
atoms

Article

Analytical Results for the Three-Body Radiative
Attachment Rate Coefficient, with Application to the
Positive Antihydrogen Ion H+

Jack C. Straton

Department of Physics, Portland State University, Portland, OR 97207-0751, USA; straton@pdx.edu

Received: 16 March 2020; Accepted: 10 April 2020; Published: 20 April 2020
����������
�������

Abstract: To overcome the numerical difficulties inherent in the Maxwell–Boltzmann integral
of the velocity-weighted cross section that gives the radiative attachment rate coefficient αRA for
producing the negative hydrogen ion H− or its antimatter equivalent, the positive antihydrogen ion
H+, we found the analytic form for this integral. This procedure is useful for temperatures below
700 K, the region for which the production of H+ has potential use as an intermediate stage in the
cooling of antihydrogen to ultra-cold (sub-mK) temperatures for spectroscopic studies and probing
the gravitational interaction of the anti-atom. Our results, utilizing a 50-term explicitly correlated
exponential wave function, confirm our prior numerical results.

Keywords: antihydrogen; radiative attachment; photodetachment; antihydrogen ion; analytical;
hydrogen ion

1. Introduction

The Antiproton Decelerator (AD) facility at CERN [1] has provided the foundation for a variety of
experiments (e.g., [2–4]) over more than a decade. Small numbers of these anti-atoms are trapped by
the ALPHA and ATRAP collaborations using specialized magnetic minimum neutral atom traps [5–7],
with confinement times of many minutes being routine at ALPHA [8]. They have done spectroscopic [9]
measurements for H in their quest to investigate possible violations of CPT symmetry, experimental
limits on its charge [10], and preliminary limits on the gravitational interaction of the anti-atom [11].

Building on the latter idea, the GBAR collaboration [12–14] means to measure the gravitational
attraction of matter versus antimatter using neutral H atoms, but cooling them sufficiently is difficult
because of their neutrality. They intend to form the antihydrogen ion H+ as an intermediate step
because its net charge would allow for sympathetic cooling with a mixture of positively charged ions of
ordinary matter such as Be+, and, after they are cooled, the extra positron would be stripped off prior
to studies of the gravitational interaction of the anti-atom [12–14]. The authors of [15,16] calculated the
cross section and rate coefficient for the radiative attachment of a second positron to create the H+ ion,

H (1s) + e+ → H+
(

1s2 1Se
)
+ h̄ω . (1)

We first [15] used the effective range wave function of Ohmura and Ohmura [17] and then [16] a fully
two-positron 200-term wave function [18] composed of explicitly correlated exponentials of the kind
introduced by Thakkar and Smith [19]. These extend to temperatures lower than Bhatia’s [20] results.

Calculating the radiative attachment rate coefficient αRA for producing the negative hydrogen
ion H− or its antimatter equivalent, the positive antihydrogen ion H+, requires the evaluation of
a Maxwell–Boltzmann integral of the velocity-weighted cross section whose integrand is akin to
a slightly-rounded Heaviside step function that is difficult to handle numerically, particularly for
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temperatures below 1000 K. Evaluating this integral analytically would, then, be ideal, perhaps using
the analytical results for the underlying six-dimensional photoionization integral for the cross section
itself given in Keating’s master’s thesis [21]. However, integrating squares of sums of the large variety
of terms in that final cross section is a daunting task.

This variety of terms arises in Keating’s work as the Lth derivatives of the Laplace transform of
the spherical Bessel function j1(kr),

LL(p; k) =





1
k2

[
k− p tan−1

(
k
p

)]
L = 0

1
k2

[
− kp

p2+k2 + tan−1
(

k
p

)]
L = 1

i(L−2)!
2k2

[
p+ikL
(p+ik)L − p−ikL

(p−ik)L

]
=

−(L− 2)!

k (k2 + p2)
L

L

∑
j=0

(2)(L
j )

j(L + 1)
j + 1

(−1)j/2 kj pL−j L = 2, 3, 4, ...

(2)

where the “(2)” on the summation sign in the last line indicates steps of two, p = α + γ or α + β of
Equation (8), and k is the wave number. One might wonder, then, if one could back up to the final
radial integral of the cross section that has a consistent analytic form r3/2+he−σr j1(kr) for the direct
and cross terms. It indeed turns out to be possible to perform the Maxwell–Boltzmann integral of
products of that analytic form first, and then integrate over each of the radial integrals in the product
r3/2+he−σr j1(kr) R3/2+je−τr j1(kR), and finally sum over all such product terms and the terms of the
explicitly correlated exponential wave function.

We give a synopsis of how one finds the radiative attachment cross section, explicate the integrals
one needs to calculate, and show how a fully analytical rate coefficient may be found. Tests of the new
form confirm the numerical integrals of prior work.

2. The Radiative Attachment cross Section

Since this approach relies on finding the radiative attachment cross section from the
photodetachment cross section via the principle of detailed balance, we give a short history.
Photodetachment from the hydrogen ion H−, for instance, is known to be responsible for the opacity of
the sun [22,23], garnering much attention in the 1940s–1980s [24–42] and more recently [43–51]. Ward,
McDowell, and Humberston [52] described the parallel Ps− case as calculating an allowed dipole
transition to the continuum of the two-electron (or two-positron) Hamiltonian

h̄ω + H−
(

1s2 1Se
o

)
→ H−

(
1s kp 1Po

o

)
. (3)

Following Ghoshal and and Ho [50], we put the (length gauge1) cross section for photodetachment
(or photoionization), σPI , laid out by Chandrasekhar [24,25] in atomic units, and obtain

σPI =
2pωαa2

0
3

∣∣∣
〈

ψ f

∣∣∣k̂ · (r1 + r2)
∣∣∣ψi

〉∣∣∣
2

= 6.81156× 10−20 cm2k
(
k2 + 2I

) ∣∣∣
〈

ψ f |z1 + z2|ψi

〉∣∣∣
2 , (4)

where α is the fine structure constant, a0 is the Bohr radius, and the magnitude of the momentum of the
detached electron or positron p = h̄k may be related to the energy ω (and the photon wavelength λ)
and the H− electron or positron affinity, I, by

1 Since the cross section differences between velocity and length gauge formulations (due to the approximate nature of the
two-positron wave functions used) are small, we will present only length gauge results in this work.
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2ω = 2 (2πν) = 2
hc
λ

= 2

(
h̄2k2

2
+ I

)
≡
(

p2 + γ2
0

)
. (5)

In the matrix element for photodetachment

µPI =
∫

ψ∗f (z1 + z2)ψidτ (6)

in Equation (4), ψ f is a continuum state wave function for the outgoing positron represented by (the
dipole term of) a plane wave multiplied by a hydrogen ground state wave function,

ψ f =
1√
2π

(eikz1−r2 + eikz2−r1) (7)

Accurate two-positron initial-state wave functions may take the form

ψH(r1, r2, r12) =
1√
2

(
1− P̂12

)
e−αr1−βr2−γr12 ∑

l,m,n
clmnslt2mun, (8)

where P̂12 is the permutation operator for the two identical positrons α ↔ β, with Hylleraas
coordinates [53] given by s = r1 + r2, t = r1 − r2, and u = r12 ≡ |r1 − r2|. One may also express this as
sums of powers of r1 and r2 instead of powers of s and t, via the binomial theorem. Often, the difficulty
of finding the nonlinear parameters in the exponential is reduced by setting β = α and γ = 0.

Alternatively, Thakkar and Smith [19] introduced a set of wave functions involving solely
exponentials, with the nonlinear inter-electron (inter-positron) correlation parameter γ retained,

ψTS(r1, r2, r12) =
1√
2

(
1− P̂12

)
∑
k

cke−αkr1−βkr2−γkr12 , (9)

where the parameters in the exponentials are generated in a quasi-random fashion,

αk = η
(
(A2 − A1)

1
2 〈k(k + 1)〉

√
2 + A1

)

βk = η
(
(B2 − B1)

1
2 〈k(k + 1)〉

√
3 + B1

)
,

γk = η
(
(G2 − G1)

1
2 〈k(k + 1)〉

√
5 + G1

) (10)

where 〈x〉 denotes the fractional part of x. The downside of having to find six nonlinear parameters
that minimize the energy, rather than the single nonlinear parameter one varies in a many Hylleraas
expansions, is sufficiently compensated for in that the wave function has a consistent form and is
generally easier for evaluating integrals. For the fifty-term wave function we use, these parameters
are [54]: A1 = 0.2380, A2 = 1.3240, B1 = 0.9800, B2 = 1.3290, G1 = −0.0720, G2 = 0.288, and
η = 1 − 2.458 × 10−7. The quasi-random assignment of the 50 values for each of αk, βk, and γk
in Equation (10) means that we do not have to vary these 150 parameters directly. Because the
optimization algorithm is not perfect, one must scale the wave function with η very slightly different
from one so that it satisfies the virial theorem. The coefficients ck are found by diagonalizing the
Hamiltonian matrix in order to minimize the ground state energy and then normalized.

Using this wave function for a given triplet of α = αk, β = βk, and γ = γk in the sum in Equation (9),
the matrix element for ionizing either positron under the influence of the length dipole operator (z1 + z2)

is the sum of four terms:

µPI = 2 (I11 + I21)
λ3/2
√

2π
=

∫ ∫
d3x1d3x2e−αr1−βr2−γr12 (z1 + z2)

λ3/2
√

π

1√
2

, (11)

×
[
e−λr2 eikz1 + e−λr1 eikz2

]
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where the first factor of two comes from I11 = I22 and so on, whose subscripts j refer to zj in the dipole

operator and in the plane wave, respectively, and we have factored out the coefficient λ3/2√
2π

that is
common to all terms. We keep λ, the magnitude of the charge of the hydrogen nucleus, in symbolic
form rather than setting it to one so that we can take derivatives of it to represent powers of rj.

The cross section for radiatively attaching a second positron to H (1s) to create the (1s2 1Se) state of
the H+ ion, via the reaction in Equation (1), can be obtained from the principle of detailed balance (see,
e.g., Landau and Lifshitz [55]) following the lead of Drake [56] and then Jacobs, Bhatia, and Temkin [57],
who applied the principle of detailed balance to obtain the radiative attachment coefficient (for an electron)
to form the (2p2 3Pe) metastable H− state from H (2s, 2p). For the (1s2 1Se) case, we have [16],

σRA(k) =
g1 p2

ω

g2 p2
e

σPI =
6α2 (k2 + γ2

0
)2

12 · 22k2 σPI , (12)

where g1/g2 = 6/12 is the statistical weight ratio. Here, the photon momentum relative to the ion is
given by pω = h̄ω/c = (k2 + γ2

0)/2c, and pe is the positron momentum k. Note that c in atomic units
is the inverse of the fine structure constant α.

To estimate formation rates of H+, it is helpful to calculate the positron attachment to H as a
function of temperature rather than energy, as is common in astrophysical applications. This rate
coefficient αRA is formed as the expectation value of vσRA with the normalized Maxwell–Boltzmann
distribution f (v) as,

αRA(T) = 〈vσRA〉 = 4π
∫ ∞

0
dv vσRA (k (v))

(
m

2πkBT

)3/2
v2exp

[
−mv2/ (2kBT)

]

=

√
8kBT

me

1√
π

∫ ∞

0
dx x

gPI

gRA

P2
ω

p2
e

σPI

(√
2kBTx

)
exp [−x] .

(13)

whose overall coefficient is

√
8kBT

me
=

√
8× 8.61733262× 10−5 eV K−1T

0.51099895000× 106 eV
299792458× 102 cm/s

= 1.10113894× 106 cm/s
√

K−1T

(14)

where the temperature T is given in Kelvins K.

3. Evaluating Integrals

The algebra in each case is greatly reduced by making the replacement

e−γr12 e−r2(β+λ) =

(
− ∂

∂γ

)(
− ∂

∂λ

)
e−r2(β+λ)

r2

e−γr12

r12
(15)

in each term, with the notation

Ij1 =

(
∂

∂γ

)(
∂

∂λ

)
R0j1 (16)

where

R011 =
∫ ∫

d3x1d3x2e−αr1
e−r2(β+λ)

r2

e−γr12

r12

(
z1eikz1

)
(17)

R021 =
∫ ∫

d3x1d3x2e−αr1
e−r2(β+λ)

r2

e−γr12

r12

(
z2eikz1

)
.
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For the cross-terms
(

z2eikz1
)
=
(

r2 cos θ2eikr1 cos θ1
)

, we need the conversion given in Ley-Koo
and Bunge [58]

Yk,m (θ2, φ2) =
k

∑
M=−k

[
D

(k)
m,M (0, θ1, φ1)

]∗
Yk,M (θ12, φ12) (18)

where from Edmonds [59] we have

Y1,0 (θ2, φ2) =
1

∑
M=−1

[
D

(1)
0,M (0, θ1, φ1)

]∗
Y1,M (θ12, φ12) ,

=
1

∑
M=−1

[√
4π

3
Y1,M (θ1, φ1)

]∗
Y1,M (θ12, φ12)

(19)

so that in this case

cos θ2 = 2
√

π

3
Y1,0 (θ2, φ2) = 4π

3 ∑1
M=−1Y∗1,M (θ1, φ1)Y1,M (θ12, φ12)

= P1 (cos θ2) = cos θ1 cos θ12 + sin θ1 sin θ12cos (φ1 + φ12)
(20)

we recover the law of cosines. Ley-Koo and Bunge [58] note that the only contribution comes from the
term with M = 0, “because the point of interest is on the polar axis” so that only the cosine-product
term remains, which we confirmed by calculating both terms.

Introducing an addition theorem for the plane wave ([60], p. 671, Equation (B.44)) helps us to do
the first angular integral in each of the terms in Equation (17),

∫
dΩ1 (r1P1 (cos θ1))

(
∞

∑
l=0

(2l + 1) il jl(kr1)Pl (cos θ1)

)
=

(
r1

2
(2 + 1)

2π

)(
(2 + 1) i1 j1(kr1)

)
. (21)

All expressions that follow should in principle be multiplied by this factor of i, but, since we take the
absolute square of sums of these transition amplitudes to get the cross section, we ignore this factor.

We follow Ley-Koo and Bunge [58] in replacing dΩ2—the differential solid angle around r̂2

in a frame of reference in which r1 is taken as the polar axis—by dΩ12 = sin θ12dθ12dφ12. One
can immediately integrate over dφ12. They change variables to cos θ12 =

(
r2

1 + r2
2 − r2

12
)

/ (2r1r2)

giving sin θ12dθ12 = (−2r12) dr12/ (2r1r2), but one may also change variables to cos θ12 = u12 giving
sin θ12dθ12 = du12 and simply do that integral using integrals we have not found in the literature:

∫ 1

−1
du12

e−γ
√

r2
1−2r1r2u12+r2

2
√

r2
1 − 2r1r2u12 + r2

2

=
e−γ|r1−r2 | − e−γ|r1+r2 |

γr1r2

∫ 1

−1
du12

e−γ
√

r2
1−2r1r2u12+r2

2
√

r2
1 − 2r1r2u12 + r2

2

u12 =
1

γ3r2
1r2

2

((
e−γ|r1−r2 | + e−γ(r1+r2)

)
r1r2γ2 − e−γ|r1−r2 | + e−γr1−γr2

+ γ
(

e−γ(r1+r2) (r1 + r2)− e−γ|r1−r2 | |r1 − r2|
))

[r1 > 0, r2 > 0] , (22)
1

γr1r2

∂

∂a

∫ 1

−1
du12 e−γ

√
r2
1−a2r1r2u12+r2

2

∣∣∣∣
a=1

u12 =
1

γr1r2

∂

∂a
1

a2γ4r2
1r2

2

(
e−γ

√
r2
1−2ar2r1+r2

2
(
−
(

r2
1 − 3ar2r1 + r2

2

)
γ2

+

∣∣∣∣
(

aγ2r1r2 − 3
)√

r2
1 − 2ar2r1 + r2

2γ− 3
)
+ e−γ

√
r2
1+2ar2r1+r2

2

×
((

r2
1 + 3ar2r1 + r2

2

)
γ2 +

(
ar1r2γ2 + 3

)√
r2

1 + 2ar2r1 + r2
2γ + 3

))

a=1

The last integrals to do for the cross section are
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R011 = 8π2 2
(β + λ)2 − γ2

∫ ∞

0
dr1r2

1 j1 (kr1)
(

e−(α+β+λ)r1 − e−(α+γ)r1
)

.

R021 = 8π2 4

((β + λ)2 − γ2)
2

∫ ∞

0
dr1

(
j1 (kr1)

(
e−(α+β+λ)r1 − e−(α+γ)r1

))

+ 8π2 4

((β + λ)2 − γ2)
2

∫ ∞

0
dr1

(
r1 j1 (kr1)

(
(β + λ)e−(α+β+λ)r1 − γe−(α+γ)r1

))

+ 8π2 2
(β + λ)2 − γ2

∫ ∞

0
dr1

(
r2

1 j1 (kr1) e−(α+β+λ)r1
)

(23)

These are easily done and the derivatives in Equation (16) taken, providing the core of the numerical
Maxwell–Boltzmann integral in Equation (13) for the rate coefficient αRA for producing the negative
hydrogen ion H− or its antimatter equivalent, the positive antihydrogen ion H+ [16].

4. Doing the r1 Integrals Last

The conventional path to crafting an analytical rate coefficient αRA for producing the positive
antihydrogen ion H+, or its matter equivalent, would be to integrate pair-products of terms in the
analytical results for the cross section found from Equation (23) above, or as given in Keating’s master’s
thesis [21], reproduced in Equation (2). This latter form organizes the sums of terms in the cross section
most compactly, but integrating every pair-product of every term in even this set (Equation (2)) would
require some two-dozen analytical integrals such as

∫ ∞

0

e−x (γ0
2 + 2kBTx

)3

4
√

2(kBT)5/2x3/2
tan−1

(√
2kBTx
p f

)
tan−1

(√
2kBTx

pi

)
dx (24)

and

∫ ∞

0

e−x (γ0
2 + 2kBTx

)3 tan−1
(√

2kBTx
pi

)

4k2
BT2x

(
p2

f + 2kBTx
) dx , (25)

few of which are easily done.
Instead of this obvious approach, we take the road less traveled and take these integrals in

reverse order because of the uniformity of the integrands in Equation (23). The downside of this
novel approach is that we must form the product of distinct radial integrals rather than squaring
the analytical result of the result of a single integration, and there are many dead ends on a path to
integrating over both of these radial variables after integrating over the equivalent of x in Equation (13).
We did, however, find a means to do so, as follows.

We first take the derivatives in Equation (16) of Equation (23) to obtain the requisite terms of
Equation (11), after substituting the conventional Bessel function for the spherical Bessel function

1√
kr1

√
π
2 J 3

2
(kr1) = j1 (kr1) ([60], p. 673, Equation (C.2)):

I11 = 4π
∫ ∞

0 dr14π
(

1√
k

√
π
2 J 3

2
(kr1) r3/2

1

)

×
(

8γ (β + λ) e−(α+β+λ)r1

((β + λ)2 − γ2)
3 − 8γ (β + λ) e−(α+γ)r1

((β + λ)2 − γ2)
3 +

2r1γe−(α+β+λ)r1

((β + λ)2 − γ2)
2 +

2r1 (β + λ) e−(α+γ)r1

((β + λ)2 − γ2)
2

) (26)

and

I21 = 4π
∫ ∞

0
dr14π

(
1√
k

√
π
2 J 3

2
(kr1) r3/2

1

)(
48γ (β + λ) e−(α+β+λ)r1

r2
1 ((β + λ)2 − γ2)4 − 48γe−(α+γ)r1 (β + λ)

r2
1 ((β + λ)2 − γ2)4 +

48γ (β + λ)2 e−(α+β+λ)r1

r1 ((β + λ)2 − γ2)4

− 48γ2 (β + λ) e−(α+γ)r1

r1 ((β + λ)2 − γ2)4 +
16γ (β + λ) e−(α+β+λ)r1

((β + λ)2 − γ2)3 +
8γ (β + λ) e−(α+γ)r1

((β + λ)2 − γ2)3 +
2r1γe−(α+β+λ)r1

((β + λ)2 − γ2)2

)
.

(27)
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The first term of I11 may be combined with third-to-last term of I21, as may the third term of I11,
with the last term of I21. The second term of I11 and the second-to-last of I21 cancel, thus one is left with
seven terms comprising three powers of r1 with two kinds of exponentials, a considerably uniform set
of analytic functions to be integrated.

If one wishes to do the Maxwell–Boltzmann integral of products of such functions first,
the products must be written as unique integrals. That is, the rate coefficient will be sums of terms

B(T, a, σ, h, τ, j, β, γ, λ, α, γb , ps, pt) =
6.811556×10−20

(
1.10114× 106√T

)

√
π
(
22c2

) gPI
gRA

×128π4λ3 ∫ ∞
0 dR1

∫ ∞
0 dr1

∫ ∞
0 dx

r
h+ 3

2
1 R

j+ 3
2

1

(
2kB Tx + γ2

0

)3
J 3

2

(√
2
√

kB Txr1

)
J 3

2

(√
2
√

kB TxR1

)
e−σr1−τR1−ax

kB T
(
(d + λ)2 − γ2

)ps
(
( f + λ)2 − γ2

b

)pt

(28)

where we replace β in the denominators with d and f to allow for multiplication of sums of terms
whose positrons are exchanged by the P̂12 permutation operator in Equation (9) for the two identical
positrons α↔ β, as well as different values of α and β arising from the various terms in the adjoining
sum over terms in the wave function. The latter also explains the need to distinguish γb from γ in the
second denominator. It turned out that the a in the exponential was unneeded for the present problem,
but we have left it in for those who might need this sort of integral for another problem and later set it
to equal one.

One may perform the x and then the r1 integrals as they stand, but the resulting expression did
not allow for integration over R1. This is, of course, why one normally would never do the integrals
in this order if it could be avoided. However, the hope of an overall simpler summing of products
of terms if this unusual and difficult integration order is successful eventually found fruit in a series
approach. We first express the Bessel functions in terms of the hypergeometric function [61–63]

J 3
2
(kr1) =

1
Γ
( 5

2
)
(

kr1

2

)3/2

0F1

(
;

5
2

;−1
4
(kr1)

2
)

(29)

and combine their product as [64,65]

1
Γ
( 5

2

)
(

r1
√

2kBTx
2

)3/2

0F1

(
; 5

2 ;− 1
4

(
r1
√

2kBTx
) 2
) 1

Γ
( 5

2

)
(

R1
√

2kBTx
2

)3/2

0F1

(
; 5

2 ;− 1
4

(
R1
√

2kBTx
) 2
)

=
4
√

2
(
r1
√

kBTx
) 3/2 (R1

√
kBTx

) 3/2

9π

∞

∑
m=0

2−m (−r2
1
) m(kBTx)m

m!
( 5

2

)
m

2F1

(
−m− 3

2 ,−m; 5
2 ; R2

1
r2
1

)
.

(30)

After expanding

(
2kBTx + γ2

0

)3
= 8k3

BT3x3 + 12k2
BT2x2γ02 + 6kBTxγ04 + γ06 (31)

the integral over powers n of x in this sum is [66] (p. 364 No. 3.381.4)

∫ ∞

0
dxe−axxm+n+ν = a−m−n−ν−1Γ(m + n + ν + 1)
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The r1 integral, including coefficients from the second line of Equation (28), for each term in the
m-sum follows as [67]

B2 = π32
19
2 −mλ3 a−m−n− 5

2 (kBT)m+ 3
2 Γ
(
m + n + 5

2

)

9kBTm!
( 5

2

)
m ((d + λ)2 − γ2)

(
( f + λ)2 − γb2

) Rj+3
1 e−τR1

∫ ∞

0
dr1rh+3

1

(
−r2

1
)m

e−σr1 2 F1

(
−m− 3

2
,−m;

5
2

;
R2

1

r2
1

)

= π7/2(−1)m2m+ 25
2 λ3Rj+3

1 e−τR1 a−m−n− 5
2 σ−h−2m−4(kBT)m+ 1

2 Γ
(

m + n +
5
2

)

× 1

9m!
( 5

2

)
m Γ
(
−m− 3

2

)
((d + λ)2 − γ2)

(
( f + λ)2 − γb2

) (32)

×
(
−2(m + 1)

Γ(−2m− 3)
Γ(−m)

Γ(h + 2m + 4) 2 F3

(
−m− 3

2
,−m;

5
2

,− h
2
−m− 3

2
,− h

2
−m− 1;

1
4

σ2R2
1

)

+ 3R4
1

(
− 1

R2
1

)
− h

2 −mσh+2m+4

[
− (h + 2)Γ(h + 1) cos

(
πh
2 + πm

)

h + 2m + 7
Γ(−h− 2m− 5)

Γ(−m)
2 F3

(
h
2
+

1
2

,
h
2
+ 2;

1
2

,
h
2
+ m + 3,

h
2
+ m +

9
2

;
1
4

σ2R2
1

)

− (h + 3)σΓ(h + 2) sin
(

πh
2 + πm

)
√
− 1

R2
1
(h + 2m + 8)

Γ(−h− 2m− 6)
Γ(−m)

2 F3

(
h
2
+ 1,

h
2
+

5
2

;
3
2

,
h
2
+ m +

7
2

,
h
2
+ m + 5;

1
4

σ2R2
1

)

 .

[
<(h) + 1 > 0∧ <(h + 2m) + 4 > 0∧ <(σ) > 0∧

(
R2

1 /∈ R∨ <
(

R2
1
)
≤ 0

)
∧ (R1 /∈ R∨ (< (R1) = 0∧ R1 6= 0))

]

We ignored the restriction against R1 being an element of the reals under the assumption that this result
could likely be considered as a distribution whose integral would smooth out any singularities arising
from this restriction. That assumption paid off. Let us consider the gamma functions of negative
integer arguments that append each of the 2F3 functions ([66], p. 946 No. 8.334.3; [68]),

Γ(−2m− 3) = −π csc(π(2m + 3))
Γ(2m + 4)

Γ(−m) = −π csc(πm)

Γ(m + 1)

Γ(−h− 2m− 5) = −π csc(π(h + 2m + 5))
Γ(h + 2m + 6)

Γ(−h− 2m− 6) = −π csc(π(h + 2m + 6))
Γ(h + 2m + 7)

(33)

whose ratios have the following values for m an integer:

−π csc(π(2m + 3))
Γ(2m + 4)

(
−π csc(πm)

Γ(m + 1)

)−1

=
(−1)m+1Γ(m + 1)

2Γ(2m + 4)

−π csc(π(h + 2m + 5))
Γ(h + 2m + 6)

(
−π csc(πm)

Γ(m + 1)

)−1

= 0

−π csc(π(h + 2m + 6))
Γ(h + 2m + 7)

(
−π csc(πm)

Γ(m + 1)

)−1

= 0

Integrating the one remaining term (under the restriction <(j) > −4∧ ((<(h + j) < −2∧ <(σ−
τ) ≤ 0 ∧ <(σ + τ) ≥ 0) ∨ (<(h + j) ≥ −2 ∧ <(σ− τ) < 0 ∧ <(σ + τ) > 0)) ∧ (<(τ) > 0 ∨ (<(τ) =
0∧ <(j + 2m) < −6)) gives us our final result,
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B(T, a, σ, h, τ, j, β, γ, λ, α, γb, ps, pt)=
6.811556×10−20

(
1.10114× 106

√
T
)

√
π (22c2)

gPI

gRA
(34)

× (kBT)
1
2

π7/2λ3

((d + λ)2 − γ2)
ps (( f + λ)2 − γ2

b
)pt

×
∞

∑
m=0

(
2m+25/2(m + 1)a−m− 5

2 Γ(m + 1)(kBT)m
)

9m!
( 5

2
)

m Γ
(
−m− 3

2
)

Γ(2m + 4)

×
(

8k3
BT3Γ

(
m + 5

2 + 3
)

a3 +
12k2

BT2γ2
0Γ
(
m + 5

2 + 2
)

a2

+
6kBTγ4

0Γ
(
m + 5

2 + 1
)

a
+ a0γ6

0Γ
(

m +
5
2
+ 0
))

× τ−j−4Γ(j + 4)σ−h−2m−4Γ(h + 2m + 4)

× 4F3

(
j
2
+ 2,

j
2
+

5
2

,−m− 3
2

,−m;
5
2

,− h
2
−m− 3

2
,− h

2
−m− 1;

σ2

τ2

)

The rate coefficient is then a quadruple sum. First, we have a sum over the seven terms in I11 + I21

of Equations (26) and (27) plus their seven permutations α↔ β, all taking on appropriate values of σ, h,
and ps as used in Equation (28), and being multiplied by the appropriate numerators in Equations (26)
and (27) such as 48γ(β + λ). Second, we have a sum over the corresponding 14 terms of the second
factor that takes on the values of τ, j, and pt, multiplied by the corresponding numerators. Third,
we have a sum over the n terms in the wave function having differing values for the parameters α, β,
and γ, and that term’s coefficient c whose value is found by diagonalizing the Hamiltonian matrix in
order to minimize the ground state energy and then normalized. We display the first and last elements
of the fifty-term version we used for both analytical and numerical calculations in case readers wish to
check it against their own derivations:

α(1) = 0.6878357596671101, · · · , α(50) = 0.37080904876118337
β(1) = 1.2354854281591452, · · · , β(50) = 1.1073078257847453

γ(1) = 0.012984468708341133, · · · , γ(50) = 0.28320160279252
c(1) = −2.534888772248287, · · · , c(50) = 0.02873436866901307

. (35)

The final sum is again over this same wave-function set, but this time associated with the second
factor τ. Because the off-diagonal terms of these four sums are symmetrical, it is more efficient
computationally to account for that.

5. Comparison with Numerical Integration

Table 1 shows the comparison of the present analytical rate coefficient αRA for attaching a positron to
antihydrogen to form H+ to our prior rate coefficient found via numerical integration [16], at temperatures
ranging from 1 to 400 K. There we found that, for a fully two-positron 200-term wave function [18]
composed of explicitly correlated exponentials and for T

Analytical results for the three-body radiative attachment rate coefficient, with application to the positive antihydrogen ion H
+ 6

The r1 integral, including coefficients from the second line of (28), for each term in the m-sum follows as [63]

B2 = π32
19
2
−mλ3 a−m−n− 5

2 (kBT )m+3
2 Γ(m+n+ 5

2)
9kBTm!( 5

2)
m

((d+λ)2−γ2)((f+λ)2−γb2)
Rj+3

1 e−τR1
´∞

0
dr1r

h+3
1 (−r2

1)
m
e−σr1 2F1

(
−m− 3

2
,−m; 5

2
;
R2

1

r21

)

= π7/2(−1)m2m+ 25
2 λ3Rj+3

1 eR1(−τ)a−m−n−
5
2σ−h−2m−4(kBT )m+ 1

2 Γ
(
m+ n+ 5

2

)

× 1

9m!( 5
2)

m
Γ(−m− 3

2)((d+λ)2−γ2)((f+λ)2−γb2)

×
(
−2(m+ 1)

Γ(−2m− 3)

Γ(−m)
Γ(h+ 2m+ 4) 2F3

(
−m− 3

2
,−m; 5

2
,−h

2
−m− 3

2
,−h

2
−m− 1; 1

4
σ2R2

1

)

+ 3R4
1

(
− 1
R2

1

)
−h

2
−mσh+2m+4

[
−(h+ 2)Γ(h+ 1) cos

(
πh
2

+ πm
)

h+ 2m+ 7

Γ(−h− 2m− 5)

Γ(−m)
2F3

(
h
2

+ 1
2
, h

2
+ 2; 1

2
, h

2
+m+ 3, h

2
+m+ 9

2
; 1

4
σ2R2

1

)

− (h+ 3)σΓ(h+ 2) sin
(
πh
2

+ πm
)

√
− 1
R2

1
(h+ 2m+ 8)

Γ(−h− 2m− 6)

Γ(−m)
2F3

(
h
2

+ 1, h
2

+ 5
2
; 3

2
, h

2
+m+ 7

2
, h

2
+m+ 5; 1

4
σ2R2

1

)

 .

[<(h) + 1 > 0 ∧ <(h+ 2m) + 4 > 0 ∧ <(σ) > 0 ∧ (R2
1 /∈ R ∨ < (R2

1) ≤ 0) ∧ (R1 /∈ R ∨ (< (R1) = 0 ∧R1 6= 0))]

We ignored the restriction against R1 being an element of the reals under the assumption that this integral could likely be considered as
a distribution whose integral would smooth out any singularities arising from this restriction. That assumption paid off. Let us consider
the gamma functions of negative integer arguments that append each of the 2F3 functions [64],

Γ(−2m− 3) = −π csc(π(2m+ 3))

Γ(2m+ 4)

Γ(−m) = −π csc(πm)

Γ(m+ 1)

Γ(−h− 2m− 5) = −π csc(π(h+ 2m+ 5))

Γ(h+ 2m+ 6)

Γ(−h− 2m− 6) = −π csc(π(h+ 2m+ 6))

Γ(h+ 2m+ 7)

(32)

whose ratios have the following values for m an integer:

−π csc(π(2m+ 3))

Γ(2m+ 4)

(
−π csc(πm)

Γ(m+ 1)

)−1

=
(−1)m+1Γ(m+ 1)

2Γ(2m+ 4)

−π csc(π(h+ 2m+ 5))

Γ(h+ 2m+ 6)

(
−π csc(πm)

Γ(m+ 1)

)−1

= 0

−π csc(π(h+ 2m+ 6))

Γ(h+ 2m+ 7)

(
−π csc(πm)

Γ(m+ 1)

)−1

= 0

Integrating the one remaining term (under the restriction <(j) > −4∧ ((<(h+ j) < −2∧<(σ− τ) ≤ 0∧<(σ+ τ) ≥ 0)∨ (<(h+ j) ≥
−2 ∧ <(σ − τ) < 0 ∧ <(σ + τ) > 0)) ∧ (<(τ) > 0 ∨ (<(τ) = 0 ∧ <(j + 2m) < −6)) gives us our final result,

B(T, a, σ, h, τ, j, β, γ, λ, α, γb, ps, pt) =
6.811556×10−20

(
1.10114× 106

√
T
)

√
π (22c2)

gPI

gRA

(kBT )
1
2

π7/2λ3

((d+ λ)2 − γ2)ps ((f + λ)2 − γ2
b )

pt

∞∑

m=0

(
2m+ 25

2 (m+ 1)a−m−
5
2 Γ(m+ 1)(kBT )m

)

9m!
(

5
2

)
m

Γ
(
−m− 3

2

)
Γ(2m+ 4)(

8k3
BT

3Γ
(
m+ 5

2
+ 3
)

a3
+

12k2
BT

2γ2
0Γ
(
m+ 5

2
+ 2
)

a2
+

6kBTγ
4
0Γ
(
m+ 5

2
+ 1
)

a
+ a0γ6

0Γ
(
m+ 5

2
+ 0
)
)

(
τ−j−4Γ(j + 4)σ−h−2m−4Γ(h+ 2m+ 4) 4F3

(
j
2

+ 2, j
2

+ 5
2
,−m− 3

2
,−m; 5

2
,−h

2
−m− 3

2
,−h

2
−m− 1; σ

2

τ2

))

(33)

The rate coefficient is then a quadruple sum. First we have a sum over the seven terms in I11 + I21 of (26) and (27) plus their seven
permutations α↔ β, all taking on appropriate values of σ, h ps as used in eq. (28), and being multiplied by the appropriate numerators
in (26) and (27) such as 48γ(β + λ). Second we have a sum over the corresponding 14 terms of the second factor that takes on the values
of τ , j, pt, multiplied by the corresponding numerators. Third we have a sum over the n terms in the wave function having differing values
for the parameters α, β, and γ, and that term’s coefficient c whose value is found by diagonalizing the Hamiltonian matrix in order to
minimize the ground state energy and then normalized. We display the first and last elements of the fifty-term version we used for both
analytical and numerical calculations in case readers wish to check it against their own derivations:

α(1) = 0.6878357596671101, · · · , α(50) = 0.37080904876118337

β(1) = 1.2354854281591452, · · · , β(50) = 1.1073078257847453

γ(1) = 0.012984468708341133, · · · , γ(50) = 0.28320160279252

c(1) = −2.534888772248287, · · · , c(50) = 0.02873436866901307

. (34)

The final sum is again over this same wave-function set, but this time associated with the second factor τ . Because the off-diagonal terms
of these four sums are symmetrical, it is more efficient computationally to account for that.

5. Comparison with numerical integration

Table 1 shows the comparison of the present analytical rate coefficient αRA for attaching a positron to antihydrogen to form H
+ to our prior

rate coefficient found via numerical integration [16], at temperatures ranging from 1 to 400 K. There we found, for a fully two-positron 200-
term wave function [18] composed of explicitly correlated exponentials, that for T . 6K the rate coefficient is essentially linear and may be
fit by αRA = 0.001050×10−15cm3s−1 T K−1. One sees the potential for this linear behavior in the analytic result (33) in the factor outside
of the sum, but only if the m = 0 term is the dominant contributor to the sum at this temperature. For a fifty-term wave function, the first

6 K, the rate coefficient is essentially linear
and may be fit by αRA = 0.001050× 10−15 cm3s−1 T K−1. One sees the potential for this linear behavior
in the analytic result in Equation (34) in the factor outside of the sum, but only if the m = 0 term is the
dominant contributor to the sum at this temperature. For a fifty-term wave function, the first three terms in
the analytical sum are

(
0.00106039− 1.2144278× 10−6 + 1.203002× 10−9)× 10−15 cm3s−1 T K−1, which

sum to a value 0.00105917× 10−15 cm3s−1 T K−1 and the numerical integral for this same fifty-term wave
function gives 0.00102625× 10−15 cm3s−1 T K−1, a 3% difference.
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As the temperature increases, this series result that involves powers of the temperature will
eventually fail. For a Z = 1 ion, we find that there is no convergence of the m series at T=700 K.
For higher Z, higher temperatures are likely possible.

Table 1. The rate coefficient αRA (10−15 cm3s−1) for attaching a positron to antihydrogen to form H+

for a fifty-term wave function.

Positron Analytical Integration Number of Terms Numerical IntegrationTemperature (K) in m-Sum (34)

1 0.001059 3 0.001026
10 0.01056 4 0.01053
100 0.1030 15 0.1030
400 0.3809 15 0.3810

6. Discussion and Concluding Remarks

We found the analytic form for the rate coefficient αRA for attaching a positron to antihydrogen to
form H+ as a series convergent for temperatures of 400 K and below, which may be used to estimate
formation rates. As our result is for attachment from the 1s antihydrogen state, it depends on the
trapped antihydrogen having been held for long enough to ensure that it will have decayed to the
ground state from the likely excited state in which it is formed [7,8].

If the positron plasma is held in a Penning trap of the type used to form antihydrogen, such as
those reviewed in [69] at a density of ne = 1016 m−3 in a magnetic field of 1 T at a sub-mm plasma
radius, then the positron speeds due to rotation of the plasma can be neglected. The temperature
range currently used to form and trap antihydrogen is in the range of 10s of K or lower. At 100 K,
the rate coefficient is αRA = 10× 10−17 cm3s−1, and if there is unit overlap between the positron
plasma and the antihydrogen, then the reaction rate, the product ne αRA, at this temperature would
be 10× 10−7 s−1 per antihydrogen atom. As the temperature falls to 10 K, the reaction rate falls in an
essentially linear manner to be 1× 10−7 s−1 per antihydrogen atom. This might just be observable,
given the long antihydrogen storage times achieved by ALPHA [8], if all ALPHA’s antiprotons could
be converted into trapped Hs, while still allowing the anti-atoms to interact with warm positron clouds.
Cold p numbers, and hopefully those of trapped H as well, will likely be enhanced by around a factor
of 102 within the next three years as CERN’s AD facility is enhanced by the addition of a further
storage ring, ELENA (see, e.g., [70]) that will deliver antiprotons to experiments at an energy nearer
100 keV than the current 5 MeV.
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