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Abstract: Many numerical methods of atomic calculations use one-electron basis sets. These basis
sets must meet rather contradictory requirements. On the one hand, they must include physically
justified orbitals, such as Dirac-Fock ones, for the one-electron states with high occupation numbers.
On the other hand, they must ensure rapid convergence of the calculations in respect to the size of the
basis set. It is difficult to meet these requirements using a single set of orbitals, while merging different
subsets may lead to linear dependence and other problems. We suggest a simple unitary operator
that allows such merging without aforementioned complications. We demonstrated robustness of the
method on the examples of Fr and Au.
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1. Introduction

Many methods of atomic calculations, such as configuration interaction (CI) and many-body
perturbation theory (MBPT), use basis sets of one-electron orbitals. Other methods use some
combinations of CI and MBPT and also require basis sets. In particular, the CI+MBPT method [1]
uses CI for valence electrons, where correlations are strong, and accounts for weaker core-valence
correlations by means of the MBPT. The method is rather flexible and can be applied for any atom
with few valence electrons and arbitrary large core. For CI+MBPT calculations, we use computer
package [2], which is based on the Dirac—Fock code [3]. There are several other packages, which use
slightly different variants of the same CI+MBPT method [4-6], or its generalization [7].

In the CI+MBPT method, we use Dirac-Fock orbitals for all core and valence orbitals of an atom.
Then, we add virtual orbitals to form a more, or less complete basis set. The difference between valence
and virtual orbitals is that the latter have small occupation numbers in the physical atomic states of
interest. Virtual states may be chosen rather arbitrarily, with some not very well defined requirements
of “usefulness’” and ‘completeness’. It is important though to have a regular way to increase the size of
the basis set and study convergence of the calculations.

Because of the existence of the defused Rydberg states and the continuum spectrum, it is usually
ineffective to use eigenfunctions of the one-electron Hamiltonian as virtual orbitals. Instead, one of
the common choices for the virtual orbitals are B-splines [8,9]. However, sometimes it is necessary
to use very large basis sets of B-splines to get high accuracy results. This happens, for example,
for calculations of the parity nonconservation effects and the hyperfine constants in heavy atoms.
The size of the basis set can be significantly reduced by adding the Dirac—Fock orbitals of occupied
and weakly excited (valence) one-electron states. The problem one meets in this case is to exclude
B-splines which are linear dependent with these Dirac—Fock orbitals. Here, we discuss a method
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to form an orthogonal basis set from two different subsets using a unitary operator suggested by
Abarenkov and Tupitsyn [10] for other purposes. This method is not specific to B-splines, but can be
used for other basis sets, such as, for example, the Dirac-Fock-Sturm basis set [11]. We use atomic
units i = e = m, = 1 throughout the paper.

2. Method

The basis set for atomic calculations consists of subsets for different partial waves, which are
defined by the relativistic quantum number > = (I — j)(2j + 1), where I and j are orbital and total
angular momenta. These subsets are independent and within each subset the orbitals must be
orthogonal and normalized to unity. Let us consider one partial wave and assume that it includes n
Dirac-Fock orbitals ¢,. These orbitals are defined on the radial grid [3]. On the same grid, one can
form a set of k B-splines B; (k > n). The set of splines is ‘complete’ in the sense that their sum for all
grid points is equal to unity (if we want B-splines to turn to zero at the boundaries, then this is true
only for the grid points sufficiently far from the edges).

Let us assume for simplicity that B-splines are orthogonalized using, for example, the Lowdin
method [12,13]. If we add these k splines to n Dirac—Fock orbitals, we get a set with strong linear
dependence, which can not be effectively orthogonalized and will include nonphysical orbitals,
not useful for calculations. Instead, we want to form (k — 1) new virtual orbitals ¢, r =n+1,...,k
which can be added to the existing set of n physical ones.

Up to now, we ignored lower components of the radial Dirac—Fock orbitals. Calculations for
many-electron atoms are usually done in the no-virtual-pair approximation when a negative continuum
is neglected. Then, the simplest way to treat lower components sufficiently accurately and avoid
problems with nonphysical ‘intruder” states is to use B-spline expansion only for the upper components
and add a lower component to each B-spline using a kinetic balance method [14]. Alternatively, one can
use a dual kinetic balance method [15], which is particularly useful for QED calculations. Below, we
use the term B-spline to the two-component radial orbital where the upper component is B-spline B,
and the lower component L, is found from the kinetic balance condition:

- (d x
Ly, = - (dr + r) By, (1)

where « is the fine structure constant.
For the orbitals defined on the radial grid it is easy to improve kinetic balance approximation by
including the dominant term of the potential energy, i.e., interaction with the nucleus:

— d
M=o vz (tir+r> B, @)

where Z is the nuclear charge. Expressions (1) and (2) are very close at the distances r ~ 1, but at
the distances r < a the difference becomes large and Equation (2) works better. Here, we form lower
components using Equation (2) instead of the more conventional Equation (1). Figure 1 shows the same
two-component B-spline for Fr (Z = 87) from a set of orthonormal B-splines of rank 7 for different
values of . Note that such two-component B-splines depend on parameters Z and s (the large
component depends on these parameters because of the orthogonalization).

Now, we shortly describe how to form an orthogonal basis set from two different subsets using
specially designed unitary operator. Let us calculate an overlap matrix

Spq = (¥p|Bg) 3)

and find n B-splines that have maximum projections on the physical orbitals ¢,

By, <> ¥p, p=1...n 4)
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Example of two component orthogonal B-spline (arb. units)

Figure 1. Examples of the same two component orthogonal B-spline for three partial waves with
» = —1,1,2. The radial variable here and below is proportional to the logarithm of the radius.

Suppose now that we have a unitary operator U which converts each of these 1 B-splines into
respective orbital ¢):

aptpp = U By, ap = +1, (5)

where the phase factor aj, will be discussed later. If we apply this operator to the whole set of B-splines,
we get a set of k orthonormal orbitals 1; which includes 7 initial orbitals and has similar completeness
as the set of B-splines.
A simple and convenient variant of the operator we are looking for was suggested in Ref. [10].
It has a following form:
U=I1-R,
2 ) Qb ol
R= Xp) Qurp Xl
pia R ©)

Xp = By, — appp,
Qpp = (Xp'|Bgy) = Sprp — 2y Sprgy.
and matrix S is defined by Equation (3).

The phase factors a, in Equation (6) comes from definition (5). It was introduced in Ref. [10]
to add more flexibility. For example, this phase factor allows for avoiding problems when B;, and
i are very close and ), may be poorly defined for #, = 1. We do not seem to have this problem
here because B-splines do not resemble physical orbitals too closely. However, it may be useful to see
how the basis set depends on the choice of this phase.

The procedure described above allows one to form an orthonormal basis set where n B-splines
are replaced by n Dirac-Fock orbitals. Other B-splines are orthogonalized to Dirac-Fock orbitals and
to each other. This orthogonalization is equivalent to the procedure described in Ref. [16]. Our method
relies on the unitarity of operator (6). In Ref. [10], this operator was proven to be unitary if n orbitals ¥,
and n B-splines B;, are linearly independent. Formally, this condition is always satisfied if the number
of grid points is much bigger than the total number of orbitals n + k. However, when # is approaching
the number of splines k, this set of 2n functions becomes more and more linear dependent. As a
result, the loss of orthogonality occurs between the orbitals generated with the help of the operator



Atoms 2019, 7,92 40f8

U. Below, we will see that the quality of the basis set may be improved by proper choice of the phase
factor a.

3. Test Calculations

In this section, we use the method described above to generate different basis sets for Fr (Z = 87)
and Au (Z = 79). We study how these basis sets depend on the choice of the phase factor &, in
Equation (5). We also make test MBPT calculations for Au and study convergence of the results for the
binding energies and the hyperfine constants with the number of B-splines.

3.1. An Example of Fr Atom

Here, we generate different basis sets for Fr ([Rn]7s) using the method described above. This
atom has a large Rn-like core [1s%. .. 6s%6p°] with 24 relativistic subshells. All core orbitals are found
by solving Dirac-Fock equations for the VN~1 potential. Then, we form several valence orbitals in
the same VN1 potential. For the partial wave s1 /, we end up with six core orbitals 1s—6s and three
valence orbitals 75—9s.

Now, we try to construct virtual s orbitals with the help of relatively small set of B-splines.
We form 20 orthogonal two-component B-splines of rank 5 and construct unitary operator U defined
in Equation (6). Applying this operator to the splines (5), we reproduce all nine Dirac-Fock orbitals
1s-9s plus 11 additional virtual orbitals. Three of these orbitals are localized very close to the nucleus,
closer than a 1s orbital. These orbitals can be excluded from the basis set, unless we are interested in
such atomic properties, as hyperfine structure, which strongly depends on the wave functions near
the origin. Five virtual orbitals are localized in the core region between 1s and 6s. The remaining
three orbitals are localized in the valence region. Together, these eight orbitals are useful for treating
core—valence correlations.

Using a set of 40 orthogonal splines, we can construct 31 virtual orbitals: 11 of them are
localized close to the origin, another 11 in the core region, and 9 virtual orbitals in the valence
region. Changing the number of splines, we can form different basis sets and study convergence. It is
important that, in all basis sets, the Dirac-Fock orbitals are unchanged. This is not the case if all orbitals
are expanded in B-splines and original orbitals are substituted by their expansions. This requires much
longer sets of B-splines to avoid significant deterioration of the core and valence orbitals. It is most
difficult to accurately reproduce physical orbitals with B-splines near the origin. This is important
when we are interested in calculating parity non-conserving interactions, the isotope shifts, or the
hyperfine structure.

The number of Dirac-Fock orbitals depends on the partial wave. For higher partial waves, we have
a smaller number of Dirac-Fock orbitals and, therefore, can form more virtual orbitals using the same
set of splines. We generated basis sets of different length using B-splines of the ranks from 4 to 7.
We used from 15 to 46 B-splines per partial wave. In each case, we were able to construct unitary
operator (6) and produce orthonormal joint basis set of B-splines and Dirac-Fock orbitals. At present,
we are using some of these basis sets to calculate magnetic hyperfine structure constants and to study
the hyperfine anomaly for short-lived isotopes of Fr. Results of this work will be published elsewhere.

3.2. An Example of Au Atom: Spectrum

Now, we are going to study how the generated basis set depends on the choice of the phase factor
ap in Equation (5). It is natural to assume that the optimal choice of the phase should depend on the
sign of the scalar product (ipp[By,) = Spg,. Therefore, we compare two variants

oc;,i) = *sign (Spqp) . (7)

We will designate basis sets generated with these two phase conventions as Il and I1_, respectively.



Atoms 2019, 7,92 50f8

As an example, we have chosen a neutral Au, which has 78 electrons in 21 closed relativistic
subshells 1s1 /5 . .. 5d5 /5 and one unpaired electron. The Dirac-Fock equations are solved for the yN-1
potential. Then, we use 15 orthogonal B-splines from the set of 20 splines of rank 5 to generate eight
virtual orbitals with two phase conventions (7). As we mentioned at the end of Section 2, this is a
potentially dangerous situation as the number of splines is comparable to the number of physical
orbitals and we can expect significant linear dependence between them.

Virtual orbitals for the s/, partial wave from the sets I+ are shown in Figure 2. The left panel
corresponds to the set I1; and the right panel corresponds to the set IT_. One can see that virtual
orbitals from these two sets are significantly different. The orbitals from the set II_ are more localized
and have a smaller number of nodes. Because of that, the operator U defined in Equation (6) in this
case is numerically more stable. In particular, the deviations from orthogonality and normalization are
smaller for the orbitals ¢§,_) generated with the phase «(~). The same applies for the partial waves
p1/2 and p3 ;. For the higher partial waves, the difference is less pronounced because of the smaller
number of physical orbitals. We conclude that the basis set I1_ is preferable from the numerical point
of view.
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Figure 2. Upper components of the virtual orbitals for partial wave sq,, of Au atom generated from 15

orthogonal B-splines. Left (right) panel corresponds to the set I1 (I1_). See Equation (7) and the text
for details.

Now, we generate basis sets of different length and test convergence of the MBPT results for the
binding energies of the lowest valence states of Au: 6s1 /5, 6p1/2, 6p3/2, and 7sq1 /5. All basis sets include
11 partial waves up to hg/, and h11,/5. The number of B-splines of rank 5 is changed from 10 to 40.
The last Dirac—Fock orbitals in the partial waves are 7s, 6p, 6d, and 5f. In the partial waves g and h,
all orbitals are virtual.

The results of the second order MBPT calculation for the binding energies are shown in Figure 3.
All second order expressions include summation over unoccupied orbitals [1]. Because of that,
calculated energies depend on the number of splines in the basis set. For zero splines, all sums
vanish, which corresponds to the Dirac-Fock approximation. We see that MBPT corrections are large,
in particular, for the ground state 6s1,,, where they account for about 30% of the binding energy.
For the number of splines above 18, the convergence is smooth and saturation is practically reached
for 25 splines.
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Figure 3. Binding energies for four lower levels of Au calculated within second order MBPT using
B-spline basis sets of different length. The x-axis gives the number of virtual orbitals in a partial wave.
Zero corresponds to the Dirac-Fock approximation.

3.3. An Example of Au Atom: Hyperfine Structure

Let us consider magnetic hyperfine structure as an example of interaction which depends on
the short distances. We do calculations for Au using the same MBPT wave functions as above and
the random-phase approximation for the hyperfine operator. We neglect other corrections, such as
‘structural radiation’ [17] because they do not affect the convergence. We find that, in this case,
the convergence is much slower and saturation is not reached even for 45 B-splines. In order to find the
source of the problem, one can form Brueckner orbitals by diagonalizing one-electron MBPT corrections
on the basis set of valence and virtual orbitals. The left panel of Figure 4 shows the 6s Brueckner orbital
obtained using 35 and 45 B-splines. One can see that the resultant upper components are smooth
everywhere and close to each other. However, the lower components at short distances have a dip.
With a growing number of splines, the dip becomes smaller and closer to the origin but does not
disappear (note that the radial variable is logarithmic). The matrix element of the hyperfine interaction
depends on the product of the upper and lower components and, therefore, poorly converges.
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Figure 4. 65 orbital for Au in Dirac-Fock and Brueckner approximations. Left panel: basis sets with 35
and 45 B-splines (labels 1 and 2, respectively); right panel: basis set of 24 B-splines with two additional

Dirac-Fock orbitals in s wave.
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We see that using only B-splines as virtual orbitals does not allow for a saturate basis set at
short distances. We already mentioned above that, at short distances, it is difficult to accurately
present a Dirac-Fock orbital as a linear combination of B-splines. Not surprisingly, the same applies to
Brueckner orbitals. In order to improve convergence, one can add more physical orbitals with proper
behavior near the origin. For example, one can use Dirac-Fock orbitals for other ionic states of the
same atom. We added 6s, 7s, and 6p Dirac-Fock orbitals for the yN-6 potential (half-filled 5d-shell).
After that, convergence for the hyperfine structure calculation dramatically improved and saturation
was practically reached already for 24 B-splines of rank 4. Respective Brueckner orbitals are shown
on the right panel of Figure 4. One can see that both large and small components are now smooth
at all distances up to the origin. Convergence for the energies also improved but less impressively.
Note that now our basis set includes three types of orbitals: the Dirac-Fock orbitals for the atom of
interest, the orbitals for the ion stripped of several outermost electrons, and, finally, B-splines. We still
use the same operator (6) to merge physical orbitals and B-splines together. This case demonstrates
flexibility of the method, which allows for forming basis sets adjusted for different types of calculations.
At present, we are finishing calculations of the hyperfine anomaly for Au. These calculations are done
with the help of the basis sets described here.

4. Conclusions

Many numerical methods for atomic calculations require one-electron basis sets. It is important
that these basis sets include physical orbitals, such as Dirac-Fock ones, for the occupied states. At the
same time, using similar orbitals for virtual states is usually inefficient. Therefore, it is common to use
B-splines, or other similar sets of orbitals. Here, we suggest a method to merge different subsets and
form a joint orthonormal basis set. We use the unitary operator from Ref. [10] to substitute some of the
orbitals from a chosen basis set with proper Dirac-Fock orbitals without losing the quality of the basis
set, or running into problems with linear dependence between orbitals. We tested this method for Fr
and Au using basis sets formed from B-splines of different ranks. The method proved to be sufficiently
robust and we were able to reach convergence of the MBPT calculations for basis sets of moderate
length even for sensitive properties, such as hyperfine structure.
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