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Abstract: The expression of the electron broadening operator including the effect of penetrating
collisions, i.e., for which the incoming electron enters the extent of bound-electron wave-functions,
is rather complicated, even for hydrogen. It involves integrals of special functions, the evaluation of
which deserves scrutiny. We present a simple approximate form of the electron collision operator for
hydrogen including penetration effects, both in direct and interference terms. The new expression is
accurate and easy to compute. In the Penetration Standard Theory, the collision operator is convergent
whatever the value of the maximum impact parameter. However, when penetration theory is not
valid anymore, it should be questioned. We discuss the problem of strong collisions when penetration
effects are taken into account.

Keywords: line-shape profile; stark broadening; electron broadening; collision operator; standard
theory; penetration standard theory; strong collisions

1. Introduction

Line-shape profiles are important ingredients of opacity and emissivity calculations, as they often
serve as a diagnostics of laboratory or astrophysical plasmas. Indeed, the profiles contain information
about local electric fields produced by electron and ion perturbers, leading to Stark splitting, and about
density and temperature of the plasma. High-mobility electrons perturb the emitter by collisions,
possibly causing the interruption of the spontaneous emission and altering the emitter energy levels [1].

The problem of spectral line broadening due to emitter–perturber interactions has been largely
studied. It started early with the works of Baranger [2], Kolb and Griem [3], and Anderson’s theory [4].
During the last decades, the quantum-statistical approach has been introduced to determine the
shift and the width of spectral line shapes [5,6]. It is based on Green’s function technique in which
the line profiles are described by the two-particle polarization function related to the dipole-dipole
correlation function. Besides the theoretical approaches, the computer-simulation methods based
on the molecular-dynamics approach, have been successfully applied to calculate the spectral line
shapes [7]. In these computations, which are very efficient but expensive, the time-evolution operator
for the simple model of the plasma is obtained by solving numerically the time-dependent Schrödinger
equation accounting for the many-body interactions between the emitter and the surrounding
moving particles. Then, the spectral profile is obtained by averaging over a large number of plasma
configurations [8]. A few years ago, Bedida et al. [9] applied the path-integral formulation [10] to
find the expression of the dipolar auto-correlation function in order to study the spectral line shapes
in plasmas.

In the so-called “standard line shape theory” (ST: Standard Theory), electrons are modeled
in a binary-collision theory, using classical-path trajectory and often second-order perturbative
treatment of electron broadening operator (Dyson series) [11–14]. Ions are described in the quasi-static
approximation. For both electrons and ions, the emitter–perturber interaction is often assumed to be
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dipolar only. It is permissible to separate the contributions of different frequency components into
a fast and a slow component (as commonly done for electrons and ions) and convolve the resulting
profile, as long as the fast component satisfy the impact approximation [15]. An issue in the standard
electron treatment concerns the so-called strong collisions, i.e., collisions associated to small impact
parameters (or small electron velocities), for which perturbation theory is not valid and the dipole
interaction is questionable due to penetration by the perturbing electrons into the atomic (bound-state)
wave-function extent. A few years ago, it was suggested [16–23] that penetration was likely to be
more important than thought because the standard cutoff n2/Z (n is the principal quantum number
and Z the atomic number) representing the wave-function extent in atomic units was too optimistic.
When the spatial extent of the radiating states is comparable to the shielding length, or in other
words when the important collisions with plasma electrons occur at distances within the extent of the
wave-functions of the levels involved in the line emission, collisions cannot be properly treated by the
usual dipole, long-range approximation, which “softens” the interaction and reduces the widths [24,25].
A consequence of this softening of the interaction is that perturbation theory may remain valid, even for
some collisions previously considered as strong [18]. In the Penetration Standard Theory, the collision
operator is convergent whatever the value of the maximum impact parameter. However, the validity
of penetration theory should be questioned as well. The problem of strong collisions when penetration
effects are taken into account deserves scrutiny.

In the present work, we propose an approximate expression of the collision operator taking
penetration effects into account. The study is restricted to the hydrogen atom, i.e., straight-path
trajectories. Even for hydrogen, the expression of the electron broadening operator including
penetration effects is a difficult task. The formalism proposed by Alexiou and Poquérusse [18] involves
particular functions that the authors obtain from recurrence relations, initialized with Bessel and
Bickley–Naylor functions. We found an exact expression of such functions, which enabled us to derive
a simple approximate form of the electron collision operator for hydrogen including penetration effects,
both in direct and interference terms. The new expression is accurate and easy to compute. In Section 2,
the expression of the collision operator is recalled, and the factor representing the penetration effects is
introduced. In Section 3, our new expression of the collision operator is presented and its applicability
in the velocity-impact parameter domain is studied in Section 4. Section 5 is the conclusion.

2. The Collision Operator

2.1. General Form

Throughout the paper, we set: e = h̄ = me = 1 (atomic units) and 1/(4πε0) = 1. In the standard
theory, the matrix elements of the electron collision operator Φ read

〈〈αβ|Φab|α′β′〉〉 = ∑
α′′

rαα′′ .rα′′α′ φαα′′ ,α′′α′ + ∑
β′′

rβ′β′′ .rβ′′β φβ′β′′ ,β′′β − rαα′ .rβ′β φint
αα′ ,β′β, (1)

where α and α′ are upper level states, α′′ is a state perturbing the upper level states, and
rij are matrix elements of the position operator. Φab is a tetradic (quadruply indexed)
operator, acting on initial subspace a characterized by quantum numbers of states α and β

(i.e., {nα, `α, mα}, {nβ, `β, mβ}) and on final subspace b characterized by quantum numbers of states
α′ and β′ (i.e., {nα′ , `α′ , mα′}, {nβ′ , `β′ , mβ′}). Spin quantum numbers are disregarded in the following.
φint is the interference term and φ (and φint) are velocity integrated complex functions of standard
theory. More precisely, one has, choosing explicitly a straight-line trajectory R(t) = ρ + vt:

φαα′′ ,α′′α′ =
πne

3

∫
v f (v)dv

∫
ρI0 (ρ, v; nα, `α, nα′′ , `α′′) I0 (ρ, v; nα′′ , `α′′ , nα′ , `α′) dρ, (2)



Atoms 2020, 8, 2 3 of 28

where
I0(ρ, v; n, `, n′, `′) = ρ

∫ ∞

−∞

dt

(ρ2 + v2t2)
3/2 . (3)

More than thirty years ago, a discussion took place about the physical meaning of the so-called
interference term [26–30]. That term does not account for any physical requirement: it results from a
mathematical expansion in power series. It is a consequence of the fact that the states of the upper and
lower groups feel the same perturbing field. This keeps coherence in the evolution of those states and
reduces the broadening effect due to the collisions.

A collision with a plasma electron has a non-negligible probability amplitude to cause a transition
α → α′′. β and β′ are lower level states and β′′ perturbs them. The no-quenching approximation
consists in assuming that α, α′, α′′ have the upper-level principal quantum number nα = nα′ = nα′′

and β, β′, β′′ have the lower-level principal quantum number nβ = nβ′ = nβ′′ . In the present work,
transitions due to collisions between the states of the upper group and the states of the lower group
have not been taken into account. We use the notations

∑
i
≡

ni−1

∑
`i=0

`i

∑
mi=−`i

(4)

and
rij = 〈ni`imi|~r|nj`jmj〉, (5)

where~r = (x, y, z) is the position of the electron with respect to the center of the atom in cartesian
coordinates. One has

〈n`m|C(1)
q |n`′m′〉 = (−1)`−m

(
` 1 `′

−m q m′

)
〈`||C(1)||`′〉Rn′`′

n` (6)

and

〈`||C(1)||`′〉 = (−1)`
√
(2`+ 1)(2`′ + 1)

(
` 1 `′

0 0 0

)
. (7)

One has also 
x = 1√

2

(
C(1)
−1 − C(1)

1

)
r

y = i√
2

(
C(1)
−1 + C(1)

1

)
r

z = C(1)
0 r.

(8)

The general formula for dipole (|`− `′| = 1) radial integrals Rn′`′
n` of one-electron systems has been

obtained by Gordon in terms of hypergeometric functions [31–33]. For n′ 6= n, one has1:

Rn′`′
n` = Rn`

n′`′ =
(−1)n′−`>

4Z(`+ `′)!

√
(n + `)!(n′ + `′)!

(n− `− 1)!(n′ − `′ − 1)!
X1+`> Yn+n′

[
2F1(−n + `+ 1,−n′ + `′ + 1; 2`>;−X)− 2F1(−n + `′,−n′ + `; 2`>;−X)Y2

]
, (9)

where `> = max(`, `′), X = 4nn′/(n− n′)2 and Y = (n− n′)/(n + n′). The Gauss hypergeometric
function is:

2F1(a, b; c; z) =
∞

∑
k=0

(
a + k− 1

k

)(
b + k− 1

k

)(
c + k− 1

k

)−1

zk. (10)

1 the formula has been symmetrized to account for `′ = `± 1.
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In the case n′ = n, the formula is simpler:

Rn`′
n` = − 3

2Z
n
√

n2 − `2
>. (11)

2.2. Collision Integral

The impact approximation is valid when [11,12]:

• The duration of a collision is small compared to the mean time between collisions. In that case,
radiation can be neglected during the collision, which can be considered as instantaneous.

• The duration of a collision is much smaller than the inverse HWHM (half width at half maximum)
of the profile ∆ω.

• The collisions are complete, which means that they can be considered as instantaneous in
comparison with ∆ω−1. Therefore, the radiation process of the emitter can be decoupled from the
interaction process with perturbers.

In fact, an impact theory with a complete-collision assumption can be used only for values of ∆ω

smaller than the electron plasma frequency. It was shown that the complete-collision assumption may
be corrected in the line wings by means of the Lewis cutoff [34]. The so-called relaxation theory [35]
does not make such an assumption, and is in good agreement with the impact theory corrected by the
Lewis cutoff.

In the classical picture, the electrons are assumed to follow straight paths for the hydrogen [36]
and neutral helium lines [37], while the hyperbolic trajectories must be used when the lines are emitted
by ions [38,39]. The classical-path assumption for hydrogen yields results which are identical to the
quantum-mechanical ones [40]. The theory of hydrogen line broadening by electrons must take into
account the non-adiabatic nature of the perturbation. Collisional transitions between the states of
the same shell play the main role in the broadening. The broadening of the spectral line due to the
collision with the atomic electron involved in the transition between a (states α, α′, etc.) and b (states β,
β′, etc.) can be expressed in terms of the S-matrix elements. To simplify the scattering by N electrons,
one assumes that an electron comes very close to the atom, which creates a huge electric field, and the
electric field of all the other electrons can be neglected compared to that of the close one. Hence,
the total electric field can be replaced by the field of a single electron and the result then is multiplied
by the number of electrons [37]. According to Griem, this should be done only in one of the two fields
entering the second-order term. In the other one, the total field must be used, approximated by a
screened effective field. The matrix element of the tetradic collision operator reads

〈〈αβ|Φab|α′β′〉〉 = ne

∫
v f (v)dv

∫
2πρdρ〈〈αβ|

{
1− SaS†

b

}
|α′β′〉〉, (12)

where ne is the electron density, f (v) represents the velocity (v) distribution of the perturber and ρ the
impact parameter. The braces {} denote the angular averaging, i.e., the averaging over directions of
vectors ρ and v, and Sa and Sb are the scattering S matrices for collisions with the atom or ion being in
a or b state, respectively. We have used the notation

〈〈αβ|SaS†
b |α
′β′〉〉 = 〈α|Sa|α′〉〈β|S†

b |β
′〉. (13)

The derivation of the collision operator in the interaction picture in the general case is briefly
recalled in Appendix A, as well as the particular case of hydrogen.
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2.3. Collision Integral I and Factor C1 Accounting for Penetration

In the penetrating standard theory, we have, choosing explicitly a straight line trajectory R(t) =
ρ + vt:

φαα′′ ,α′′α′ =
πne

3

∫
v f (v)dv

∫
ρI (ρ, v; nα, `α, nα′′ , `α′′) I (ρ, v; nα′′ , `α′′ , nα′ , `α′) dρ, (14)

where ni and `i are respectively the principal and orbital quantum numbers of state i. The integral

I(ρ, v; n, `, n′, `′) = ρ
∫ ∞

−∞

C1

(
n, `, n′, `′;

√
ρ2 + v2t2

)
(ρ2 + v2t2)

3/2 dt (15)

essentially includes the atomic-collision physics and C1 is a factor accounting exactly for penetration in
the dipolar approximation. It is a particular case of Cλ (λ is actually the multipolarity). The standard
behavior is recovered if Cλ = 1 (no penetration) and in that case I = 2/(ρv). The origin is taken at the
location of the emitter. If r is the position of the bound electron and R the position of the incoming
electron, the Coulomb interaction energy is:

V =
1

|r− R| −
1
|R| , (16)

and
1

|r− R| =
∞

∑
k=0

rk
<

rk+1
>

Pk(cos θ), (17)

where r · R = rR cos θ, r< = min(r, R), r> = max(r, R) and Pk is Legendre polynomial [41–43].
Neglecting penetration (R� r):

V =
1
R︸︷︷︸

monopole

− 1
R
+

(
r · R
R3

)
︸ ︷︷ ︸

dipole

+

(
3
(r · R)2

2R5 − r2

2R3

)
︸ ︷︷ ︸

quadrupole

+ · · · . (18)

If penetration is taken into account (dipolar term only):

V =
r<
r2
>

P1(cos θ) =
r<
r2
>

r · R
rR

, (19)

i.e.,

V =
r<
r2
>

R2

r
r · R

R3 . (20)

Therefore, the radial dipolar integrals are modified by a multiplicative factor C1(R) which reads

C1(R) =

∫ ∞
0 Pn`(r)Pn′`′(r)

r<
r2
>

R2dr∫ ∞
0 Pn`(r)Pn′`′(r)rdr

, (21)

i.e.,

C1(R) =

∫ R
0 Pn`(r)Pn′`′(r)rdr∫ ∞
0 Pn`(r)Pn′`′(r)rdr

+ R3

∫ ∞
R Pn`(r)Pn′`′(r) 1

r2 dr∫ ∞
0 Pn`(r)Pn′`′(r)rdr

, (22)
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where Pn`(r) is the radial part of the wave-function multiplied by r. In the more general case, taking into
account all the multipolarities, we have

V = ∑
λ

(
rλ
<

rλ+1
>

Rλ+1

rλ

)[
rλ

Rλ+1 Pλ

(
r · R
rR

)]
(23)

and therefore we get, for the coefficient Cλ, taking into account the correction to the multipolar integral
of order λ:

Cλ(R) =

∫ ∞
0 Pn`(r)Pn′`′(r)

rλ
<

rλ+1
>

Rλ+1dr∫ ∞
0 Pn`(r)Pn′`′(r)rλdr

, (24)

i.e.,

Cλ(R) =

∫ R
0 Pn`(r)Pn′`′(r)rλdr∫ ∞
0 Pn`(r)Pn′`′(r)rλdr

+ R2λ+1

∫ ∞
R Pn`(r)Pn′`′(r) 1

rλ+1 dr∫ ∞
0 Pn`(r)Pn′`′(r)rλdr

. (25)

2.4. Consequences of Penetration

Penetration usually “softens” the interaction in the sense that it tends to reduce the broadening,
at least for isolated lines [17]. However, it was shown that in some cases, especially for strong-coupling
conditions, penetration can enhance the broadening [21], when small impact parameters are involved
and when the shielding length becomes of the same order as the wave-function extent (e.g., in the case
of line merging [44]).

3. Approximate Form of the Collision Operator

3.1. Collision Integral and Function ∆(b)

The collision integral I can be put in the form

I =
2

ρv
[1− ∆(b)] (26)

with b = 2ρ/n and, in the dipolar case:

∆(b) =
2n+λ

∑
i=2

sibiFi−2(b) + bK1(b). (27)

The coefficients si, which are rapidly decreasing functions of i, can be computed exactly and are
provided in the Appendix of Ref. [18]. We recently published the explicit forms [23]:

F2p(b) =
1

22p

{
2

p−1

∑
k=0

(
2p
k

)
K2p−2k (b) +

(
2p
p

)
K0(b)

}
(28)

and

F2p+1(b) =
1

22p

p

∑
k=0

(
2p + 1

k

)
K2p−2k+1 (b) , (29)

which do not require to resort to recurrence relations. The function φ then reads

φαα′′ ,α′′α′ =
4πne

3

√
2

πkBT

∫ bmax

0

db
b
[1− ∆ (b; nα, `α, `α′′)] [1− ∆ (b; nα, `α′′ , `α′)] (30)
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and

φint
αα′ ,β′β =

8πne

3

√
2

πkBT

∫ bmax

0

db
b
[1− ∆ (b; nα, `α, `α′)]

[
1− ∆

(
nαb
nβ

; nβ, `β′ , `β

)]
, (31)

where bmax = 2ρmax/nα is a cutoff introduced to avoid the logarithmic divergence of the integral at
large impact parameters (∆(b)→ 0 when b→ ∞). As for the standard theory, the maximum impact
parameter ρmax is usually chosen to be of the order of the Debye length

λD =

√
kBT
4πne

(32)

or 1.1λD (respectively 0.68λD) to account for the single [37] (respectively double [45]) shielded fields in
the S-matrix. Table 1 gives the value of λD for different plasma conditions as well as the approximate
value of principal quantum number n such that n2a0 ≈ λD. We can see that low-n shells can be
concerned with penetration theory, especially in the interior of the Sun, but one must keep in mind
that in such cases the Debye length is not a good estimate of the screening length, and it may be more
relevant to choose the Thomas-Fermi length. Moreover, due to pressure ionization, the maximum value
of n is determined by the density (in the three first cases: gas discharge, tokamak, and ionosphere).

Table 1. Debye length and approximate value of n such that n2a0 = λD (case of hydrogen).

Plasma Electron Density
ne (m−3)

Electron
Temperature

Debye Length
λD (m)

Approximate Value of n
Such That n2a0 ≈ λD
(Case of Hydrogen)

Gas discharge 1016 104 7 × 10−5 1000
Tokamak 1020 108 7 × 10−5 1000

Ionosphere 1012 103 2 × 10−3 6000
Solar center 1032 107 2 × 10−11 1
Half-radius 4 × 1029 3 × 106 2 × 10−10 2
of the Sun

Base of the convective 1028 2 × 106 10−9 4
zone of the Sun

3.2. Analytical Representation of the Collision Operator

It is possible to obtain simple approximate formula for ∆(b) which integral gives the collision
operator. Noticing that the quantity ∆(b) has a half-bell shape with ∆(0) = 1 and ∆(∞) = 0, we tried
to find an approximation with the function

∆app
(
b; n, `, `′

)
= exp

[
− b2

2χ2
n,`,`′

]
, (33)

with

χn,`,`′ =

√
2π

8

[
5n2 − `< (`< + 2)

]
n

, (34)

where `< = min(`, `′) and `> = max(`, `′). The approximant of ∆(b) provides an approximate
expression for the collision operator itself. Let us consider for instance the term

φαα′′ ,α′′α =
4π

3
ne

√
2

πkBT

∫ bmax

0

[1− ∆ (b; nα, `α, `α′′)]
2

b
db. (35)
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In our previous work [23], we only provided the expression of the following part of the collision
operator2:

φαα′′ ,α′′α =
4π

3
ne

√
2

πkBT
φ̃αα′′ , (36)

with

φ̃αα′′ = G

(
16λD√

2π [5n2 − `<(`< + 2)]

)
, (37)

and

G(x) =
γE
2
− 1

2
E1

(
x2
)
+ E1

(
x2

2

)
+ ln

( x
2

)
, (38)

where γE is the Euler constant and E1 the exponential integral:

E1(x) =
∫ ∞

x
t−1 exp(−t)dt. (39)

In fact, the most general case is the integral

g(x1, x2) =
∫ bmax

0

(
1− exp

[
− b2

2b2
max

x2
1

]) (
1− exp

[
− b2

2b2
max

x2
2

])
b

db, (40)

which is equal to

g(x1, x2) =
γE
2

+
1
2

E1

(
x2

1
2

)
+

1
2

E1

(
λ2x2

2
2

)
− 1

2
E1

(
x2

1 + λ2x2
2

2

)
+ ln

(
x2

1x2
2λ2

2
(
x2

1 + x2
2λ2
)) , (41)

and the expression of the collision operator is

〈〈αβ|Φ|α′β′〉〉 = 4π
3 ne

√
2

πkBT ∑α′′ rαα′′ · rα′′α′ g(xαα′′ , xα′′α′ , 1) + ∑β′′ rβ′β′′ · rβ′′β g(xβ′β′′ , xβ′′β, 1)

−rαα′ · rβ′β g(xαα′ , xβ′β, nα
nβ
),

(42)

where
xij =

bmax

χn,`i ,`j

(43)

with n = nα = nα′ = nα′′ , nβ = nβ′ = nβ′′ and {i, j} ∈ (α, α′, α′′, β, β′, β′′). Figure 1 shows a comparison
between the exact computation of [1− ∆(b)] (Equations (27)–(29)) and the approximate expression
(33) for ` = 0, `′ = 1 and two values of principal quantum number n: 3 and 9. One can see that
the agreement is good, even if the precision decreases with n. In the same way, Figure 2 displays a
comparison between the exact computation of the quantity Φ̃αα′′ entering the diagonal part of the
collision operator (see Equation (36)) and the approximate expression (37) for nα = 8, `α = 3 and
`α′′ = 2. We can see that the two calculations are almost superimposed.

2 The is a typo in the caption of Figure 6 in Ref. [23]: the end of the last sentence should read “nα=3, `α=2 and `α′′=1.” (but the
legend is correct).
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Figure 1. Comparison between the exact computation of [1− ∆(b)] (Equations (27)–(29)) and the
approximate expression (33) for ` = 0, `′ = 1 and two values of principal quantum number n: 3 and 9.

0 100 200 300 400

ρ
max

 (atomic units)
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α
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n
α
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α
=3, l

α’’
=2 (exact)

n
α
=8, l

α
=3, l

α’’
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Figure 2. Comparison between the exact computation of the quantity Φ̃αα′′ entering the diagonal part
of the collision operator (see Equation (36)) and the approximate expression (37) for nα = 8, `α = 3,
and `α′′ = 2.

4. Strong Collisions

In many approaches to shift and broadening of spectral lines, a low-order perturbation treatment
has been used for the interaction between the radiator and the perturbing electrons. However,
such a treatment is allowed for weak collisions only. Dealing with strong collisions [46–48],
a low-order perturbative treatment even for the electron–atom interaction leads to an overestimation
of strong-collision contributions [49]. Within a semi-classical treatment of the electron–radiator
collisions, a low-order perturbative expansion produces even divergent integrals for shift and width.
Although it is possible to overcome these divergences within a full quantum theory, contributions of
strong electron–atom collisions will be overestimated further on. Therefore, in earlier papers (see for
instance Refs. [50,51]), a simple cutoff procedure, as proposed by Griem [52,53], has been applied
for strong collisions. However, such a procedure is not well founded from the theoretical point of
view. Furthermore, the intrinsically non-unique choice of a cutoff parameter remains unsatisfactory.
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Whereas for linewidth calculations such a cutoff procedure has been proven to be successful, for the
line shift a cutoff procedure is problematic [54]. Further, it remains an open question whether there
are strong-collision contributions to the line shift at all. In Ref. [55], these contributions have been
estimated to be about 20% of the weak-collision contributions. However, such an estimation could
not be established yet. Of course, within the unified theories [55–57] strong-collision contributions
which do not overlap in time have been included. Unfortunately, due to the used no-quenching
approximation, no line shifts could be calculated within this theory. Another way to deal with
strong collisions is to make use of the well-known relation between shift and width of the line and
the scattering phase shifts given by Baranger [2,40,58]. Thus, the problem is transformed into the
calculation of phase shifts for the electron scattering at excited atomic states. In properly dealing
with this problem, usually many atomic states must be included into the following close-coupling
equations. That is why it is difficult to carry out such phase-shift calculations, especially for highly
excited atomic states, although interesting work has been done for determining shift and width for the
first hydrogen lines using asymptotic S-matrix elements [59]. As already shown in previous papers,
a Green’s-function approach is well suited to deal with spectral line shapes. Using the advantages
of the diagram technique, one can find easily a complete set of contributing terms within a definite
frame of approximations. Günter introduced a two-particle Green’s function approach to get tractable
expressions for shift and width of spectral lines including strong-collision contributions [49]. In the
latter paper strong-collision contributions to the line shift have also been investigated. Thus, the often
used cutoff procedure for strong-collision contributions introduced by Griem [52,53,60] could be
replaced by an approach treating strong-collision contributions in a consequent manner. In order to
test the developed theory, as an example, the shape of the hydrogen Lyman-α line has been calculated.
The resulting line profile agrees excellently with the unified theory results [61]. The calculated shift of
the Lymanα line is somewhat, smaller than it has been given by Griem [55].

Unfortunately, benchmark experimental data are scarce for high-density plasmas, where both
strong collisions and penetration effects are important (see for instance Refs. [62,63]).

4.1. Case of Standard Theory

We have seen that the collision operator can be put in the form

Φab = ne

∫
v f (v)dv

∫
2πρdρ

{
1− SaS†

b

}
, (44)

where Sa and Sb are the scattering matrices in the states a and b. This results from the impact theory.
Griem suggested to integrate first on the impact parameters and then on the velocities [52]. Considering
the diagonal part of Φab, one has

〈〈αβ|
{

1− SaS†
b

}
(ρ, v)|αβ〉〉 ≈ 2

3 (ρv)2

(
〈rα〉 − 〈rβ〉

)2 , (45)

where 〈ri〉 = 〈i|r|i〉. The integral over impact parameter in Equation (44) thus yields a logarithmic
divergence as ρ tends to infinity. Since the electron does not feel the potential of the emitter beyond
a certain distance, we introduce a cutoff ρmax and the contribution of screened collisions to Φab is
assumed to be zero.

The integral over impact parameter in Equation (44) also diverges as ρ tends to zero. This is due to
the fact that this expression of Φab stems from a second-order perturbative treatment, and is valid only
if unitarity is ensured, i.e., 〈〈αβ|

{
1− SaS†

b
}
(ρ, v)|αβ〉〉 ≤ C. C is sometimes called a “strong-collision”

constant. The quantity {1− SaSb} (ρ, v) is used to subdivide the collisions into weak and strong ones.
The frontier is defined by the fact that the weak collisions correspond to

2
3ρ2v2

(
〈rα〉 − 〈rβ〉

)2 ≤ C, (46)
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which means that
ρ ≥ ρw(v), (47)

where the Weisskopf radius ρw is

ρ2
w(v) ≈

1
C

2
3v2

(
〈rα〉 − 〈rβ〉

)2 . (48)

In terms of velocity, one has

v ≤ vST(ρ) =

√
2

3C
1
ρ

(
〈rα〉 − 〈rβ〉

)2 (49)

and the weak-collision term can therefore be treated as

Φweak
ab = ne

∫ ∞

vST(ρmax)
v f (v)dv

∫ ρmax

ρw(v)
2πρdρ

{
1− SaS†

b

}
. (50)

As indicated by Equation (48), the quantity ρw(v) depends on the choice of C. Kepple and Griem chose
C = 1 [64]. Later in his book, Griem took C = 3/2. Oks suggests C ≤ 2 [65]. In the following, we set
C = 1, but the results can be generalized to other values of C. It is relevant to define three regimes
(see Figure 3):

• Weak collisions:
∫ ρmax

0 dρ
∫ ∞

vST(ρ)
dv or

∫ ∞
vST(ρmax)

dv
∫ ρmax

ρw(v) dρ. Unitarity ensured,
{

1− SaS†
b
}

in
the integrand.

• Strong collisions:
∫ ρmax

0 dρ
∫ vST(ρ)

0 dv or
∫ ∞

vST(ρmax)
dv
∫ ρw(v)

0 dρ +
∫ vST(ρmax)

0 dv
∫ ρmax

0 dρ.

Unitarity violated,
{

1− SaS†
b
}
= C in the integrand (Lorentz–Weisskopf approach).

• Screened collisions:
∫ ∞

ρmax
dρ
∫ ∞

0 dv or
∫ ∞

0 dv
∫ ∞

ρmax
dρ. No contribution to Φab.

Figure 3. Simplified schematic representation of three different collisional regimes: screened, weak and
strong in the (ρ,v) plane, ρ being the impact parameter and v the electron velocity. vp(ρ) represents the
frontier between strong and weak collisions. It corresponds to

{
1− SaS†

b
}
= 1.
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The diagonal element of the strong collision part is

Φstrong,ST = ne

{∫ ∞

vST(ρmax)

∫ ρw(v)

0
+
∫ vST(ρmax)

0

∫ ρmax

0

}
v f (v)dv 2πρdρ (51)

and the minimum velocity is given by

ρw(v) ≤ ρmax → v ≥ vST (ρmax) . (52)

In the following, we replace 〈rα〉 by n2
α but in Section 4.2, we use the exact non-relativistic expression

for average quantities, depending on nα and `α. Assuming the Maxwell distribution for the incoming
free electron

f (v) = 4πv2
(

1
2πkBT

)3/2
exp

[
− v2

2kBT

]
, (53)

we get

Φstrong,ST = 2ne
√

2πkBT ρ2
max

{
1− exp

[
−

v2
ST (ρmax)

2kBT

]}
. (54)

Noting that

〈〈αβ|
{

1− SaS†
b

}
(ρ, v)|αβ〉〉 =

v2
ST(ρ)

v2 , (55)

the weak-collision diagonal part is

Φweak,ST = ne

∫ ∞

vST(ρmax)

∫ ρmax

ρw(v)
v f (v)dv

v2
ST(ρ)

v2 dρ (56)

i.e.,

Φweak,ST =
2ne

3

√
2π

kBT
E1

[
v2

ST (ρmax)

2kBT

] (
n2

α − n2
β

)2
(57)

and therefore the total diagonal matrix element of the collision operator reads

Φtot,ST = Φstrong,ST + Φweak,ST

=
2πne

3

√
2

πkBT

{
kBT ρ2

max

(
1− exp

[
−

v2
ST (ρmax)

2kBT

])
+ E1

[
v2

ST (ρmax)

2kBT

] (
n2

α − n2
β

)2
}

.

(58)

Under the assumption

exp

[
−

v2
ST (ρmax)

2kBT

]
≈ 1−

v2
ST (ρmax)

2kBT
, (59)

the final Standard Theory form of the diagonal matrix element of the collision operator becomes
therefore

Φtot,ST ≈
2πne

3

√
2

πkBT

1 + E1


(

n2
α − n2

β

)2

3kBTρ2
max



(

n2
α − n2

β

)2
, (60)

which is the expression of Griem [36]. It is also possible to integrate first on velocity and then on
impact parameter (see Appendix B).

Since most of the collisions are weak and correspond to ρ� ρw, where ρw is the Weisskopf radius,
they are therefore the main part of the broadening. The strong collisions correspond to ρ < ρw and
their contribution to the electron broadening represents usually less than 20% [36,37].
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4.2. Case of Penetrating Collisions

In low-density plasmas, the dominant contribution comes from long-range, distant collisions,
for which the standard dipole approximation is not in question. For those close encounters which
penetrate the wave-function extent, the interaction is softened. Indeed, as mentioned above we have,
for the emitter–perturber interaction energy [17]:

V(t) ≈ 1
|R(t)− r(t)| −

1
|R(t)| , (61)

where R and r are the emitter and perturbing electron positions respectively and V = 0 for r(t) = 0,
while this would diverge in the dipole approximation. Hence for close encounters, for which
penetration occurs and the dipole approximation fails, we have a smaller (softer) interaction. It can
happen, if the perturber velocity is high enough, that this softening changes the collision from a
strong one to a weak one. This is particularly the case with almost head-on collisions, where a
divergent interaction in Standard Theory actually gives a zero result when penetration is accounted
for. At larger impact parameters, Standard Theory and Penetration Standard Theory give the same
(small) value. At very small ρ, the latter gives 0, while Standard Theory diverges. These differences
persist until about the relevant wave-function extent. Except for the very small impact parameter
regime, these differences are important if Penetration Standard Theory stays perturbative. Otherwise,
the approximation 〈〈αβ|{1− SaS†

b}|α
′β′〉〉 = 1 is thought to be an appropriate one for non perturbative

behavior. This quantity oscillates around unity when unitarity breaks down. The relevance of
penetration is then seen most clearly if the shielding length becomes small, so that a sizeable part of
the impact parameter phase space is within the wave-function extent. What happens in the extreme
limit where the shielding length becomes less than the wave-function extent, i.e., for high densities or
high principal quantum numbers is difficult to answer in detail. However, we may expect to find the
usual Stark trends reversed and large deviations from Standard Theory.

Our new expression of the collision operator including penetration (see Equation (42) is easy to
compute and facilitates the study and the accounting for penetrating collisions. It is interesting to see
that the function g behaves like ln (ρmax) (as in the standard theory without penetration effects) for
high-enough values of the upper cutoff ρmax. Since the penetration standard theory is convergent for
impact parameters as low as zero, there is no need for a minimum cutoff ρmin (even though cutoffs on
v and ρ should be introduced normally to avoid a violation of the perturbation theory).

The determination of vp(ρ), as in the Standard Theory the determination of ρ2
p(v), amounts

to solving:

v2
p(ρ) =

2
3ρ2

{
δ`β ,`β′

δmβ ,mβ′ ∑
α′′

rαα′′ rα′′α′

(
1− ∆

(
2ρ

nα
; nα, `α, `α′′

))(
1− ∆

(
2ρ

nα
; nα, `α′′ , `α′

))

+δ`α ,`α′
δmα ,mα′ ∑

β′′
rββ′′ rβ′′β′

(
1− ∆

(
2ρ

nβ
; nβ, `β′′ , `β′

))(
1− ∆

(
2ρ

nβ
; nβ, `β′ , `β′′

))

−2rαα′ rβ′β

(
1− ∆

(
2ρ

nα
; nα, `α, `α′

))(
1− ∆

(
2ρ

nβ
; nβ, `β′ , `β

))}
. (62)

Although this may be done separately for each matrix element, yielding therefore a specific vmin for
each matrix element, we wish to keep the discussion on the same level as Standard Theory, which does
not employ matrix-element dependent cutoffs. The quantity v2 can be simplified as
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v2
p,app (ρ) =

2
3ρ2

{
δ`β ,`β′

δmβ ,mβ′ ∑
α′′

rαα′′ rα′′α′

(
1− exp

[
− (2ρ/nα)

2

2χ2
nα ,`α ,`α′′

])(
1− exp

[
− (2ρ/nα)

2

2χ2
nα ,`α′′ ,`α′

])

+δ`α ,`α′
δmα ,mα′ ∑

β′′
rββ′′ rβ′′β′

1− exp

− (2ρ/nβ

)2

2χ2
nβ ,`β′ ,`β′′

1− exp

− (2ρ/nβ

)2

2χ2
nβ ,`β′′ ,`β′


−2rαα′ rβ′β

(
1− exp

[
− (2ρ/nα)

2

2χ2
nα ,`α ,`α′

])1− exp

− (2ρ/nβ

)2

2χ2
nβ ,`β′ ,`β

 , (63)

where χn,`,`′ is given by Equation (34). We can also replace the function χn,`,`′ by its average over ` [23]:

χ̄n =
n−1

∑
`=0

χn,`,`′ =

√
π

2
28n2 + n + 6

24n
, (64)

which gives

v2
p,app,2 (ρ) =

2
3ρ2

δ`β ,`β′
δmβ ,mβ′ ∑

α′′
rαα′′ rα′′α′

(
1− exp

[
− (2ρ/nα)

2

2χ̄2
nα

])2

+δ`α ,`α′
δmα ,mα′ ∑

β′′
rββ′′ rβ′′β′

(
1− exp

[
−
(
2ρ/nβ

)2

2χ̄2
nβ

])2

−2rαα′ rβ′β

(
1− exp

[
− (2ρ/nα)

2

2χ̄2
nα

])(
1− exp

[
−
(
2ρ/nβ

)2

2χ̄2
nβ

])}
. (65)

Using the sum rule (see Ref. [66], Equation (3) p. 153):

∑
ψ,κ

(−1)p−ψ+q−κ

(
a p q
−α ψ κ

)(
p q a′

−ψ −κ α′

)
=

(−1)a+α

(2a + 1)
δa,a′δα,α′ , (66)

one gets

∑
j

rijrjk =
9
4

n2
i

(
n2

i − `2
i − `i − 1

)
δi,k, (67)

and Equation (63) can be put in the form

v2
p,app,2 (ρ) =

2
3ρ2

δα,α′δβ,β′
9
4

n2
α

(
n2

α − `2
α − `α − 1

)(
1− exp

[
− (2ρ/nα)

2

2χ̄2
nα

])2

+δα,α′δβ,β′
9
4

n2
β

(
n2

β − `2
β − `β − 1

)(
1− exp

[
−
(
2ρ/nβ

)2

2χ̄2
nβ

])2

−2rαα′ rβ′β

(
1− exp

[
− (2ρ/nα)

2

2χ̄2
nα

])(
1− exp

[
−
(
2ρ/nβ

)2

2χ̄2
nβ

])]
. (68)

We want to compare

Φstrong,1 = ne

∫ ρmax

0
2πρdρ

∫ vp(ρ)

0
v f (v)〈〈αβ|

{
1− SaS†

b

}
(ρ, v)|α′β′〉〉dv (69)

with

〈〈αβ|
{

1− SaS†
b

}
(ρ, v)|α′β′〉〉 =

v2
p(ρ)

v2 (70)
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and

Φstrong,2 = ne

∫ ρmax

0
2πρdρ

∫ vp(ρ)

0
v f (v)dv. (71)

The quantity Φstrong,1 represents the contribution of the penetrating-collision operator in the regime
of strong collisions. The latter is convergent in that regime, but this does not mean that the results
are correct. On the other hand, Φstrong,2 represents the way the strong collisions should be treated.
If Φstrong,1 and Φstrong,2 differ significantly in that region, this means that the Penetration Standard
Theory is not applicable in the strong-collision regime, although it is convergent, and that Φstrong,1

must be replaced by Φstrong,2. We get

Φstrong,1 = 2πne

√
2

πkBT

∫ ρmax

0
ρ vp(ρ)

2

{
1− exp

[
−

v2
p(ρ)

2kBT

]}
dρ (72)

and

Φstrong,2 =
4πne

3

√
2

πkBT

{
−3

2

∫ ρmax

0
ρ exp

[
−

v2
p(ρ)

2kBT

] (
vp(ρ)

2 + 2kBT
)

dρ +
3
2

kBTρ2
max

}
. (73)

The weak-collision part is

Φweak = 2πne

√
2

πkBT

∫ ρmax

0
ρ v2

p(ρ) exp

[
−

v2
p(ρ)

2kBT

]
dρ. (74)

We can also compare with the strong-collision contribution in the framework of the Standard Theory:

Φstrong,ST = ne

∫ ρmax

0
2πρdρ

∫ vST(ρ)

0
v f (v)dv (75)

with

v2
ST (ρ) =

2
3ρ2

∑
α′′

rαα′′ rα′′α′ + ∑
β′′

rββ′′ rβ′′β′ − 2rαα′ rβ′β

 , (76)

which can be put in the form

v2
ST (ρ) =

2
3ρ2

[
9
4

n2
α

(
n2

α − `2
α − `α − 1

)
+

9
4

n2
β

(
n2

β − `2
β − `β − 1

)
− 2rαα′ rβ′β

]
. (77)

Our results can be checked using sum rules (see Appendix C). As discussed in Section 4.1, integrating on
velocities first, and then on impact parameters gives the same result, but the domain has to be split into

∫ vST(ρmax)

0
v f (v)dv

∫ ρmax

0
2πρdρ +

∫ ∞

vST(ρmax)
v f (v)dv

∫ ρST(v)

0
2πρdρ (78)

with

ρ2
ST (v) =

2
3v2

∑
α′′

rαα′′ rα′′α′ + ∑
β′′

rββ′′ rβ′′β′ − 2rαα′ rβ′β


=

2
3v2

[
9
4

n2
α

(
n2

α − `2
α − `α − 1

)
+

9
4

n2
β

(
n2

β − `2
β − `β − 1

)
− 2rαα′ rβ′β

]
. (79)



Atoms 2020, 8, 2 16 of 28

The quantity Φstrong,ST is equal to

Φstrong,ST = 2ne
√

2πkBT ρ2
max

{
1− exp

[
−

v2
ST (ρmax)

2kBT

]}
(80)

and represents the strong collisions term in the Standard Theory (see Section 4.1).
As pointed out by Alexiou [18] in the context of the interpretation of the Hα experiments

mentioned above [62,63], Penetration Standard Theory yields larger widths for the weak-collision
contribution, but a much smaller strong-collision contribution. This increases the relative proportion
of the phase space that is reliably computed (weak collisions) compared to those approximated
(strong collisions).

Figures 4–6 represent the different schemes (transitions or channels) for the modelling of the
collision operator. The first one (type I, see Figure 4) corresponds to nondiagonal terms of the operator
and does not exist in the case of hydrogen; the second one (type II, see Figure 5) to interference terms
and the third one (type III, see Figure 6) to diagonal terms. The first one gives a zero contribution in the
case of the hydrogen atom. Figures 6–9 display comparisons between the exact computation of v2

p(ρ)

and the approximate expressions vp,app1 (see Equation (63)) and vp,app,2 (see Equation (68)) for different
channels (type II for Figures 7 and 9 and type III for Figures 8 and 10). For both types, two values of the
principal quantum number were chosen: nα = 3 (Figures 7 and 8) and nα = 8 (Figures 9 and 10). We can
see that the approximate form (63) is very close to the exact results, and that the cruder approximation
(68) still has a rather satisfactory accuracy. In the case of a high value of the principal quantum number,
the agreement is not as good, especially for impact parameters larger than 20. Figure 11 displays
the exact computation of v2

p(ρ) for all channels included in nα = 3 → nβ = 2 (Type III). We can
see that the dispersion is very important; therefore, it would probably not be relevant to calculate
and average the collision operator between the two shells nα and nβ. A comparison between the
exact expression of

∫ ρmax
0 2πρv2

p(ρ)dρ and the approximate expression vp,app (see Equation (63)) in the
framework of Penetration Theory for nα = 3, `α = 2, nβ = 2, `β = 1 as a function of ρmax is presented
in Figure 12. Here also, the agreement is excellent. Figure 13 shows the ratios Φstrong,1/Φweak (see
Equations (72) and (74)) and Φstrong,2/Φweak (see Equations (72) and (74)) as functions of temperature
(atomic units) for ρmax = n2

α. Since Φstrong,1 and Φstrong,2 differ significantly in that region (especially
for very low temperatures), the Penetration Standard Theory must not be applied in the regime of
strong collisions, although it is convergent, and Φstrong,1 must be replaced by Φstrong,2. Note that the
strong collisions become comparable (and even larger) to weak collisions for temperatures smaller than
≈1 eV. The variation of the ratio Φstrong,2/Φstrong,ST (see Equation (75)) as a function of temperature for
the same conditions (excitation channel, maximum impact parameter, etc.) as Figure 13 is represented
in Figure 14 and reveals that the strong collisions are probably largely overestimated in the Standard
Theory. Figure 14 displays a simplified schematic representation of three different collisional regimes:
screened, weak and strong in the (ρ,v) plane, ρ being the impact parameter and v the electron velocity.

When the temperature is high, unitarity-violating collisions are not significant and the Standard
Theory “strong collision term” is misrepresented, as it arises from very weak, penetrating collisions.
The qualitative behavior of Penetration Standard Theory is to be expected: at very low densities,
the phase space inside the wave-function extent is unable to compete with the large-impact-parameter
phase space, hence the relative importance must tend to 0 as the density decreases. Similarly, for very
high densities, the whole phase space tends to be completely inside the wave-function extent, and this
means a decreasing relative strong contribution, as even slow collisions are softened more and more
by penetration. Hence a maximum is expected for Penetration Standard Theory. Generally, the weak
collision contribution to Penetration Standard Theory is larger than the corresponding Standard Theory
contribution, because of the larger Penetration Standard Theory weak collision phase space, while the
strong collision contribution to Penetration Standard Theory is much smaller than the corresponding
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strong collision contribution to Standard Theory. This is why the relative strong collision width is
smaller in the Penetration Standard Theory, which in turn means increased confidence in the final result.

Figure 4. Atomic schemes corresponding to nondiagonal terms of the collision operator (type I).

Figure 5. Atomic schemes corresponding to interference terms of the collision operator (type II).
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Figure 6. Atomic schemes corresponding to diagonal terms of the collision operator (type III).
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Figure 7. Comparison between the exact computation of v2
p(ρ) and the approximate expressions vp,app1

(see Equation (63)) and vp,app,2 (see Equation (68)) for nα = 4, `α = 3, mα = 2, `α′ = 2, and mα′ = 1,
nβ = 3, `β = 2, mβ = 2, `β′ = 1, and mβ′ = 1 (Type II).
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Figure 8. Comparison between the exact computation of v2
p(ρ) and the approximate expressions vp,app

(see Equation (63)) and vp,app,2 (see Equation (68)) for nα = 3, `α = 1, mα = 1, `α′ = 1, and mα′ = 1,
nβ = 2, `β = 0, mβ = 0, `β′ = 0, and mβ′ = 0 (Type III).
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Figure 9. Comparison between the exact computation of v2
p(ρ) and the approximate expressions vp,app

(see Equation (63)) and vp,app,2 (see Equation (68) for nα = 8, `α = 3, mα = 2, `α′ = 2, and mα′ = 1,
nβ = 3, `β = 2, mβ = 2, `β′ = 1, and mβ′ = 1 (Type II).
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Figure 10. Comparison between the exact computation of v2
p(ρ) and the approximate expressions

vp,app (see Equation (63)) and vp,app,2 (see Equation (68)) for nα = 8, `α = 1, mα = 1, `α′ = 1, and
mα′ = 1, nβ = 2, `β = 0, mβ = 0, `β′ = 0, and mβ′ = 0 (Type III).
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p(ρ) for all channels included in nα = 3→ nβ = 2 (Type III).
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Figure 12. Comparison between exact expression of
∫ ρmax

0 2πρv2
p(ρ)dρ and the approximate expression

vp,app (see Equation (63)) in the framework of Penetration Theory for nα = 3, `α = 2, mα = 1, nβ = 2,
`β = 1, mβ = 0, `α′ = mα′ = 1, and `β′ = mβ′ = 0 as a function of ρmax.
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Figure 13. Ratio Φstrong,1/Φweak (see Equations (72) and (74)) and Φstrong,2/Φweak (see Equations (73)
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Figure 14. Ratio Φstrong,2/Φstrong,ST (see Equation (75)) as a function of temperature (atomic units) for
nα = 3, `α = 2, nβ = 2, `β = 1, and ρmax = n2

α.

In this work, we have considered that perturbing electrons pass the radiating atom as free particles.
In reality, they move in the dipole potential (hydrogen atom possesses permanent electric dipole
moment). Oks suggested to overcome that assumption [65]. He also proposed a more accurate
definition of the so-called Weisskopf radius, different from of one used by Griem. This might
be important because the choices of the Weisskopf radius and the strong collision constant are
interrelated. Oks found that the latter refinements increase the electron broadening, especially for
warm dense plasmas.

5. Conclusions

A semi-classical model for the electron broadening operator including the effect of penetrating
collisions on isolated lines of hydrogen, i.e., collisions in which the incoming electron enters the extent
of bound-electron wave-functions, was developed by Alexiou and Poquérusse. The corresponding
formalism is rather complex and involves recursive calculations and Bessel and Bickley–Naylor
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functions. We derived an approximate expression for the collision operator, which is very simple,
easy to compute, and accurate. Such a formula should also help to improve the understanding of strong
collisions and the limits of standard theory. However, one has to keep in mind the fact that, in the
Penetration Standard Theory, the collision operator is convergent whatever the value of the maximum
impact parameter, even when penetration theory is not valid anymore. Therefore, we discussed the
problem of strong collisions when penetration effects are taken into account and found that applying
the penetration theory even for very low values of the impact parameter (i.e., when the density is low
and/or the temperature is high) may lead to overestimate the contribution of strong collisions to the
line broadening.
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Appendix A. The Interaction Picture: From the General Case to Hydrogen in the Standard Theory

Appendix A.1. Collision Operator in the Interaction Picture for Neutral Emitter

The electron collision operator can be developed with respect to the interaction V(t) in a
perturbation series:

Φab = ne

∫ ∞

0
v f (v)dv

∫ ∞

0
2πρdρ

{
1
h̄2

[
−
∫ ∞

−∞
Ṽa(t)dt

∫ ∞

−∞
Ṽb(t)dt

+
∫ ∞

−∞
Ṽa(t)dt

∫ t

−∞
Ṽa(t′)dt′ +

∫ ∞

−∞
Ṽb(t)dt

∫ t

−∞
Ṽb(t′)dt′

]}
, (A1)

where, in the interaction picture:

Ṽ(t) = exp
[

i
Ĥt
h̄

]
V(t) exp

[
−i

Ĥt
h̄

]
, (A2)

Ĥ being the Hamiltonian. Under the straight-path assumption (valid only for a neutral emitter),
the perturbation V(t) produced by the collision with an electron has the form

V(t) =
r · (ρ + vt)

(ρ2 + v2t2)
3/2 , (A3)

where r is the radius vector of an atomic electron. In Equation (A1), the first order does not contribute,
because the average of {V} over all directions of the vectors ρ and v is zero. For the second order,
we have [67,68]: {

V(t)V(t′)
}
=

r · r
3

(ρ2 + v2tt′)

(ρ2 + v2t2)
3/2

(ρ2 + v2t′2)3/2 . (A4)

The second and third terms of expression (A1) can be calculated using:

〈〈αβ|
∫ ∞

−∞
Va(t)dt

∫ t

−∞
Va(t′)dt′|α′β′〉〉

=
∫ ∞

−∞
dt
∫ ∞

−∞
dt′ exp

[
i
(
εαα′′ t + εα′′α′ t

′)]∑
α′′
〈α|Va(t)|α′′〉〈α′′|Vb(t)|α′〉δβ,β′

=
1
3 ∑

α′′
rαα′′ rα′′α′

∫ ∞

−∞
dt
∫ ∞

−∞
dt′

(ρ2 + v2tt′)

(ρ2 + v2t2)
3/2

(ρ2 + v2t′2)3/2 exp
[
i
(
εαα′′ t + εα′′α′ t

′)] , (A5)
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where εij = εj − εj represents the difference between the energies of states i and j. By introducing the
dimensionless variables 

z1 = ρ
v εαα′′

z2 = ρ
v εα′α′′

x1 = vt
ρ

x2 = vt′
ρ ,

. (A6)

Equation (A5) becomes
1
3 ∑

α′′
rαα′′ rα′′α′

1
ρ2v2 J(z1, z2), (A7)

where

J(z1, z2) =
∫ ∞
−∞ dx1

∫ ∞
−∞ dx2

(1+x1x2)

(1+x2
1)

3/2
(1+x2

2)
3/2 exp [i (z1x1 − z2x2)] = A(z1, z2) + iB(z1, z2). (A8)

The summation over α′′ is restricted to the states of the level a and neglecting the perturbation due to
all the other levels. The values rαα′′ are not zero only for neighboring Stark components α, α′′. At α = α′,
z1 = z2 = z and at α 6= α′, z1 = −z2 = z. Let us denote the corresponding integrals A+(z), B+(z) and
A−(z), B−(z). The real part A±(z) can be expressed in terms of modified Bessel functions as

A±(z) = z2
[
K2

1(z)± K2
0(z)

]
, (A9)

where K0 and K1 are Bessel functions of the second kind [69] (sometimes called Basset functions or
Macdonald functions). One must, in general, compute B±(z) from a dispersion relation, making use of
the fact that A and B are real and imaginary parts of the same complex function (where P indicates
Cauchy principal value [52,70]):

B±(z) =
2|z|
π
P
∫ ∞

−∞

A±(z′)
z2 − z′2

dz′. (A10)

Their asymptotic behavior for large z� 1 yields{
A±(z) ≈ π|z| exp [−2|z|] ,
B±(z) ≈ π/4z,

(A11)

and for small z� 1: {
A±(z) ≈ 1,
B±(z) ≈ 0.

(A12)

Appendix A.2. Case of Hydrogen

For hydrogen, the exponential functions disappear in Equation (A5) because εαα′′ = 0 and
εαα′′ = 0. One has therefore (as in the previous z� 1 case): A±(z) = 1 and B±(z) = 0.

Appendix B. Strong Collisions in the Standard Theory: Integrating First on Velocity and Then on
Impact Parameter

It is worth mentioning that it is possible to interchange the integrations, i.e., to integrate first on
velocity v, and then on impact parameter ρ. For the strong-collision part, this means

Φstrong,ST = ne

∫ ρmax

0
2πρ′dρ′

∫ vST(ρ
′)

0
v f (v)dv, (A13)
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where vST(ρ) is given by Equation (49). The integration over velocities gives

∫ vST(ρ)
0 v f (v)dv = 1

(kBT)3/2

√
2
π

{
2(kBT)2 − 2kBT

3ρ2 exp
[
− v2

ST(ρ)
2kBT

]
×
[(

n2
α − n2

β

)2
+ 3kBTρ2

]}
(A14)

and thus

Φstrong,ST = 2ne
√

2πkBT ρ2
max

{
1− exp

[
−

v2
ST (ρmax)

2kBT

]}
. (A15)

As concerns the weak-collision part

Φweak,ST = ne

∫ ρmax

0
2πρ′dρ′

∫ ∞

vST(ρ′)
v f (v)dv, (A16)

we have

∫ ∞

vST(ρ)
v f (v)

2
3v2ρ2

(
n2

α − n2
β

)2
dv =

2
3ρ2

√
2

πkBT
exp

[
−

v2
ST (ρ)

2kBT

] (
n2

α − n2
β

)2
(A17)

and thus

Φweak,ST =
2πne

3

√
2

πkBT
E1

[
v2

ST (ρ)

2kBT

] (
n2

α − n2
β

)2
, (A18)

which yields

Φtot,ST = Φstrong,ST + Φweak,ST

=
2πne

3

√
2

πkBT

{
kBTρ2

max

(
1− exp

[
−

v2
ST (ρmax)

2kBT

])
+ E1

[
v2

ST (ρmax)

2kBT

] (
n2

α − n2
β

)2
}

(A19)

which is exactly Equation (58). Making the substitution

exp

[
−

v2
ST (ρmax)

2kBT

]
≈ 1−

v2
ST (ρmax)

2kBT
, (A20)

we get

Φstrong,ST ≈
2πne

3

√
2

kBT

(
n2

α − n2
β

)2
(A21)

and

Φtot,ST ≈
2ne

3

√
2π

kBT

{
1 + E1

[
v2

ST (ρmax)

2kBT

]}(
n2

α − n2
β

)2
, (A22)

which is exactly Equation (60).

Appendix C. Checking the Matrix Elements Using Sum Rules

In order to check the calculations, it is useful to resort to sum rules.



Atoms 2020, 8, 2 25 of 28

• For instance, a simplification of the expression giving the total strength between shells n and n′

has been obtained by McLean [71–73] using recursion relations between Gauss hypergeometric
functions:

Snn′ =
n−1

∑
`=0

n′−1

∑
`′=0

[(
Rn`

n′`+1

)2
δ`′ ,`+1 +

(
Rn`

n′`−1

)2
δ`′ ,`−1

]
(A23)

=
(2nn′)6(n′ − n)2n+2n′−5

Z2(n + n′)2n+2n′+4

{[
2F1(−n′ + 1,−n; 1; X)

)2 −
(

2F1(−n′,−n + 1; 1; X)
]2} , (A24)

where X = −4nn′/ (n− n′)2. One should have

∑
α,β

rαβrαβ =
nα−1

∑
`α=0

`α

∑
mα=−`α

nβ−1

∑
`β=0

`β

∑
mβ=−`β

rαβrαβ = Snαnβ
, (A25)

where rαβ is given by Equation (5).
• Another interesting check is provided by the average collision operator [74,75]

Cnn′ =
9
4

[(
n2 − n′2

)2
− n2 − n′2

]
. (A26)

Defining
Υα,α′ ,β,β′ = δββ′ ∑

α′′
rαα′′ .rα′′α′ + δαα′ ∑

β′′
rβ′β′′ .rβ′′β − 2rαα′ .rβ′β, (A27)

one has

∑
α,α′ ,β,β′

Υα,α′ ,β,β′ × rβαrα′β′ = Snαnβ
× Cnαnβ

. (A28)
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