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Abstract: The correlation of projections of the momentum operators of two particles is used to derive
a quantum inequality for continuous variables, which must be satisfied by any bipartite system in a
pure state. This inequality resembles a Clauser–Horne–Shimony–Holt (CHSH)-type inequality except
for additional terms related to the imaginary component of the weak value of the momentum, which
normally remains concealed in the usual quantum description but turns out to be of relevance for
entangled states. Our results shed new light on the link between noncommutativity, entanglement
and nonlocality of the quantum description.

Keywords: bipartite entanglement; weak values of linear momentum; flow and diffusive velocities;
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1. Introduction

A distinctive feature of pure entangled states of a bipartite system is that they violate the
Clauser–Horne–Shimony–Holt (CHSH) inequality, derived for discrete, non-commuting operators [1,2].
Entanglement and violation of the CHSH inequality are therefore considered synonymous [3]. This
well-known fact is used here as a guide to take further the intimate connection between entanglement
and the (imaginary part of) the weak value of the linear momentum [4], by means of an inequality
involving a CHSH-type operator for continuous, commuting momentum variables, which serves to
certify entanglement.

As a background for the present work, we note that the real and imaginary parts of the linear
momentum weak values [5,6]—which correspond to the flow and diffusive (or osmotic) velocity
components (see e.g., [7,8])—have been the subject of various efforts aimed at exploring quantum
features in novel ways [9–19]. In particular, the diffusive velocity has been shown to play a prominent
role in different forms of entanglement indicators for pure bipartite states [4].

In light of these results, here we construct an inequality that must be satisfied by any bipartite
system in a pure quantum state. This inequality, derived for continuous variables associated with
projections of the momentum operators of the two particles, has exactly the structure of the (standard)
CHSH inequality except for the presence of extra correlations that vanish whenever the state is
separable. Such correlation terms depend exclusively on the diffusive-velocity component associated
with each one of the particles. Hence the diffusive velocity is ultimately responsible for the violation of
the CHSH-type inequality, thus serving to certify the non-factorizability of the probability distribution,
which is a signature of entanglement. Our results represent thus a step forward in the understanding
of the link between entanglement and nonlocality of the quantum description.

The structure of the paper is as follows. In Section 2 we introduce the flow and diffusive
velocities as the real and imaginary parts, respectively, of the momentum weak values. We further give
arguments in support of identifying the diffusive velocity component as a hallmark of quantumness.
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In Section 3 we briefly review previously reported entanglement criteria based on the diffusive velocity,
which are of relevance for the present work. We further proceed to construct a CHSH-type operator
for continuous variables and derive an inequality for the mean value of this operator, which must
be satisfied by construction. By neglecting the diffusive-velocity terms we arrive at a CHSH-type
inequality. The paper concludes with a brief discussion of the results and possible perspectives,
in Section 4.

2. Flow and Diffusive Velocities

Let us consider a two-particle pure state |ψ(t)〉 described by the wave function

〈x1x2|ψ〉 = ψ (x1, x2, t) =
√

ρ (x1, x2, t)eiS(x1,x2,t), (1)

where ρ = |ψ|2 and S is a real function. We assume that the system is bounded so that the wave
function vanishes at infinity. Let p̂i be the linear momentum operator of the i-th particle (i = 1, 2) with
mass mi; direct calculation gives

p̂iψ = −ih̄∇iψ = mi (vi − iui)ψ, (2)

with the (real) velocity vectors vi and ui given respectively by

vi (x1, x2, t) =
h̄

mi
∇iS, ui (x1, x2, t) =

h̄
2mi

∇iρ

ρ
. (3)

In what follows we refer as usual to v as the flow velocity, and to u as the diffusive velocity.
In terms of the weak value [5,6] of the momentum operator (with preselection state |ψ(t)〉 and

postselection state |x1x2〉),

〈p̂i〉w ≡
〈x1x2|p̂i|ψ〉
〈x1x2|ψ〉

= − ih̄∇iψ

ψ
, (4)

the individual flow and diffusive velocities take the form

vi =
1

mi
Re 〈p̂i〉w, ui = −

1
mi

Im 〈p̂i〉w. (5)

The fact that vi and ui correspond to the real and imaginary parts of the weak value of a Hermitian
operator allows us to disclose some of their respective roles in expressions for quantum expectation
values [4]. In general, for a Hermitian operator Â it can be shown that

〈Re 〈Â〉w〉 = 〈Â〉q, 〈Im 〈Â〉w〉 = 0, (6)

where 〈Â〉w = 〈x1x2|Â|ψ〉
〈x1x2|ψ〉

, 〈Â〉q denotes the quantum expectation value

〈Â〉q = 〈ψ|Â|ψ〉 =
∫

ψ∗ Âψ dx1dx2, (7)

and 〈·〉 stands for the statistical mean value defined as

〈·〉 =
∫
(·) ρ dx1dx2. (8)

It seems convenient to make here some remarks regarding the meaning of the mean values just
introduced. The first one, namely 〈·〉w, stands for the weak value 〈·〉w = 〈x1x2|·|ψ〉

〈x1x2|ψ〉
, and the mean-value

notation originates in the fact that the weak values represent averaged values of weak measurements,
over pre and post-selected (sub)ensembles [10,20]. In contrast, the (usual) quantum expectation values,
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〈Â〉q, are obtained by averaging over an ensemble of systems prepared in state |ψ〉 and involve
projective (von Neumann) measurements. Finally, the statistical mean value, 〈·〉, differs from the
quantum expectation value in that it refers to a mean value of c-numbers (instead of q-numbers),
and averages over an ensemble of systems described by the probability distribution density ρ = ψ∗ψ.

From Equations (5) and (6) it follows that vi plays the role of a local (defined at each point (x1, x2))
velocity, such that its average over the entire space results in

〈p̂i〉q = mi 〈vi〉 . (9)

In line with refs. [8,16], the flow velocity represents a mean velocity averaged over an ensemble of
individual particles, whereas in Bohmian mechanics [10,21–23] it is interpreted as the actual velocity
of the i-th particle describing the trajectory xi(t). Further, in the quantum formalism it represents
the velocity associated with the probability current ji = ρvi appearing in the continuity equation
∂ρ
∂t + ∑i∇i · ji = 0.

As for ui, Equations (5) and (6) imply that

〈ui〉 = 0, (10)

so that it does not contribute to the expectation value of the momentum operator. Physically, this
is consistent with the fact that, unlike vi, ui is not related to a translational motion but rather to the
diffusive or dispersive behavior of the ensemble, as will be discussed below. The diffusive velocity
surfaces instead in bilinear expressions such as 〈p̂i · p̂j〉q, which reads

〈p̂i · p̂j〉q = mimj
(
〈vi · vj〉+ 〈ui · uj〉

)
. (11)

This is just one instance of the general observation that the imaginary part of the weak value of a
Hermitian operator may become relevant in the calculation of quantum correlations between Hermitian
operators corresponding to dynamical variables of the individual subsystems [4].

It is convenient at this point to recall a few facts about the diffusive velocity, considering its
importance for the present discussion. The diffusive (or osmotic) velocity has been largely studied in
several contexts, notably in stochastic electrodynamics (see [8] and references therein) and stochastic
quantum mechanics [7,24–26], in the old hydrodynamic model of quantum mechanics [27,28] (albeit
collaterally), and more recently in the weak-value context [15,18,19]. A first hint of its importance
in the general quantum context is that the mean value of the basic commutator becomes expressed
naturally in terms of this velocity [4],

〈[x̂i, p̂i]〉q = 〈x̂i · p̂i − p̂i · x̂i〉q = −2imi 〈xi · ui〉 , (12)

whence it represents a direct measure of the quantum fluctuations. This can be seen more clearly by
putting i = j in Equation (11), which gives for the dispersion of p̂i:

σ2
p̂i
= 〈p̂2

i 〉q − 〈p̂i〉
2
q = m2

i (σ
2
vi
+ 〈u2

i 〉) ≥ m2
i 〈u2

i 〉 > 0, (13)

where the last (strict) inequality holds for any bounded system. This confirms that the diffusive velocity
is intimately related to the presence of quantum (irreducible) fluctuations.1

1 Even if the expressions just discussed do not throw light on the origin of the quantum fluctuations—the important point
here being that they exist—some words about this point seem advisable. The common stand is that the quantum fluctuations
refer to an irreducible (noncausal) phenomenon, which makes it apparently unnecessary to go beyond the recognition
of their existence. However, in different works a cause is proposed for them, which may differ from author to author.
We recall in particular the proposal discussed in ref. [8] and references therein, where it is shown that the origin of the
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Further, u appears in another characteristically quantum function, namely the ubiquitous quantum
potential VQ, prominent in Bohm’s theory and in stochastic quantum mechanics, and given (in the
N-particle scenario) by [4,29]

VQ ≡ −h̄2
N

∑
k=1

1
2mk

∇2
k
√

ρ
√

ρ
= −1

2

N

∑
k=1

(mku2
k + h̄∇ · uk). (14)

Remarkably, u has also been shown to be intimately connected with other distinctive quantum
features, in particular with entanglement in the bipartite case [4,8]. In short, one can say that the
diffusive velocity, proper to all quantum systems (save the free particle with fixed energy), is a hallmark
of quantumness.

3. An Inequality Involving a CHSH-Type Operator for Continuous Variables

The connection between the diffusive velocities and entanglement criteria has been recently
explored in [4]. We briefly present the results reported in [4] as a background for the present discussion,
and then proceed to obtain our main result.

The bipartite state (1) is said to be non-entangled whenever it can be described by a factorizable
wave function,

ψ (x1, x2, t) = ψ1 (x1, t)ψ2 (x2, t) , (15)

with ψi =
√

ρi exp(iSi), so that the following two conditions are simultaneously met:

1. ρ (x1, x2, t) = ρ1 (x1, t) ρ2 (x2, t),
2. S (x1, x2, t) = S1 (x1, t) + S2 (x2, t).

If condition 1 is met we say that the state is ‘A-separable’. Otherwise it is said to be
‘A-entangled’, indicating that the entanglement is encoded in the non-factorizability of the amplitude
of ρ. Analogously, if condition 2 is met we say that the state is ‘P-separable’; otherwise it is said to be
‘P-entangled’, stressing that the entanglement is encoded in the non-additivity of the phase S.

In [4] it was shown that

〈u1 · u2〉 6= 0 ⇒ ψ is A-entangled, (16)

〈u1 · v2〉 = 〈u2 · v1〉 6= 0 ⇒ ψ is P-entangled. (17)

Thus, when the absolute value is taken in Equation (11) so that

|〈p̂1 · p̂2〉q| ≤ m1m2
(
|〈v1 · v2〉|+ |〈u1 · u2〉|

)
, (18)

we see that the correlation between the diffusive velocities increases the upper bound of the quantum
momentum correlations when there is A-entanglement.2 This observation evokes the CHSH inequality,
in the sense that its usefulness in certifying entanglement relies on the fact that quantum correlations
exceed the classical upper bound of the expectation value of an appropriate operator [30]. This
suggests we should take the parallelism further and investigate whether a similar inequality involving
a CHSH-type operator for continuous (momentum) variables can be established. As will become clear
below, such inequality would serve to certify the presence of (A-)entanglement, and to identify where
and how exactly the nonclassical information of the system is encoded.

quantum fluctuations in atomic systems can be ascribed to their permanent interaction with the zero-point radiation field;
this constitutes the causal, realistic and objective theory known as stochastic electrodynamics.

2 Notice that correlations of the form
〈
ui · vj

〉
, witnessing P-entanglement, do not contribute explicitly to 〈p̂1 · p̂2〉q.
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In order to construct the desired inequality, we first consider the CHSH-type operator

Ĉ = (a · p̂1) (b · p̂2) + (a · p̂1)
(
b′ · p̂2

)
+
(
a′ · p̂1

)
(b · p̂2)−

(
a′ · p̂1

) (
b′ · p̂2

)
, (19)

with a, a′, b, b′ arbitrary unit vectors. Now, resorting to Equations (2), (6) and (7) with Â =

(a · p̂1) (b · p̂2), we get

〈(a · p̂1) (b · p̂2)〉q = m1m2 (〈v1av2b〉+ 〈u1au2b〉) , (20)

where a · vi = via, and so on. This gives, after some algebraic manipulation,

|〈Ĉ〉q| ≤ m1m2 |〈v1av2b〉+ 〈v1av2b′〉+ 〈v1a′v2b〉 − 〈v1a′v2b′〉|+
+m1m2 |〈u1au2b〉+ 〈u1au2b′〉+ 〈u1a′u2b〉 − 〈u1a′u2b′〉| . (21)

Now, it is convenient to write

v1a = v1 cos α, v1a′ = v1 cos α′,

v2b = v2 cos β, v2b′ = v2 cos β′, (22)

so that

v1av2b + v1av2b′ + v1a′v2b − v1a′v2b′ =

= v1v2
[
cos α

(
cos β + cos β′

)
+ cos α′

(
cos β− cos β′

)]
.

Since the term in square brackets can only take values within the interval [−2, 2] , we get

−2v1v2 ≤ v1av2b + v1av2b′ + v1a′v2b − v1a′v2b′ ≤ 2v1v2.

Taking the mean value does not alter the inequalities (since ρ ≥ 0), whence

|〈v1av2b〉+ 〈v1av2b′〉+ 〈v1a′v2b〉 − 〈v1a′v2b′〉| ≤ 2 |〈v1v2〉| , (23)

which introduced into Equation (21) leads to

|〈Ĉ〉q| ≤ 2m1m2 |〈v1v2〉|+ (24)

+m1m2 |〈u1au2b〉+ 〈u1au2b′〉+ 〈u1a′u2b〉 − 〈u1a′u2b′〉| .

Finally, a dimensionless inequality is obtained by dividing this last expression by m1m2 |〈v1v2〉|,

|C| ≤ 2 +
1

|〈v1v2〉|
|〈u1au2b〉+ 〈u1au2b′〉+ 〈u1a′u2b〉 − 〈u1a′u2b′〉| , with C ≡ 〈Ĉ〉q

m1m2〈v1v2〉
. (25)

It is clear from its derivation that Equation (25) must be satisfied by all quantum bipartite
states. Now interestingly, whenever ρ factorizes according to condition 1, all correlations of the type
〈u1au2b〉 = 0 (for any a, b) vanish from Equation (25), and we are left with

|C| ≤ 2. (26)

Equation (26) is an inequality involving the expectation value of the CHSH-type operator Ĉ, defined
in terms of continuous and commuting variables, and whose violation is a sure manifestation of
A-entanglement. The converse is not necessarily true, since it may happen that for a given A-entangled
state ψ and for certain specific sets of vectors a, a′, b, b′, Equation (26) holds. However, in line with the
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conclusion arrived at by Gisin [3] (yet in the context of standard Bell inequalities), for any A-entangled
state ψ one can always find combinations of a, a′, b, b′ such that Equation (26) is violated.

Equation (25) is conceptually a very interesting result: it tells us that any value of |C| beyond
two is a direct consequence of the quantumness encoded in the diffusive velocity. Recalling that such
velocity is intimately related to the dispersive nature of the dynamical variables (see the discussion
below Equation (13)), may provide a hint to understand why the violation of Bell inequalities is usually
linked to the noncommutativity of the operators involved (see, e.g., refs. [30–33]): noncommuting
operators imply a (nonclassical, irreducible) dispersive nature of the corresponding dynamical
variables. However, the dispersion of a dynamical variable may be manifested without the need
to resort to noncommuting operators, as is the case in Equation (25), in which the dispersive nature is
reflected in the presence of the variable u.

4. Concluding Remarks

Based on the observation that the diffusive velocity is central in describing paradigmatic quantum
features (in both the single and the bipartite case), and inspired by the structure of typical Bell
inequalities, we have derived a pair of inequalities for a CHSH-type operator involving projections of
the momentum operators of the individual particles. The first inequality (Equation (25)) holds for any
bipartite system in a pure state, and contains terms related to the diffusive velocities ui, confirming
that their presence is key in understanding the correlation of bilinear products of the momentum.
These additional terms are the ones responsible for violation of the second inequality, Equation (26),
which attests the (A-)entanglement of the state. Further, for an A-entangled state each ui depends on
the position variables of both particles, and thus the terms responsible for the violation of (26) convey
nonlocal information (encoded in the probability distribution of the bipartite state).

These results suggest that by paying due attention to the velocity u, it is possible to go deeper into
the problem of constructing and understanding Bell inequalities for continuous (momentum) variables.
Moreover, the identification of u with the imaginary part of the weak value of the momentum operator,
opens the door to explore the role of the weak values of other operators in the establishment of more
general Bell inequalities that go beyond the discrete (typically dichotomic) scenario. It must be stressed
that the validity of our results is restricted to pure (bipartite) states, and cannot in general be extended
to mixed states. In fact, since the very definition of 〈p̂i〉w involves the pure state |ψ〉, the velocities v
and u (see Equation (5)), and hence all expression involving them, are valid and meaningful only if the
system is in a pure state.

Finally, an in-depth analysis of the experimental feasibility of using the momentum variables
of entangled particles, as suggested by the above results, would need to be carried out in order to
test the degree of violation of the CHSH-type inequality (26). In particular, recent advances in the
experimental determination of the real and imaginary part of the weak value of p should be analyzed
in detail in light of the present approach.
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