arginine N-methyltransferase 8 PRMT8 -1.57
P07858 Cathepsin B CTSB -1.76

* p < 0.05.
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Table 2. Differentially expressed nuclear proteins (p < 0.05) in the γT3-treated MDA-MB-231 cells
compared with the untreated control.

(A) Upregulated Nuclear Proteins

Accession Protein Description Gene Symbol * Fold-change
P08133 Annexin A6 ANXA6 2.24

Q9NZM1 Myoferlin MYOF 1.08
Q562R1 Beta-actin-like protein 2 ACTBL2 7.96
P16615 Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 ATP2A2 1.2
P68363 Tubulin alpha-1B chain TUBA1B 3.83

Q9BQE3 Tubulin alpha-1C chain TUBA1C 2.37
Q71U36 Tubulin alpha-1A chain TUBA1A 2.82
P09525 Annexin A4 ANXA4 2.31
P68366 Tubulin alpha-4A chain TUBA4A 2.43
Q13748 Tubulin alpha-3C/D chain TUBA3C 1.79

P46977 Dolichyl-diphosphooligosaccharide-protein glycosyltransferase
subunit STT3A STT3A 2.44

P35610 Sterol O-acyltransferase 1 SOAT1 2.79
O94905 Erlin-2 ERLIN2 1.25
Q9NY65 Tubulin alpha-8 chain TUBA8 1.2
P50993 Sodium/potassium-transporting ATPase subunit alpha-2 ATP1A2 1.74
P13637 Sodium/potassium-transporting ATPase subunit alpha-3 ATP1A3 1.6

Q9Y6C9 Mitochondrial carrier homolog 2 MTCH2 1.33
Q9BWM7 Sideroflexin-3 SFXN3 1.17
Q9P035 Very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase 3 HACD3 2.34
Q5JWF2 Guanine nucleotide-binding protein G(s) subunit alpha isoforms XLas GNAS 2.31
Q14151 Scaffold attachment factor B2 SAFB2 3.14
Q9NZ01 Very-long-chain enoyl-CoA reductase TECR 2.12
Q9HD45 Transmembrane 9 superfamily member 3 TM9SF3 2.38
Q9NQC3 Reticulon-4 RTN4 2.81

P14406 Cytochrome c oxidase subunit 7A2, mitochondrial COX7A2 4.23
P18124 60S ribosomal protein L7 RPL7 3.08
P62917 60S ribosomal protein L8 RPL8 3.71
P46778 60S ribosomal protein L21 RPL21 3.6
P15153 Ras-related C3 botulinum toxin substrate 2 RAC2 2.78

P50151 Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit
gamma-10 GNG10 1.52

P22090 40S ribosomal protein S4, Y isoform 1 RPS4Y1 2.29
P62913 60S ribosomal protein L11 RPL11 3.31

Q9UBM7 7-dehydrocholesterol reductase DHCR7 2.51
Q9BQ39 ATP-dependent RNA helicase DDX50 DDX50 2.11
P35613 Basigin BSG 1.28

Q9H299 SH3 domain-binding glutamic acid-rich-like protein 3 SH3BGRL3 1.62
P09669 Cytochrome c oxidase subunit 6C COX6C 4.24
P46779 60S ribosomal protein L28 RPL28 1.39
P09496 Clathrin light chain A CLTA 2.84

Q5TZA2 Rootletin CROCC 3.44
Q13409 Cytoplasmic dynein 1 intermediate chain 2 DYNC1I2 1.47
Q13526 Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 PIN1 1.25

Q969 × 1 Protein lifeguard 3 TMBIM1 1.14
Q8TD47 40S ribosomal protein S4, Y isoform 2 RPS4Y2 2.3
O75964 ATP synthase subunit g, mitochondrial ATP5L 2
P61313 60S ribosomal protein L15 RPL15 3.87

Q6NVV1 Putative 60S ribosomal protein L13a protein RPL13AP3 RPL13AP3 3.53
P14649 Myosin light chain 6B MYL6B 2.51
Q96EP5 DAZ-associated protein 1 DAZAP1 3.1

Q71UM5 40S ribosomal protein S27-like RPS27L 3.3
O95678 Keratin, type II cytoskeletal 75 KRT75 1.78
P24539 ATP synthase F(0) complex subunit B1, mitochondrial ATP5F1 2.78
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Table 2. Cont.

(B) Down-Regulated Nuclear Proteins

Accession Protein Description Gene Symbol * Fold-change
P31942 Heterogeneous nuclear ribonucleoprotein H3 HNRNPH3 -1.03
Q09161 Nuclear cap-binding protein subunit 1 NCBP1 -1.62

Q9NZN4 EH domain-containing protein 2 EHD2 -1.06
Q9Y262 Eukaryotic translation initiation factor 3 subunit L EIF3L -1.21
Q01105 Protein SET SET -1.36

P0DMV9 Heat shock 70 kDa protein 1B HSPA1B -1.89
Q9Y224 UPF0568 protein C14orf166 RTRAF -1.09
O75390 Citrate synthase, mitochondrial CS -1.73
Q01844 RNA-binding protein EWS EWSR1 -1.29
P68400 Casein kinase II subunit alpha CSNK2A1 -1.23
P36776 Lon protease homolog, mitochondrial LONP1 -1.44
Q13347 Eukaryotic translation initiation factor 3 subunit I EIF3I -1.32
Q96AE4 Far upstream element-binding protein 1 FUBP1 -1.29
P0DME0 Protein SETSIP SETSIP -1.45
Q9UQE7 Structural maintenance of chromosomes protein 3 SMC3 -1.11
P63279 SUMO-conjugating enzyme UBC9 UBE2I -2.08

Q96FQ6 Protein S100-A16 S100A16 -1.06
P25205 DNA replication licensing factor MCM3 MCM3 -1.51
Q03518 Antigen peptide transporter 1 TAP1 -1.81
Q8IX12 Cell division cycle and apoptosis regulator protein 1 CCAR1 -1.38
P53701 Cytochrome c-type heme lyase HCCS -1.82
P82930 28S ribosomal protein S34, mitochondrial MRPS34 -1.28
O60814 Histone H2B type 1-K HIST1H2BK -1.88
Q01085 Nucleolysin TIAR TIAL1 -1.89
O75923 Dysferlin DYSF -1.23

Q96ND0 Protein FAM210A FAM210A -3.82
M2P21980 Protein-glutamine gamma-glutamyltransferase 2 TGM2 -1.54

* p < 0.05.

3.2. Venn Diagram Analysis

The cytoplasmic and nuclear protein data sets were further analyzed using Venn diagram
analysis to identify unique and overlapping proteins between the differentially expressed nuclear
and cytoplasmic proteins, following exposure to the γT3. This analysis identified the overlapping
regions that illustrates the relations among the differentially expressed cytoplasmic and nuclear protein
sets to define the areas of commonality among these two compartments. The Venn diagram analysis
revealed a total 104 differentially expressed cytoplasmic and 72 differentially expressed nuclear proteins,
respectively. There was a total of seven differentially expressed proteins that were common to both
cytoplasmic and nuclear compartments (Figure 1). The list of the unique differentially expressed
proteins in the union and intersections between different cytoplasmic and nuclear compartments of
MDA-MB-231 information might be associated with the biological significance of these proteins and
are shown in Table 3.
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Table 3. List of the unique proteins in the union and intersections between the cytoplasmic and nuclear
protein compartment of MDA-MB-231 cells in response to γT3 treatment.

Compartment Total Elements

Cytoplasmic and Nuclear 7 ATP1A3, TUBA1C, LONP1, DYNC1I2, SET, RAC2 and SETSIP

Cytoplasmic Proteins 104

SMS, HSPD1, PSMA2, PSMB1, MAP4, CCAR2, FH, PRMT1,
UBE2V2, DBI, ACTA2, CLTCL1, ATP1A4, ECHS1, CD151,

PTTG1IP, CD9, PSMB6, HSD17B10, PPIAL4A, COPG1, RAC1,
UBE2NL, ALCAM, ACTG2, EIF1AY, CYCS, PABPC4, SSB,
HADH, ARL6IP5, CTSB, UBE2K, PRDX3, PSME3, COPG2,

XRCC6, DYNLL1, RAB25, GANAB, PCBP3, HNRNPD, RPLP0,
PSME2, SEC22B, HNRNPAB, YARS, COTL1, RPLP0P6, GSN,
SYNCRIP, MYH14, TUFM, PTPA, IPO7, TPD52L2, GNA11,
RAB11A, CD59, PRMT8, GNB2, PGM1, ACTC1, ATP1B3,

RPLP2, PSAP, SPR, PCNA, MYDGF, ABCE1, HLA-A, WBP2,
LCP1, SCAMP4, PSMA1, NCL, PC, HNRNPA1, SCAMP2,

VAMP3, ATP5IF1, FKBP1A, CTTN, EIF3G, PSMB7, SHMT1,
PPM1G, RAB1A, TRIM28, UBE2D3, SHMT2, PSMD7, SDHA,
FKBP4, RAB2B, PCBP2, NPC2, RAB6A, CD97, PSMD2, CBR1,

ALDH2, ATP1B1 and OAT

Nuclear Proteins 72

RPL13AP3, PIN1, CCAR1, STT3A, MCM3, EIF3I, RTN4,
ACTBL2, ATP5F1, MYL6B, TM9SF3, ANXA6, TUBA4A,

EWSR1, DAZAP1, ERLIN2, RTRAF, RPL28, RPL7, MYOF,
SH3BGRL3, DHCR7, GNG10, TMBIM1, RPS27L, COX6C,
ANXA4, TUBA3C, RPS4Y1, ATP2A2, MTCH2, TUBA1A,
S100A16, HSPA1B, TAP1, NCBP1, COX7A2, CS, ATP5L,

ATP1A2, SOAT1, CROCC, CSNK2A1, TGM2, HNRNPH3,
TECR, RPL21, HACD3, CLTA, SMC3, RPL11, SFXN3, RPL8,

DDX50, MRPS34, EHD2, GNAS, EIF3L, DYSF, TUBA8, FUBP1,
HIST1H2BK, FAM210A, TUBA1B, KRT75, HCCS, UBE2I, BSG,

SAFB2, TIAL1, RPS4Y2 and RPL15
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Figure 1. The Venn diagrams shows the intersection of differentially expressed cytoplasmic and
nuclear proteins of the γT3-treated MDA-MB-231 cells (cytoplasmic and nuclear compartment). * Cyto:
Cytoplasmic; Nuc: Nuclear.

3.3. Functional Annotation and Pathway Enrichment of Differentially Expressed Proteins of Cytoplasmic and
Nuclear Compartment

For the functional categories of differentially expressed cytoplasmic and nuclear proteins of
MDA-MB-231 cells in response to γT3 treatment, the analysis revealed that most of these proteins were
grouped under phosphoprotein, acetylation, and cytoplasm (Figure 2). Interestingly, there were a total
of 74 differently expressed cytoplasmic proteins of MDA-MB-231 categorized as phosphoproteins, based
on the DAVID analysis and these proteins might mediate γT3 induced post-translational modification.
As for the functional categories of differentially expressed MDA-MB-231 nuclear proteins in response
to the γT3 treatment, the analysis showed that most of these proteins are grouped under acetylation,
nucleotide binding, ribonucleic, and transport proteins, which confirmed the nature of nuclear fraction
used in this study (Figure 3). Interestingly, there were a total of 49 differentially expressed nuclear
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proteins of MDA-MB-231 categorized as phosphoproteins, based on the DAVID analysis and these
proteins might mediate γT3 induced post-translational modification.
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Figure 2. List of differentially expressed (A) nuclear and (B) cytoplasmic proteins by the γT3-treated
MDA-MB-231 cells matched with the functional categories using DAVID analysis. The data showing
the top 10 Gene ontology terms for the proteins.

3.4. Protein–Protein Interaction Analysis

Protein–protein interaction (PPI) analysis were performed to understand the interactions between
the key proteins of the differentially expressed cytoplasmic and nuclear fractions, in response to
treatment with γT3 in MDA-MB-231 cell lines. The STRING database (http://www.string-db.org/) was
utilized to select the interacting protein clusters. In this network, the nodes represent proteins, and
the edges represent the interactions between the two proteins, whereby the line thickness between
two nodes indicates the strength of data support. The PPI analysis for all protein datasets generated
networks with significant interactions than expected, which meant that the differentially expressed
proteins had more interactions among themselves than what would be expected for a random set of
proteins of similar size, drawn from the genome. Such an enrichment indicated that the proteins are
biologically connected as a group/cluster. For all PPI networks, the minimum required interaction
score was set at high confidence (0.700) and the K-means clustering were performed to cluster the

http://www.string-db.org/
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network to a specified number of clusters, to identify significant protein–protein interaction clusters
formed among differentially expressed proteins.

3.4.1. Differentially Expressed Cytoplasmic Proteins STRING Analysis

For differentially expressed cytoplasmic proteins of MDA-MB-231 cells in response to γT3
treatment, the PPI network generated a total of 154 edges, among which 98 edges with high confidence
generated a significant (p < 9.84 × 10−8) PPI enrichment clusters with a local clustering coefficient of
0.466 (Figure 3). A total of eight clusters were generated using K-means clustering, in which prominent
interactions of cluster I was formed with PSMB1, PSMB6, PSMD2, PSMA2, PSMA1, PSME3, PSMB7,
PSMD7, and PSME3; cluster II with HNRNPD, HNRNPA1, SSB, SYNCRIP, NCL, and PCBP2; cluster
III with XRCC6, PCNA, UBE2V2, UBE2K, and UBE2D3; cluster IV with EIF3G, TUFM, RPLP0, RPLP2,
and ABCE1; cluster V with ATP1B1, ATP1A3, ATP1B3, and ATP1B3; cluster VI with ECHS1, HSD17B10,
HADH, and ALDH2; cluster VII with CYCS, LCP1, ACTC1, ACTA2, ACTG2, CTTN, and GSN; and
cluster VIII with RAB25, RAB2B, RAB11A, SEC22B, COPG1, COPG2, CD59, DYNC1I2, DYNLL1,
RAB1A, and RAB6A.
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Figure 3. Interaction network for differentially expressed cytoplasmic proteins of MDA-MB-231 cells in
response to the γT3 treatment generated using the STRING database. Note: Red dotted circle shows
protein clusters with high confidence interactions for each cluster (line thickness indicates the strength
of data support).

3.4.2. Differentially Expressed Nuclear Proteins STRING Analysis

For differentially expressed nuclear proteins in MDA-MB-231 cells in response to the γT3 treatment,
the PPI network generated a total of 87 edges, among which 36 edges with high confidence were
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generated as significant (p < 2.3 × 10−13) PPI enrichment clusters with a local clustering coefficient of
0.494 (Figure 4). A total of five clusters were generated using K-means clustering, in which prominent
interactions of cluster I was formed with ATP1A3, ATP1A2, and ATP2A2; cluster II with RPL11,
RPS27L, EIF3I, EIF3L, RPL21, STT3A, RPL7, RPL15, NCBP1, RPL28, and RPL8; cluster III with UBE2I,
MCM3, DYNC1I2, TECR, HIST1H2BK, and SMC3; cluster IV with MTCH2, ATP5L, COX6C, COX7A2,
and ATP5F1; and cluster V with TUBA1A, TUBA4A, TUBA1B, TUBA1C, TUBA8, and ERLIN2.
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4. Discussion

In this study, differentially expressed cytoplasmic and nuclear proteins of MDA-MB-231 in
response to the γT3 treatment were assessed to identify the molecular mechanism through which
this isoform of tocotrienol modulates anti-cancer effects. According to the protein–protein interaction
(PPI), a total of nine proteasome complex proteins (PSMA1, PSMA2, PSMB1, PSMB6, PSMB7, PSMD2,
PSMD7, PSME2, and PSME3) were found to form the most prominent network cluster of differentially
expressed proteins in the cytoplasm of the γT3 treated MDA-MB-231 cells (Figure 2). All nine proteins
were found to be downregulated by the γT3 treatment. This network of proteins might mediate the
proteasome pathway through which γT3 inhibits the proliferation of cancer cells. It has been shown
that both transformed and normal cells depend on the function of the proteasome to control the
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expression of proteins linked to cell survival and proliferation [23]. The proteasome is known to be
involved in many distinct regulatory mechanisms in central cellular systems, such as proliferation
and apoptosis, and serves as the machinery of proteolysis. Previous study has reported high levels
of proteasome activity in breast cancer [24]. This elevated level of proteasome activity is crucial for
the survival of cancer cells, as it allows them to escape from the apoptosis mechanism and degrade
pro-apoptotic molecules. Cancer cells are more sensitive to proteasome inhibition than normal cells as
a reduction in proteasome activity induces apoptosis in these cells [25]. Proteasome activator subunit-3
(PSME3), a protein encoded by the PSME3 gene, was reported to be upregulated in breast cancer
and it promotes protein proteolysis (Figure 5). Knockdown of the PSME3 gene in human breast
cancer cells, suppressed the proliferation of these cells and induced apoptosis [26]. In an experimental
model, it was shown that a knockdown of the PSME3 gene reduced subcutaneous tumor growth rate
and increased the number of CD8+ T-cells [27]. The PSME protein could also stimulate epithelial
mesenchymal transition (EMT) by inducing the expression of cancer stem cell markers, as well as
influencing the tumor immune microenvironment by regulating the cell cycle and proliferation of
breast cancer cells [27]. In addition, abnormally high expression of PSME3 protein was reported in
breast cancer metastatic lymph nodes [28]. It should also be noted that a higher expression of PSME3
had been observed in several types of human cancers and this was found to be a marker of prognosis
in breast cancer [29].
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Figure 5. The down-regulated proteasome proteins formed the most prominent network based on
the protein–protein interaction populated using the STRING database for differentially expressed
cytoplasmic proteins in response to the γT3 in MDA-MB-231 cells.

Another key protein from this network is the 26S proteasome non-ATPase regulatory subunit-2
(PSMD2). This is a multi-protein complex that is involved in the ATP-dependent degradation of
ubiquitinated proteins. Previous study have showed that PSMD2 regulated the cell proliferation and the
cell cycle progression in breast cancer via modulation of p21 and p27 proteasomal degradation, which
suggest that this protein might be a potential therapeutic target [30]. Analysis using the MALDI-TOF
mass spectrophotometry (MS) based on two-dimensional polyacrylamide gel electrophoresis (2-DE)
of breast cancer tissues showed over-expression of these proteasomes subunit proteins, including
PSMD2 and PSMA1, when compared to normal adjacent tissue, which enhanced the action of
ubiquitin–proteasome pathway in breast cancer tissues [31]. Analysis of thousands of tumor samples
from The Cancer Genome Atlas (TCGA) reported an increased expression of proteasomes such as
PSMB6, PSMB7 [32], and PSMD2 [30] in most cancer types. Other members of the proteasomal protein
of this network such as the PSMB7 was reported to be over-expressed in colorectal cancer [33], whilst
PSME2 along with PSME3 were reported to be significantly enriched in several biological processes
and pathways including cell adhesion, adherent junction organization, regulation of autophagy,
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cellular protein localization, the cell cycle, and the apoptosis pathway [34]. The ability of the γT3
to downregulate the expression of these proteins delineate tocotrienols as a promising proteasome
inhibitor. The crosstalk between these proteins were further investigated using the Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrichment analysis. The pathway enrichment predicted the
proteasome, as well as inflammation mediated by chemokine and cytokine signaling pathways. In the
KEGG proteasome pathway, all nine downregulated proteasome proteins in response to γT3 were
seen to be involved in regulating the cellular functions in this pathway (Figure 6). Down-regulation
of the proteasome proteins by γT3 in this study shows the ability of this compound to inhibit
proteasomes-mediated proteolysis in breast cancer cells. In this pathway, a total of five proteins from
the PPI network (Figure 3) are seen to be part of the 20S proteasome core particle, such as α2/PSMA2,
α6/PSMA1, β1/PSMB6, β2/PSMB7, and β6/PSMB1, which might regulate their activities in various
ways. The immunoproteasome protein Pa28β/PSME2 from the PPI network were represented as one
of the two 11S regulatory particles besides PA28α. Other proteins from the PPI network represented as
the regulatory particles in the KEGG proteasome pathway are PA28γ/PSME3 and PA700 regulatory
particles, RPN1/PSMD2 and RPN8/PSMD7. While proteasome inhibition might have therapeutic
benefits to breast cancer therapy, these results represent a novel approach to delineate γT3 as a
proteasome inhibitor, which might lead to the development of a new treatment strategy of tocotrienols
for breast cancer, as well as others cancer types.
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Numerous differentially expressed nuclear proteins were identified in response to the γT3
treatment and were found to be related to important biological processes, such as binding, molecular
function regulators, catalytic activities, and translation regulator activities. It is noteworthy that some
proteins were known to play important roles in impairing the carcinogenesis. Two upregulated proteins,
such as annexin a6 (ANXA6) and scaffold attachment factor B2 (SAFB2), and two downregulated
proteins, such as glutamine gamma-glutamyltransferase 2 (TGM2) and S100 calcium binding protein
A16 (S100a16), were chosen for discussion, because they were found to be involved directly in the
development of carcinogenesis while being found to be dysregulated in response to the γT3 treatment
in this study.

Previous studies have showed a low expression of annexin a6 in many cancer types. Low
expressions of AXNA6 was reported in melanoma malignancy [36] and epithelial carcinoma, whereby,
the overexpression of ANXA6 leads to tumor suppression effects in A431 cells [37]. In breast cancer,
low expression of AXNA6 were detected in invasive ductal carcinoma and mucous adenocarcinoma
tissues [38] and was predicted to be an important patient survival marker. The AXNA6 also reported
to play a potential tumor suppressor role in gastric cancer and have been shown to be down-regulated
via promoter methylation in gastric cancer [39]. Recent studies reported the detection of the ANX6 that
was found to be enriched in the circulating extracellular vesicles of breast cancer patients undergoing
neoadjuvant chemotherapy [40]. Another study also reported that lapatinib, an anti-cancer drug
developed by GlaxoSmithKline (GSK), which is used as a treatment for solid tumors such as breast and
lung cancer was found to induce ANXA6 expression [41]. In this study, the AXNA6 was upregulated
by γT3, implicating the ability of this isoform to mimic the activity of lapatinib.

Previous study suggested the scaffold attachment factor B2 (SAFB2) protein as a tumor suppressor
involved in breast cancer development [42]. SAFB2 have also been implicated in breast tumorigenesis
and have been reported to be frequently lost in breast cancer due to mutation, while its overexpression
results in breast cancer growth inhibition. The same study also reported that in breast cancer patients,
low SAFB2 levels are associated with worse outcome in breast cancer patients [43]. Interestingly, in
this study the expression of this protein was upregulated by γT3 treatment, which implies that this
compound has potential clinical importance in improving the outcome in breast cancer patients.

The protein, glutamine gamma-glutamyltransferase 2 (TGM2) was reported to be downregulated,
following treatment with T3 in this study. A higher proportion of mammary tumors showed to
express transglutaminase 2 in the chemoprevention group, while its upregulated expression is
suggestive of an increased aggressiveness of tumors [44]. Recent studies showed that the TGM2 causes
depletion of the P53 tumor suppressor through autophagy in renal cell carcinoma [45] and induces
epithelial-to-mesenchymal transition (EMT) in various tumors [46]. Another study on gastric cancer
(GC) also suggest that TGM2 might provide a new target for the diagnosis and treatment of GC [47].
Interestingly, the TGM2 protein and mRNA levels were both reported to be elevated in metastases
from breast and melanoma cancers [48]. In a nutshell, TGM2 might provide a new target for the
diagnosis and treatment of breast cancer, as substantial evidence have shown that down-regulated
TGM2 expression can decrease the invasive ability and metastatic potential of breast cancer. The ability
of γT3 to downregulate this protein showed a potential therapeutic advantage as a promising natural
anti-cancer drug agent in cancer.

Another important down-regulated protein, S100 calcium binding protein a16 (S100A16) has
been linked to cancer types including breast cancer with substantial supporting evidences showing
its involvement in carcinogenesis. The co-expression of S100A14 and S100A16 was associated with
a poor prognosis in human breast cancer as it was reported to promote cancer cell invasion via an
interaction with cytoskeletal dynamics [49]. A recent evidence showed that the expression of S100A16
was negatively correlated with the overall survival of bladder cancer patients [50]. Besides breast
cancer, S100A16 was identified as an important prognostic marker for colorectal cancer [51] and was
shown to be significantly overexpressed in both prostate cancer tissues and cells lines, compared
to normal controls [52]. The S100A16 was also upregulated in various types of cancer, including
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bladder, lung, and pancreatic [53]. While in this study the expression of this protein was significantly
down-regulated, previous study have shown that the upregulation of S100A16 expression promotes
epithelial mesenchymal transition via the Notch1 pathway in breast cancer [49]. This indicates that
γT3 has a potential effect on S100A16, which might negatively regulate some embryonic transcription
factors that promotes EMT in breast cancer cells, which are known to be an important target site for the
therapy of breast cancer.

5. Conclusions

In summary, our data indicates that gamma-tocotrienol (γT3) is a novel proteasome inhibitor
adding to its anti-cancer properties. This was the first label-free quantitative proteomics-based study
demonstrating the cytoplasmic and nuclear proteins signaling events that were altered in response to
the γT3 treatment in MDA-MB-231 cells. This study showed the importance of γT3 as an anti-cancer
agent that could be used to replace or support current chemotherapeutic treatment regimes. It might
even be useful in devising chemoprevention measures. However, this study had some potential
limitations. From the present study, an over-whelming number of differentially expressed proteins in
nuclear and cytoplasmic compartments of the MDA-MB-231 human breast cancer cells were identified
in response to the γT3 treatment. The roles of all these proteins were inexplicable as it required
supporting evidences for further interpretation. Interestingly, some of these proteins have not been
previously reported to be modulated by γT3. As such, there is room for further and more in-depth
analysis of these data, to elucidate how tocotrienols impair carcinogenesis through dysregulation of
various other proteins.
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