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Abstract: We have evaluated the isotope shift (IS) constants of the first five low-lying fine-structure
states of the singly charged calcium ion (Ca II) by adopting a finite-field (FF) approach in the rela-
tivistic coupled-cluster (RCC), a method developed by us and by using a code also developed by
us. A similar previous calculation using singles and doubles approximation RCC theory (RCCSD
method), gives results for the individual states in the FF approach that deviate substantially, while
the differential values (the shifts of the spectral lines) agree reasonably well with other theoretical
results and with experiments. However, we find a contrasting trend from the FF approach using our
RCCSD method although calculations with the Dirac–Hartree–Fock (DHF) method shows good agree-
ment. Our results also show that inclusion of partial triple excitations in the perturbative approach
(RCCSD(T) method) through energy derivation lessens accuracy, but these results can be improved
when triple excitations are included in the wave function that determines the RCC equations. The
differences between the RCCSD and RCCSD(T) results demonstrate the importance of triple excita-
tions in evaluating energies and IS constants for Ca II. Finally, we also present ab initio values of IS’s
between the S–P, S–D, and D–P transitions in the DHF, and RCCSD and RCCSD(T) approximations
and this is compared to the previously reported values (theoretical as well as experimental).

Keywords: isotope shift; ab initio method; coupled-cluster theory

1. Introduction

The study of the atomic isotope shift (IS) can provide seminal information in the
intersection between nuclear and atomic physics [1]. Accurate data, experimental and
theoretical, on IS can be used to extract fundamental properties such as the nuclear mean
square radius [2] and information about the existence of new particles [3]. Within a single
species, the variation of the isotope shift with a neutron number gives insight into the
nuclear shell structure and nucleon-nucleon interaction [4]. Deriving nuclear properties
from atomic spectra provides an important complement to direct measurements of the
nucleus, as the lower energies involved allows excellent resolutions. From an atomic
viewpoint, precise spectroscopic data has astrophysical significance [5], such as in analyses
of stellar abundances. Metrological applications are also often acutely dependent on
atomic data.

The electronic configuration of singly ionised calcium (Ca II), iso-electronic with neu-
tral potassium (K I), is well known, but nuclear effects on the spectrum is still an active
area of research—especially for radioactive isotopes. Important experimental studies were
reported on in, for example [3,6–10]. Such work is complemented by theoretical investi-
gations, see [11–14], and together they contribute to the understanding of, for example,
nuclear structure and relativistic effects. Comparisons between theoretical and empirical
data also constitute critical tests of relativistic many-body quantum mechanical computa-
tional methods. The latter can be made particularly accurate in K-like systems, due to the

Atoms 2021, 9, 26. https://doi.org/10.3390/atoms9020026 https://www.mdpi.com/journal/atoms

https://www.mdpi.com/journal/atoms
https://www.mdpi.com
https://orcid.org/0000-0002-4014-5816
https://orcid.org/0000-0003-4397-7965
https://orcid.org/0000-0002-6175-2252
https://doi.org/10.3390/atoms9020026
https://doi.org/10.3390/atoms9020026
https://doi.org/10.3390/atoms9020026
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/atoms9020026
https://www.mdpi.com/journal/atoms
https://www.mdpi.com/article/10.3390/atoms9020026?type=check_update&version=2


Atoms 2021, 9, 26 2 of 12

single valence electron and the intermediate mass. The Ca isotopes provide a sensitive test
of nuclear structure theory, with one of its isotopes having a doubly-magic composition of
nucleons [4].

There are three main contributions to the overall isotope shift (see for example [15]
or [16]), occurring from the differences in spatial charge distribution (the field shift—FS)
and in nuclear mass (the mass shift). The latter is, in turn, split up into one component
arising from a mass polarisation effect in the centre-of-mass referential (the specific mass
shift—SMS) and another one which is the difference in the reduced mass between different
isotopes (the normal mass shift—NMS). The mass specific components typically dominate
for reasonably light, or intermediate nuclei.

For the theoretical determination of IS, isotope independent parameters should be
evaluated and the respective isotope dependent quantities should then be multiplied to
them for obtaining the final shifts. Therefore, accurate calculations of the FS, NMS, and
SMS constants are the essential theoretical interest. This requires employing a reliable
many-body method for the evaluation of the IS constants. Coupled-cluster (CC) theory
in the relativistic framework (RCC) is today considered the gold standard among the
available many-body methods for the accurate determination of atomic properties [17–20].
A truncated (R)CC method not only accounts for different physical effects due to the
electron correlation effects to all-orders, it also satisfies the size-extensitivity and size-
consistent characteristics of the many-body theory.

For a given many-body theory, there are different procedures available to determine
the first-order properties. For example, it is possible to evaluate the IS constants in the direct
expectation value evaluation approach, or alternatively to estimate them by adopting finite-
field (FF) procedures [21]. An alternative route is to adopt more intriquate approaches, such
as considering the bi-orthogonal wave function and analytical gradient approaches [18].
Since the operators that describe the IS are scalar operators (see Section 2), the FF procedure
is often used to determine the IS constants.

In this work, we employ the RCC theory in the FF approach to evaluate the FS, NMS,
and SMS constants of Ca II. This will serve two purposes. First, an earlier calculation
using the singles and doubles approximation in the RCC theory (RCCSD method), and the
FF approach, showed a significant discrepancy between the results for individual states
from the RCC theory and older calculations based on other methods [14]. Our analysis
facilitates addressing this ambiguity. Second, the NMS constants are often estimated using
the scaling relation of kinetic energy with the total energy of the virial theorem. Improved
ab initio results for NMS constants will also address this. We report results for the first
five low-lying states of Ca II, and the transitions involving them. Study of isotope shifts in
these particular transitions are of pronounced interest for probing nuclear structure and for
searching for the existence of new bosonic particles [3].

2. Theoretical Method
2.1. Theory of IS in Atomic Systems

The IS of an energy level, Ev, between an isotope, A, with mass, MA, and an isotope,
A′, with mass, MA′ , is given by a product of nuclear and atomic factors as:

δEv = Fv δ
〈

r2
nuc

〉
+ KMS,v

MA −MA′

MA MA′
, (1)

where Fv is the field-shift (FS) constant, and with δ
〈
r2

nuc
〉
=
〈
r2

nuc
〉

A−
〈
r2

nuc
〉

A′ the difference
between the nuclear mean-square charge radii of the two isotopes. KMS,v is the mass-
shift (MS) constant. This is further divided into KMS,v =KNMS,v+KSMS,v. It is also worth
mentioning here that Equation (1) corresponds only to the first-order IS correction and
higher-order effects are neglected in the present analysis. Within a reasonably good
approximation, determinations of Fv, KNMS,v, and KSMS,v are assumed to be independent of
isotope, but dependent on the atomic wave functions. Therefore, it is imperative to evaluate
the atomic wave functions accurately in order to reliably determine the IS constants.
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It should be added that the evaluation of atomic wave functions also depends on the
finite-size of the nucleus, and the latter can be determined for a given isotope. Therefore,
we consider the isotope 40Ca when we determine the atomic wave functions. This may
result in slight differences in the evaluation of constants for different isotopes. However,
this will not make any significant differences in the estimation of the ISs.

2.2. General Features of RCC Theory for One-Valence Systems

The ground state of the Ca II ion has a closed-shell core [3p6] and a valence orbital in
the 4s shell. Its low-lying excited states possesses the same core, but the 4s valence orbital
is replaced by, for instance, the 3d or the 4p orbital. The wave functions of these low-lying
states of Ca II can be calculated in the RCC theory framework by (for example, see [22–24]
and references therein):

|Ψv〉 = eT{1 + Sv}|Φv〉 , (2)

where |Φv〉 is a mean-field wave function treated as reference state, and T and Sv are the
excitation operators that take care of the electron correlations among the core and valence
orbitals, respectively, due to the neglected residual interactions in the determination of
|Φv〉. Owing to the fact that all the investigated states of Ca II in this work have a common
core, we define for computational convenience the reference state as |Φv〉= a†

v|Φ0〉 for the
Dirac–Hartree–Fock (DHF) wave function |Φ0〉 of the closed-core. From the Schrödinger
equation H|Ψv〉 = Ev|Ψv〉, with the atomic Hamiltonian H and energy eigenvalue Ev of
the corresponding state, the T and Sv amplitude solving equations are given by [22–24]:

〈Φ∗0 |H̄ |Φ0〉 = 0

and

〈Φ∗v |{(H̄ − Ev) Sv}+ H̄ |Φv〉 (3)

respectively, where the superscript ∗ over the reference states indicates that they refer to
the excited determinants with respect to the respective reference states. The subscript N
indicates that the operators are in the normal order form, and H̄ = e−T H eT = (H eT)l
with subscript l denotes linked terms. The energies of the closed-shell (E0), and of the
closed-shell with the valence orbital configurations, are obtained from [22–24]:

E0 = 〈Φ0|H̄ |Φ0〉
and

Ev = 〈Φv|H̄{1 + Sv}|Φv〉 . (4)

Since Equation (3) depends on Ev, both Equations (3) and (4) are solved simultaneously.
In addition, E0 and Ev are not the actual physical observables, so to validate the calculation
of the wave function we evaluate the electron affinity ∆Ev = Ev − E0 of an electron with
the valence orbital v (equivalent to the ionisation potential of the corresponding orbital)
and compare this with the experimental value. Since the objective of the present work
is to verify the IS results from the FF approach, we consider only the single and double
excitations through the RCC operators (known as the RCCSD method approximation)
by defining:

T ≡ T1 + T2 and Sv ≡ S1v + S2v . (5)

We also include leading-order contributions from the valence triple excitations, (referred to
as RCCSD(T) calculations) by defining a perturbative RCC operator as:

Spert
3v = ∑

ab,pqr

(HNT2 + HNS2v)l
εv + εa + εb − εp − εb − εr

, (6)

where a, b and p, q, r are the indices of the occupied and unoccupied orbitals, respec-
tively, and the ε’s are their corresponding single particle orbital energies. For computa-
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tional simplicity, we include contributions from Spert
3v through the energy equation only

in Equation (4). However, it is expected that the electron correlation contributions from
this operator can have large cancellations when it is included in both Equations (3) and (4)
simultaneously. Thus, the differences in the results between the RCCSD and RCCSD(T)
methods will only indicate the typical order of contributions from the valence triple excita-
tions in the considered Ca II ion.

2.3. FF Approach and IS Constants

The expectation value of an operator O can be determined in the FF approach by using
an effective Hamiltonian H = Hat+λO, where Hat is the atomic Hamiltonian and λ is a
small arbitrary parameter and chosen to be 1×10−5 in these calculations. The energy (or
say the electron affinity) obtained by considering the above Hamiltonian will depend on λ
and can be expressed as:

∆Ev(λ) = ∆E(0)
v + λ ∆E(1)

v +O(λ2) , (7)

where superscripts (0), (1), etc. denote the order of perturbation and O(λ2) indicates
corrections higher than the first-order. For a very small value of λ, we get:

∆Ev(λ) ≈ ∆E(0)
v + λ ∆E(1)

v . (8)

Therefore, the first-order energy correction can be estimated from the above expres-
sion as:

∆E(1)
v ' ∂∆Ev

∂λ

∣∣∣∣
λ=0
≈ ∆Ev(+λ)− ∆Ev(−λ)

2λ
. (9)

In the perturbative approach, we have ∆E(1)
v = 〈O〉, if O is considered as the the

interaction operator. Thus, Equation (9) offers the expectation value of the operator O in
the FF approach.

In the present work, we use a Dirac–Coulomb atomic Hamiltonian in the calculation,
given in atomic units (a.u.) by:

Hat = ∑
i

[
c αi · pi + (βi − 1) c2 + Vnuc(R, ri)

]
+ ∑

i<j

1
rij

, (10)

where α and β are the Dirac matrices, summations are respectively taken over electrons i
and pairs of electrons i, j in the atom, c is the speed of light, pi the momentum operator for
electron i, Vnuc(

〈
r2

nuc
〉
, r) the potential due to the atomic nucleus, and 1

rij
is the Coulomb

operator. Here, Vnuc(
〈
r2

nuc
〉
, r) is evaluated by assuming a spherically-symmetric Fermi

nuclear charge distribution.
The FS, NMS, and SMS constants in Equation (1) of an atomic state can be determined

as the expectation value of the respective operators as F =
〈
OFS〉, KNMS =

〈
ONMS〉, and

KSMS=
〈
OSMS〉. In the present calculations, we have defined these as:

OFS = −
∂Vnuc

(〈
r2

nuc
〉
, r
)

∂〈r2
nuc〉

, (11)

ONMS =
1
2 ∑

i

[
p2

i −
αeZ
ri

αi · pi −
αeZ
ri

(
αi ·C1

i

)(
C1

i · pi

)]
, (12)

and

OSMS =
1
2 ∑

i 6=j

[
pi · pj −

αeZ
ri

αi · pj −
αeZ
ri

(
αi ·C1

i

)(
pj ·C1

j

)]
, (13)

where αe is the fine-structure constant and Z is the atomic number of the atomic system.
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2.4. Generation of Single Particle Orbitals

In the relativistic theory, the single particle wave function |φ(r)〉 is given by:

|φ(r)〉 = 1
r

(
P(r) χκ,m(θ, φ)

iQ(r) χ−κ,m(θ, φ)

)
, (14)

where P(r) and Q(r) are known as the large and small components of the Dirac wave
function, and χκ,m represents the angular component with relativistic quantum number
κ and projection of the angular momentum m. The radial functions are constructed as a
linear combinations of known functions, f (r), by defining them as:

P(r) =
Nl

∑
k=1

cL
k f L(r) (15)

and

Q(r) =
Nl

∑
k=1

cS
k f S(r) , (16)

where Nl is the number of functions for a given l-symmetry orbital, the ck’s are the unknown
coefficients determined by diagonalising the matrix, and the superscripts L/S denote the
large/small components.

We have used Gaussian type orbitals, GTOs, defined as:

f L(r) = NL rl
Nl

∑
k

e−ηζkr2
, (17)

and

f S(r) = NS
(

d
dr

+
κ

r

)
f L(r) , (18)

where NL/S are the normalisation constants, η and ζ the optimised GTO parameters for a
given orbital, and the relation between f S(r) and f L(r) in Equation (18) implies the kinetic
balance condition.

We have considered 40 GTOs, and universal basis functions with η = 0.00715 and
ζ = 1.92 for each symmetry up to l = 5. Numerical radial integration are carried out on a
non-linear grid distribution, i = 1, n with the number of grids n = 1200, by defining radial
distance as:

r(i) = r0

[
e(i−1)h − 1

]
, (19)

where r0 is a very small parameter and h is the step size. In our calculation, we have used
h = 0.018 and r0 = 2.0× 10−6 to perform the numerical calculations. In the RCC calcula-
tions, we only allow orbitals having principal quantum number up to 20 to participate in
the electron excitation processes, due to the correlation effects.

3. Results and Discussion

As an initial test of the unperturbed wave functions, we calculate the electron affinity
from Equation (4) and compare the results with experimental values. The results are
presented in Table 1.
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Table 1. Comparison of electron affinity values (in cm−1) from the calculations (as detailed in
Section 2 and Equations (3) and (4)) with tabulated data. The latter values are quoted from the
NIST database [25]. The three columns for the calculated values correspond to the different methods
described in Section 2.

Atomic DHF RCCSD RCCSD(T) Empiric Data [25]State

4s 2S1/2 91,440.02 95,883.58 95,444.94 95,751.87
3d 2D3/2 72,618.65 81,711.38 80,750.57 82,101.68
3d 2D5/2 72,594.55 81,631.34 80,670.66 82,040.99
4p 2P1/2 68,036.45 70,610.56 70,377.89 70,560.36
4p 2P3/2 67,836.79 70,378.86 70,149.40 70,337.47

The RCC calculations agrees very well with the experimentally determined data
(between 0.05% and 0.5% for RCCSD), whereas the DHF data, as expected, underestimates
the electron affinity (by about 3% to 11%). RCCSD(T) values are consistently lower than
the RCCSD ones, demonstrating the importance of the inclusion of triple excitation for
a still improved calculation of the atomic wave functions by including triple excitations
through the amplitude determining equation of the RCC excitation operators.

The contributions to the overall isotope shifts were calculated, using the techniques
described in Section 2, using the unperturbed wave functions with the FF contributions
to the IS components, as in Equations (11)–(13), for all fine-structure levels belonging to
the 4s, 3d, and 4p configurations of Ca II. The primary data are presented in Table 2. The
respective pre-factors for the field shift (FS), the normal mass shift (NMS), and the specific
mass shift (SMS) are shown, as calculated with three different numerical methods. Our
results are compared to ones reported by Roy et al. [14] and Safronova et al. [12] when
applicable. As can be seen, our FF results for the SMS constants of the individual state
differ substantially from the FF values reported in [14] although the same RCC theory
is employed in both the works. However, our results agree reasonably well with the
calculations in [12], which are obtained using the expectation value (EV) approach in a
third-order relativistic many-body perturbation theory (RMBPT).

Another observation is that the DHF values derived by the FF and EV approaches
are different, owing to the fact that the FF option includes the orbital relaxation effects
that can arise through the random phase approximation (RPA) in the EV approach. This
can be understood from the analysis given in [13]. To justify this, we also present only
the DHF values from the EV approach (given as ∗DHF) from our calculation in the above
table. As can be seen from the differences between the DHF and ∗DHF values, the orbital
relaxation effects are quite large in the determination of all the three IS constants. In fact,
the results in [12] include these effects separately through the higher-order RPA effects
in the RMBPT calculations. This is why there is an overall agreement between our final
results with the aforementioned RMBPT calculations.
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Table 2. Isotope shift pre-factors comparison for Ca II as obtained with different numerical calculation methods, compared
to previous theoretical work in [12,14]. Abbreviations are explained in the text.

This Work Ref. [14] Ref. [12]

Atomic State ∗DHF DHF RCCSD RCCSD(T) DHF RCCSD ∗DHF RMBPT

Field Shift (MHz × fm−2)
4s 2S1/2 −215.70 −230.63 −268.05 −263.26 −215.5 −266.6
3d 2D3/2 −3×10−5 77.41 95.3 93.89 0 111.8
3d 2D5/2 −3×10−5 90.26 114.01 112.31 0 111.2
4p 2P1/2 −0.42 14.72 14.57 15.88 −0.4 19.6
4p 2P3/2 −1×10−5 17.35 18.23 19.46 0 19.9

NMS (GHz × amu)
4s 2S1/2 2383.86 1499.81 1572.83 1565.31 1548.5 1598.6
3d 2D3/2 5494.38 1194.92 1345.6 1329.32
3d 2D5/2 5479.22 1196.94 1347.96 1331.52
4p 2P1/2 1619.66 1116.47 1159.08 1154.98 1133.7 1140.6
4p 2P3/2 1611.92 1113.53 1155.52 1151.5 1123.6 1132.9

SMS (GHz × amu)
4s 2S1/2 −926.11 −502.62 −159.25 −242.54 −502 −505.4 −927 −259
3d 2D3/2 −4311.62 −2499.84 −2305.65 −2363.83 −4308 −2601
3d 2D5/2 −4297.61 −2492.74 −2298.32 −2357.26 −4296 −2595
4p 2P1/2 −501.11 −291.83 −166.09 −207.67 −303.1 −535.6 −497 −204
4p 2P3/2 −492.55 −287.43 −162.63 −203.76 −288.8 −538.3 −491 −200

∗ Refers to the DHF values without accounting for the orbital relaxation effects.

We also find another peculiar trend that the FF values of the FS constants between the
fine-structure levels are different, whereas the RMBPT calculation does not exhibit such
differences. Our analysis demonstrate that the higher-order effect contributions that are
presumed to be small and neglected in the FF approach turn out to be different. This is
solely responsible for such discrepancies, since otherwise their values should be similar.
This is a numerical problem inherent in the FF approach and can be circumvented by
either choosing different perturbative parameters λ or by employing another approach
to evaluate IS constants independent of choice of such an arbitrary parameter. From this
point of view, the proposed analytical response based on RCC theory [21] would be more
appropriate. Nonetheless, good agreement between our FF values with the results obtained
using the EV approach in [12] suggests that the final FF values in [14] may have some large
unknown errors; possibly arising from the numerical calculations or the implementation of
the approach.

From the table we note that our results for the DHF calculations are close to the
corresponding data in [14]. In the case of the RCC results, there is a good agreement
with [14] for the normal mass shift pre-factor. However, the specific mass shift values
diverge significantly. This is also illustrated in Figure 1.

The figure shows the perturbative contributions of NMS and SMS for the D2 line,
as computed in [14] and in this work. The discrepancy in calculated SMS values is evident.
For an analysis of the shift of the spectral line, this difference is partially obscured by the
fact that the results diverge in the same directions for both the upper and lower level,
and also by the dominant contribution from the NMS.
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Figure 1. Illustration of calculated mass shifts for the 2S1/2
and 2P3/2

levels obtained by the RCCSD
method, in this work and in [14]. Although the calculated shifts in the two works are distinctly
different, the resulting shift of an observed spectral line (which is the experimental observable) is
similar for both calculations (498.6 GHz×amu for [14] and 420.69 GHz×amu for the present work).

In a comparison between our RCCSD and RCCSD(T) results, a systematic difference
is seen for the NMS and SMS components. This shows that triple excitations are important
for optimum accuracy, but it is likely that their simplified inclusion, as applied here,
overcompensates for their omission in RCCSD.

Spectral Lines

From the data in Table 2, we have derived isotope shifts for the involved spectral
lines, for the specific pair of isotopes 40Ca and 43Ca. This includes the D1 (397 nm) and D2
(393 nm) lines, the coupling between the 4p and the metastable 3d levels (with ∆MJ = 0,±1;
at 866 nm, 854 nm, and 850 nm) and also the electric dipole forbidden 4s-3d transitions
(733 nm and 729 nm). The latter are weakly coupled by an electric quadrupole (E2) moment.
The perspective of the data from the view of spectral lines facilitates comparisons not
only with [12,14], but also other theoretical works, such as Berengut et al. [13]. This is
disseminated in Table 3, in which we also include comparisons with the experimental
works Nörtershäuser et al. [7] and Garcia-Ruiz et al. [9].

The data are presented using the following convention: We calculate our shifts from
40Ca to 43Ca (δν40−43) by subtracting the individual shifts calculated for 40Ca from the ones
for 43Ca, and with spectral line frequencies consistently being defined as: 2S1/2→

2P3/2,
2D1/2→

2S3/2, and 2P1/2→
2D3/2. We subsequently apply the necessary sign adjustments to

cited data to enable pertinent comparisons.
For the different computational methods we have applied, the comparison with the

empiric data clearly indicates that our *DHF values give less accurate results than the RCC
ones. This is expected, since a *DHF calculation must be truncated somewhere. For the
RCC calculations, the ones including the limited form of the triple excitations agrees well
with experimental values, for the four cases for which we have comparative data. Our
two RCC results for the D2 line, as well as the works [12–14], are within 10–20% of the
experimental value in [9] for the total isotope shift. For the three fine-structure lines of
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the 3d→4p transition, there is an excellent agreement between our RCC values and the
measured ones in [7] (1–2%).

Table 3. Comparison of isotope shifts for various spectral lines between different numerical and experimental data for the
isotope pair 40Ca II and 43Ca II, δν40−43, in MHz. For this work, the three columns refer to data calculated using: a. *DHF,
b. RCCSD, and c. RCC SD(T), as explaind in the text.

Spectral This Work Theory Experiments
Line a b c [14] [13] [12] [7] [9]

Field Shift (MHz)
2S1/2→

2P1/2 30.45 35.08 34.65 −129.7 −36
2S1/2→

2P3/2 30.78 35.53 35.09 −129.8 −36
2D3/2→

2S1/2 −38.23 −45.09 −44.33 47
2D5/2→

2S1/2 −39.83 −47.42 −46.62 47
2P1/2→

2D3/2 7.78 10.02 9.68 −12
2P3/2→

2D3/2 7.45 9.57 9.24 −11
2P3/2→

2D5/2 9.05 11.89 11.52 −11

NMS (MHz)
2S1/2→

2P1/2 669.03 722.10 716.14 788.7
2S1/2→

2P3/2 674.16 728.32 722.21 801.6
2D3/2→

2S1/2 −532.11 −396.58 −411.87
2D5/2→

2S1/2 −528.59 −392.46 −408.03
2P1/2→

2D3/2 −136.92 −325.53 −304.27
2P3/2→

2D3/2 −142.05 −331.74 −310.34
2P3/2→

2D5/2 −145.57 −335.86 −314.18

SMS (MHz)
2S1/2→

2P1/2 −367.88 11.94 −60.86 50.1 22
2S1/2→

2P3/2 −375.56 5.89 −67.68 53.1 −5
2D3/2→

2S1/2 −3485.68 −3746.04 −3702.21 −3502
2D5/2→

2S1/2 −3473.29 −3733.25 −3690.75 −3487
2P1/2→

2D3/2 3853.57 3734.10 3763.07 3479
2P3/2→

2D3/2 3861.25 3740.14 3769.89 3507
2P3/2→

2D5/2 3848.85 3727.35 3758.43 3492

Total (MHz)
2S1/2→

2P1/2 331.59 769.12 689.92 709.1 591
2S1/2→

2P3/2 329.38 769.75 689.62 724.9 592 683 (20)
2D3/2→

2S1/2 −4056.03 −4187.72 −4158.41 −4435
2D5/2→

2S1/2 −4041.71 −4173.13 −4145.39 −4426
2P1/2→

2D3/2 3724.43 3418.59 3468.49 3843 3464.3 (3.0)
2P3/2→

2D3/2 3726.65 3417.97 3468.79 3844 3462.4 (2.6)
2P3/2→

2D5/2 3712.33 3403.38 3455.77 3835 3465.4 (3.7)

For the field shift, our RCC results agrees with [12] in absolute value, but has opposite
signs. This does not appear to be due to different sign conventions. A possible explanation
is an inconsistency in sign definitions in [12]. Indeed, the difference in the total isotope
shift between [12] and our data (and incidentally also with experimental results) is not far
from twice the values of calculated field shifts. There is a significant discrepancy between
our field shift data and that in [14].

Among the other theoretical works, the NMS contribution can only be extracted
from [14] and only for the D1 and D2 lines. The differences are of the order of 10%. Our
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SMS data agrees well with [13] for the s→d and p→d lines, which are strongly dominated
by the large shift of the 3d levels (seen in Table 2). For s→p, the SMS impact on the spectral
line is small. This is due to the effect of having the same sign and same order of magnitude
for both upper and lower level, as shown in Figure 1.

For further direct comparisons with experimental values from [3,7–10], and with [12,14],
we compile in Table 4 the total isotope shifts for a range of isotopes, using 40Ca as the
reference. Our data is calculated from the pre-factors in Table 2.

Table 4. Derived isotope shifts for a series of isotopes, using 40Ca as reference, for the dipole allowed transitions 2S1/2
→ 2P1/2

,
2S1/2

→ 2P3/2
, and 2P1/2

→ 2D3/2
as well as for the 2S1/2

→ 2D3/2
and 2S1/2

→ 2D5/2
transitions. The data are in MHz, and are

compared to other theoretical works and experiments. The columns are labelled as in Table 3.

2S1/2 →
2P1/2

this work theory experiment
a b c [14] [12] [10]

δν40−42 257.68 560.88 506.42 425.49 (15)
δν40−43 331.59 769.12 689.92 709.1 591 677.91 (32)
δν40−44 291.22 839.70 738.55 920.4 849.00 (14)
δν40−46 539.20 1407.00 1259.34 1314.9 1297.61 (34)
δν40−48 718.58 1752.64 1564.49 1677.6 1707.58 (16)

2S1/2 →
2P3/2

this work theory experiments
a b c [14] [12] [9] [8] [10]

δν40−42 256.50 561.78 506.67 426.3 (18) 426.04 (15)
δν40−43 329.38 769.75 689.62 724.9 592 683 (28) 683.0 (2.8)
δν40−44 286.82 838.42 736.10 941.5 851.1 (27) 850.1 (21) 850.231 (65)
δν40−45 504.59 1202.85 1075.52 1154 1103.5 (32)
δν40−46 588.76 1407.78 1258.38 1350.4 1301 (36) 1301.0 (3.6)
δν40−47 638.72 1568.97 1398.82 1537.9 1524.8 (43)
δν40−48 712.49 1753.05 1562.68 1719.6 1706.5 (46) 1710.6 (52) 1707.945 (67)

2P1/2 →
2D3/2

this work theory experiment
a b c [12] [7]

δν40,42 2548.38 2342.09 2375.77 2354.4 (2.8)
δν40,43 3724.43 3418.59 3468.49 3843 3464.3 (3.0)
δν40,44 4814.92 4406.24 4472.78 4501.8 (3.5)
δν40,48 8878.86 8142.81 8262.81 8301.3 (6.2)

2S1/2 →
2D3/2

this work experiment
a b c [3]

δν40,42 2806.05 2902.98 2882.19 2775.393 (2)
δν40,44 5106.14 5245.95 5211.34 5347.680 (2)
δν40,46 7548.34 7788.49 7734.38 7778.302 (2)
δν40,48 9597.44 9895.45 9827.30 10,003.130 (2)

2S1/2 →
2D5/2

this work experiment
a b c [3]

δν40,42 2797.94 2895.43 2875.68 2771.873 (2)
δν40,44 5080.12 5216.22 5183.82 5340.888 (2)
δν40,46 7520.17 7759.18 7708.05 7768.401 (2)
δν40,48 9559.37 9854.98 9790.67 9990.383 (2)
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Our data agrees very well (0.5–2%) with the empiric ones in [7] for 2P1/2 →
2D3/2.

For this spectral line, the isotope shift is dominated by the SMS contribution. This is
because the NMS shift is of the same order, and the same sign, for both P and D states
(see Table 2). This makes the shift of the spectral line moderate. In contrast, the D states
have SMS-shifts that are about an order of magnitude larger than those for the P states.
For 2S1/2→

2P3/2, the agreements is less good (ranging from 1% to 13%), and for almost all
isotopes our RCCSD and RCCSD(T) data straddles the experimental numbers in [9]. This
indicates again the importance of fully including triple excitations for obtaining optimum
numerical results.

For the 2S1/2→
2D3/2 and 2S1/2→

2D5/2, the agreement is good with [3] (from 0.1% to
about 4%) and shows that this is a good starting point for more elaborate calculations, fully
taking into account triple excitations.

4. Conclusions

We have investigated isotope shift constants for the field shift, normal mass shift, and
specific mass shift of the first five low-lying states of the singly charged calcium ion by
performing ab initio calculations in the finite-field procedure using the relativistic coupled-
cluster theory. In contrast to earlier calculations, our results show that the final results
for the individual states are indeed in reasonable agreement with the values obtained in
the expectation value evaluation approach. The orbital relaxation effects to the isotope
shift constants are found to be quite significant in the mean-field calculation. We also
noticed that the finite-field approach produces large differences in the results between the
fine-structure partner states, whereas such discrepancies are found to be quite small in the
expectation value evaluation approach. This suggests the use of another potential method,
for example normal coupled-cluster theory, which satisfies the biorthogonality condition
and Hellmann–Feynman theorem, for minimising the numerical uncertainties of the finite-
field approach for accurate determination of the isotope shift constants. Finally, we have
applied our ab initio results to estimations of the isotope shifts of the 2S1/2 → 2P1/2;3/2,
2S1/2→ 2D3/2;5/2, and 2P1/2;3/2→ 2D3/2;5/2 transitions of the calcium ion and compared them
with the available high-precision measurements.
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