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Abstract: The analysis of experimental Stark halfwidths of spectral lines of singly ionized oxygen
and silicon and double ionized silicon is presented in this work. The considered spectral lines were
emitted from plasma generated in an electromagnetically driven T-tube, with an electron temperature
of 15,000 K and electron density of 1.45 x 10?> m—3. The obtained Stark halfwidths were compared to
experimental values given by other authors. In addition, all experimental values were compared to
theoretical values. These data are useful for diagnostics of laboratory and astrophysical plasmas as
well as verifying theoretical models.
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1. Introduction

Spectral lines of ionized oxygen and silicon are often present in spectra emitted from laboratory [1-26]
and astrophysical plasmas [27-33]. Stark parameters of these spectral lines can be used for plasma
diagnostics, as it can be seen in the references given above. New and reliable experimental data can
also be used for testing existing and new theoretical calculations.

The presence of O II, Si II and Si III spectral lines in our experiments was first observed in the
spectra emitted from the T-tube while using pure helium as the working gas [34,35]. Oxygen and
silicon occur in our plasma as impurities originating from the glass walls of the discharge vessel. Two
examples of these spectra are given in Figure 1.

2500 T T l T T 800 N T T ] T T T T T i
i}
2000 | * . %700 E £
2 £ :'He1388.9 nm Z v E
= £ g . @ 600 - He I 447.148 nm|
o ° : [=1 -+
3 2 E H & <+ =
£ 1500F W ;3 1 Ss00f = 3 ]
2 iy i E ol =
B = HR = 400 ) .
= 1000r @ = i 103
&~ i B b 300 1
ik
500 w‘-ﬁw . 200 | .
384 386 388 390 392 394 440 442 444 446 448 450 452 454
Wavelength (nm) Wavelength (nm)
(a) (b)
Figure 1. Examples of recorded He spectra with (a) Si II and (b) O II lines present as impurities
in plasma.
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Since the plasma is produced in a T-tube, which operates on the principle of shockwave
propagation in a glass tube, oxygen and silicon appear in the plasma due to an ablation of the
glass walls of the tube [35].

The intention of this paper is to give a comprehensive analysis of all experimental results of
spectral line halfwidths presented in [35] and give more details about the experiment used in [35].

2. Details of the Experiment

2.1. Plasma Source

The plasma was produced in an electromagnetically driven T-tube [35,36]. The T-tube consists
of a glass vessel with an internal radius of 27 mm with electrodes placed in the vertical part of the
tube. A reflector made of quartz glass is positioned in the horizontal part of the tube, 14 mm from the
electrode axis. The cross section of the T-tube is given in Figure 2.
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Figure 2. The cross section of the T-tube.

The plasma is produced by electrical discharge between the electrodes. The discharge current
runs between the electrodes and through the return wire. Due to the opposing current flow directions,
a repelling force exists between those two current flows.

Since a large amount of energy is released in a short amount of time, a shockwave is formed
when the discharge occurs. This shockwave is then driven towards the reflector and produces plasma
in the horizontal part of the T-tube. The front of the shockwave is flat, which results in a radially
homogenous plasma [37]. Once the shockwave reaches the reflector it reflects and propagates in
the opposite direction, further heating, exciting and ionizing the gas. More details on shockwave
propagation in the used T-tube can be found in [36].

Most of the glass wall ablation occurs in the corners where the horizontal and vertical parts of
the tube are joined [35], due to the impact of the incident shock wave front. The ablated silicon and
oxygen atoms and ions are carried by the moving plasma toward the reflector.

The accompanying gas system is schematically presented in Figure 3. The T-tube has openings on
the electrodes and behind the reflector for gas input, output and pressure measurement. The tube is
first evacuated to a base pressure of 0.5 Pa. The working gas, in this case pure helium, is then released
into the system and it flows through the T-tube at an operating pressure of 300 Pa. The pressure in the
tube is monitored by a U-tube manometer.
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Figure 3. The T-tube, the system for supplying gas and the vacuum system.

A schematic representation of the electrical system is given in Figure 4. Four capacitors, 1 uF each,
are charged up to a voltage of 20 kV. The voltage on the capacitors is measured by a high voltage probe,
and led to a voltage comparator. Once the voltage reaches 20 kV, a 400 V pulse is generated and sent to
the pulse transformer. There, a 10 kV pulse is formed and sent to the spark plug of the spark gap. This
pulse is sufficient to initiate a discharge of the capacitors through the spark gap and the T-tube.
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Figure 4. Schematic representation of the electrical system used for performing the discharge through
the T-tube.

The discharge current has to be critically dampened, which was achieved by serially connecting a
0.3 Q) resistor in the discharge circuit. In this way, a single, short lasting, discharge current pulse is
provided at the desired moment, resulting in the formation of a single, well defined, shock wave.
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2.2. The Experimental Setup with the Spectral Recording System

A block scheme of the experimental system is given in Figure 5. The radiation emitted from the
T-tube was collected radially, by means of an optical fiber which was placed at 2 cm from the reflector.
At that position, optimum intensities of ionized oxygen and silicon spectral lines were observed. All
measurements were carried out for the incident shock wave. The collected radiation was led to the
entrance slit of the spectrometer. The used spectrometer was a Czerny-Turner type device, with 1 m
focal length and a dispersion grating of 1200 g mm~!. The inverse linear dispersion was 0.83 nm/mm.
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Figure 5. Block scheme of the T-tube experimental setup with the spectral recording system.

A photomultiplier tube and an ICCD camera were placed at the exit of the spectrometer, and a
selection mirror allowed for alternating between those two detectors. The photomultiplier tube was
used to observe the time evolution of the optical signal emitted from the plasma, as shown in Figure 6.
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Figure 6. Time evolution of the optical signal from the plasma, recorded by the photomultiplier.
The exposure time of 0. 5 ps in the incident shock wave is denoted by the arrows.

According to the observed signal, a delay time of 6.5 pus and an exposure time of 0.5 us were
chosen, in order to record radiation originating from stable plasma [35]. An ICCD camera was used
for the recording of the spectra, see example in Figure 7.
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Figure 7. Example of the recorded spectra containing some Si II and Si III spectral lines.

2.3. Plasma Diagnostics

The electron density was determined by measuring the peak separation of the He 447.1 nm
line and calculated by using the formula given in [38]. The obtained value was 1.45 x 10> m—3.
The experimental uncertainty was estimated as 15% and was caused by the error in peak separation
measurement [35].

The electron temperature was determined by using the Boltzmann plot method. This required
the plasma to be in thermodynamic equilibrium. This was checked according to the criteria given
in [39]. It was found that the plasma observed in this work did not meet the conditions for local
thermodynamic equilibrium, but did meet the conditions for partial local thermodynamic equilibrium.
In order to determine the electron temperature, 6 Si Il and 12 O II spectral lines were used. The
necessary atomic data were taken from the NIST atomic spectra database [40]. The obtained Boltzmann

plots are presented in Figure 8.
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Figure 8. Boltzmann plots of Si Il and O II spectral lines [35].
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The electron temperature was determined from the slope of these plots by using the formula
given in [41,42]. The obtained values were 14,900 K for Si II lines, and 15,300 K for O II lines.
The estimated errors were within 10.8 and 17.2 percent [35]. The necessary recorded spectral line
intensities are an average of ten shots. The variation of line intensities in successive shots is less than
5%. The spectral sensitivity uncertainty is below 1%. These uncertainties are included in the estimated
temperature errors.

3. Spectral Line Broadening

The shape of O II, Si II and Si III spectral lines emitted from the plasma is best described by
a theoretical Voigt profile. This profile is a convolution of the Gaussian and Lorentzian profiles.
The Gaussian profile is due to Doppler and instrumental broadening, while the Lorentzian profile
originates from Stark, Van der Waals and resonant broadening mechanisms. The broadening
contributions of these individual mechanisms werecalculated for the observed lines in [35].
The Doppler broadening was between 0.005 nm and 0.01 nm for all lines. This was calculated
by using the formula given in [43]. Van der Waals halfwidths were obtained by using the formula
in [41] and [44], and ranged from 2 x 107% nm to 12 x 107> nm. Resonance halfwidths, where this
effect was possible, were in the range between 6 x 107° nm and 2.3 x 10~3 nm and were calculated by
using the formula given in [45] and [46]. Since the instrumental halfwidth for our experimental setup
was around 0.45 nm, it can be claimed that the Gaussian part of the line profile is due to instrumental
broadening. Similarly, the Lorentzian part of the line profile is a consequence of Stark broadening.
Thus, by carrying out the deconvolution procedure [47], Stark halfwidths are obtained.

Although oxygen and silicon are present in the observed plasma only as impurities,
the self-absorption effect was checked. Details of the used procedure are given in [48,49]. It was
found that self-absorption was negligible in this experiment [35].

4. Results of Stark Halfwidth Measurements for O II, Si II and Si III Spectral Lines

Experimental Stark halfwidth data for 37 O II, 10 Si I and 12 Si III spectral lines were determined
and are published in [35]. Available Stark halfwidth data, which have been published by other authors,
can be found in the Critical Review papers [49-55]. According to these Critical Review papers, data on
Stark halfwidths of O II spectral lines were found in 7 papers [1-7]. Data on Stark halfwidths of Si I
and Si III spectral lines were found in 15 papers [8-22] and 6 papers [18,20,23-26], respectively. Each
of those papers contains only a small number of spectral lines. Different experiments were performed
under different conditions and by using different plasma sources. In contrast, Stark halfwidths of a
large number of spectral lines from a wide spectral region and from one plasma source were obtained
in [35].

The results were analyzed in several different ways. First, according to the regularities and
similarities in plasma broadened spectral line widths [56]. Second, Stark halfwidths obtained in [35]
were compared to values published by other authors [1,4-10,12-15,17,18,20,23,25,26]. Third, all
experimental halfwidth values, both from [2] and from [1,4-10,12-15,17,18,20,23,25,26], were compared
to theoretical values [57,58] by calculating the ratio of experimental to theoretical halfwidths. The
analysis in this paper is performed only for those experimental results of other authors which contain
data for more than one line in the observed multiplets.

4.1. Analysis of Stark Halfwidths of O II Spectral Lines

The analysis of O II Stark halfwidths inside a multiplet, according to [56], is given in Table 1.
The line halfwidths in a multiplet usually agree within a few percent [56]. Taking into account
experimental errors, we propose that if the variation of line halfwidths inside a multiplet is within
10%, the multiplet criterion is satisfied.



Atoms 2019, 7, 8 7 of 13

Table 1. Overview of the analysis of Stark halfwidth results for O II spectral lines.

Reference Transition Multiplet No. of Measured Proposed Multiplet

Lines in Multiplet Criterion
(P)3s-(3P)3p 4p-4po 7 Satisfied
(P)3s-(3P)3p 4p-4po 3 Satisfied
(P)3s-(3P)3p 4p-4go 3 Satisfied
(P)3s-(3P)3p 2p2pe 2 Satisfied
[35] (3P)3s-(°P)3p 2p-2pe 4 Satisfied
(®P)3p-(3P)3d 4Do4F 2 Satisfied
('D)3s-('D)3p 2pD-2po 2 Satisfied
(®P)3p-(3P)3d 4podp 2 Satisfied
(®P)3p-(3P)3d 4go_4p 2 Satisfied
('D)3p-('D)3d 2Fo-2G 2 Satisfied
(P)3s-(3P)3p 4p4po 2 Satisfied
[1] (P)3s-(3P)3p 4p-Ago 3 Satisfied
('D)3s-('D)3p 2D-2p° 2 Satisfied
[4] (P)3s-(3P)3p 4p-4pe 2 Satisfied
[5] (P)3s-(P)3p 2p2po 2 Satisfied
(P)3s-(3P)3p 4p-4po 4 Satisfied
(6] (P)3s-(3P)3p 4p-4po 3 Satisfied
(®P)3p-(3P)3d 4po-4F 2 Satisfied
('D)3s-('D)3p 2D-2po 2 Satisfied
(P)3s-(P)3p 2p_2po 2 Not satisfied, 32.1%
[7] (®P)3p-(3P)3d 4DoA4F 2 Not satisfied, 26.7%
('D)3p-('D)3d 2p0.2G 2 Not satisfied, 19.9%

All results regarding OII lines, obtained in [35], meet the proposed multiplet criterion. Lines
within the same multiplet deviate within a maximum of 5% from the average value. Most of the
results published by other authors also meet this criterion. The results in [7], however, do not meet the
proposed criterion for multiplets.

When comparing Stark halfwidths obtained in [35] to those published by other authors, the general
halfwidth ratio range was found to be between 0.6 and 1.2 [35]. The results of [35] agree best with the
results in [5], for which the halfwidth ratio is between 0.92 and 1.04. However, halfwidths published
in [3,6] are significantly larger than those obtained in [35]. A strong disagreement was found with
the results of [7] as well. For this analysis, the results of other authors were recalculated for the same
electron temperature and density.

In order to compare experimental halfwidth results [35] with theoretical ones, halfwidth values
were calculated according to the modified semi empirical formula (MSE) [57], the simplified modified
semi empirical formula (SMSE) [58] and, where it was possible, were taken from the semi classical
calculations [59].

The ratio of all experimental halfwidths and theoretical halfwidths [56] is generally between 0.7
and 1.18 [35]. Only the results given in [7] deviate from this range, with halfwidth ratios up to 1.6.
Apart from that, it can be concluded that the experimental results, in general, agree best with theoretical
values in [59].

In comparison to experimental Stark halfwidth values, the MSE theory provides systematically
larger halfwidth values. The general halfwidth ratio is from 0.6 to 1.0 [35]. In contrast, the SMSE theory
predicts values which are smaller than the experimental ones, with a general halfwidth ratio from 1.3
to 2.5 [35]. The results of [3,6] differ from SMSE results even more, resulting in halfwidth ratios from
4.0 to 5.0.

An example of the experimental and theoretical data distribution for one spectral line is given in
Figure 9.
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Figure 9. Experimental and theoretical Stark halfwidth dependence on temperature for the O II
407.215 nm spectral line for the electron density of 102 m—3. The presented data are: @ [1], (] [6], A [7],
® [35], ---- [571, wweeens [58] and — [59].

4.2. Analysis of Stark Halfwidths of Si 1I Spectral Lines

Stark halfwidths of SI II spectral lines, which were measured in [35], satisfy the proposed
multiplet criterion very well, with deviations from the average halfwidth value being less than
3.5%. The results published in [9,10,13,17] also meet this criterion, while some results in [8,12,14,15,18]
do not. An overview is given in Table 2.

Table 2. Overview of the analysis of Stark halfwidth results for Si II spectral lines.

. . No. of Measured Proposed Multiplet
Reference Transition Multiplet Lines in Multiplet Criterion
3s3p2-3s24p 2D-2p° 3 Satisfied
[35] 3s24s-3s%4p 2g.2pe 2 Satisfied
3s23d-3s%4f 2D-2F° 2 Satisfied
[8] 3s3p2-3s24p 2D-2p° 3 Not satisfied, 14%
9] 3s3p?-3s24p 2p-2pe 2 Satisfied
3s%4s-3s24p 2g5.2po 2 Satisfied
[10] 3s%4s-3s24p 25.2po 2 Satisfied
[12] 3s%4s-3s24p 2g.2pe 2 Satisfied
3s23d-3s%4f 2D-2F° 2 Not satisfied, 25%
[13] 3s3p2-3s24p 2D-2p° 2 Satisfied
3s24s-3s%4p 2g.2pe 2 Satisfied
[14] 3s3p2-3s24p 2D-2pe 2 Not satisfied, 28%
3s3p2-3s24p 2D-2p° 2 Not satisfied, 11.7%
[15] 3s24s-3s%4p 2g.2pe 2 Not satisfied, 18%
3s23d-3s%4f 2D-2F° 2 Not satisfied, 11.5%
3s3p2-3s24p 2D-2p° 3 Satisfied
[17] 3s24s-3s%4p 2g.2pe 2 Satisfied
3s23d-3s%4f 2D-2F° 2 Satisfied
3s3p2-3s24p 2D-2p° 3 Not satisfied, 11.3%
[18] 3s24s-3s%4p 2g.2pe 2 Satisfied
3s23d-3s%4f 2D-2F° 2 Satisfied
3s3p2-3s24p 2D-2p° 2 Satisfied
[19] 3s24s-3s%4p 2g.2pe 2 Satisfied
3s23d-3s%4f 2D-2F° 2 Satisfied
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By comparing the experimental results of [35] to those of other authors, a common halfwidth ratio
from 0.4 to 1.5 was found. Results given in [20] deviate significantly from this, with a ratio of 5.0.

When compared to the theoretical results of [59], most experimental values provide a halfwidth
ratio from 0.5 to 1.2. Some results in [12] are outside of this range (1.95). Comparing experimental
results to values obtained from the MSE theory, a common halfwidth ratio from 0.5 to 1.7 is obtained.
Again, the results given in [12] deviate with a ratio up to 2.58. The SMSE theory gives systematically
smaller values than experimental ones, which is especially noticeable for transitions with a higher
orbital quantum number. The experimental and theoretical Stark halfwidth data for one Si II spectral
line are presented in Figure 10.
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Figure 10. Experimental and theoretical Stark halfwidth dependence on temperature, for the Si II
505.598 nm spectral line for the electron density of 108 m~—3. The presented data are: € [12], % [15],
O [16], O [17], ¥ [19], @ [20], @ [35], ===~ [57], weeens [58] and — [59].

4.3. Analysis of Stark Halfwidths of Si 11I Spectral Lines

The experimental results for Si III from [35] satisfy the proposed multiplet criterion very well,
with line Stark halfwidths differing 4% or less from the multiplet average value. Some of the other
authors satisfy this criterion as well [18,23,25] while some do not [20,26], as it can be seen in Table 3.

Table 3. Overview of the analysis of Stark halfwidth results for Si IIl spectral lines.

ope . No. of Measured Proposed Multiplet
Reference Transition Multiplet Lines in Multiplet Criterion
3s3d-3s4p 3p-3po 3 Satisfied
[35] 3s4s-3s4p 3g3po 3 Satisfied
3s4p-3s4d 3po-3p 3 Satisfied

[20] 3s4p-3s4d 3po3p 3 Not satisfied, 16%

3s3d-3s4p 3p-3pe 3 Satisfied
[18] 3s4s-3sdp 35-3po 3 Satisfied
3s4p-3s4d 3pe3p 3 Satisfied
23] 3s4s-3s4p 3g.3po 3 Satisfied
3s4p-3s4d 3po3p 3 Satisfied
[25] 3s4s-3s4p 3g.3po 3 Satisfied

[26] 3s4s-3s4p 3g.3po 2 Not satisfied, 11.5%
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The experimental halfwidths obtained in [35], when compared to those of other authors, are mostly
in a ratio from 0.6 to 1.55. For the results published in [20], however, this ratio is 0.14.

For the observed Si Il spectral lines, no data could be found in [59], so that no comparison could
be made. When comparing all experimental values to MSE theory values, a common halfwidth ratio
was found to be from 0.6 to 1.6. Again, some results given in [20] deviate significantly from most other
results with a ratio of 6.08. The SMSE theory mostly gives smaller values, especially for higher orbital
quantum numbers, as in the case of Si II. This is not always the case, as it can be seen in Figure 11.
For the spectral line Si I1I 456.782, the SMSE theoretical values are higher than both the MSE theory
and experimental data.
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Figure 11. Experimental and theoretical Stark halfwidth dependence on temperature, for the Si III
456.782 nm spectral line for the electron density of 102 m~—3. The presented data are: [> [23], @ [25],
[26], @ [35], -=-- [57] and weeeer [58].

5. Conclusions

In this work, a comprehensive analysis of the experimental Stark halfwidth data of ionized
oxygen and silicon is presented. The analysis is performed on experimental results measured in [2] and
the available results of other authors [1,4-10,12-15,17,18,20,23,25,26]. A comparison with theoretical
results [57-59] is also given.

In measurements performed in [35], special attention was paid to the experiment, the spectral
recording and the data analysis. Stark halfwidths of a large number of spectral lines were obtained,
covering a wide spectral region. All of these lines were emitted from the same plasma source, under
the same conditions, and recorded with the same equipment. Some additional details about the
experiment are given in this paper.

The analysis of the results published by other authors, revealed a few papers that contain results
that strongly deviate from the results measured in [35], from available experimental data by other
authors, and from theoretical values (see Sections 4.1-4.3). These halfwidth values should be used
with caution for e.g., plasma diagnostics purposes.

The data obtained in [35] could be used for plasma diagnostics of both laboratory and
astrophysical plasmas. Existing, as well as new theories could also be tested using these data. More
independent experimental work is still needed to further improve the database of experimental Stark
halfwidth results.

Funding: This research was funded by the Ministry of Education, Science and Technological development of
Republic Serbia, grant number 171014.
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