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Abstract: There was previously proposed and experimentally implemented a new diagnostic
method for measuring the electron density Ne using the asymmetry of hydrogenic spectral lines
in dense plasmas. Compared to the traditional method of deducing Ne from the experimental
widths of spectral lines, the new method has the following advantages. First, the traditional
method requires measuring widths of at least two spectral lines (to isolate the Stark broadening
from competing broadening mechanisms), while for the new diagnostic method it is sufficient to
obtain the experimental profile of just one spectral line. Second, the traditional method would be
difficult to implement if the center of the spectral lines was optically thick, while the new diagnostic
method could still be used even in this case. In the theory underlying this new diagnostic method,
the contribution of plasma ions to the spectral line asymmetry was calculated only for configurations
where the perturbing ions were outside the bound electron cloud of the radiating atom/ion
(non-penetrating configurations). In the present paper, we take into account the contribution to
the spectral line asymmetry from penetrating configurations, where the perturbing ion is inside the
bound electron cloud of the radiating atom/ion. We show that in high-density plasmas, the allowance
for penetrating ions can result in significant corrections to the electron density deduced from the
spectral line asymmetry.

Keywords: asymmetry of spectral lines; penetrating ions; spectroscopic diagnostics of plasmas;
electron density measurements

1. Introduction

In medium-density plasmas, profiles of hydrogenic spectral lines look symmetric, but in
high-density plasmas, they become asymmetric. This asymmetry is caused primarily by the
nonuniformity of the ion microfield, as noted by Sholin and his co-workers in papers [1–3]—for
the latest advances in the theory of the asymmetry we refer to papers [4,5] and the references therein,
of which we especially note papers [6,7]. (There are also secondary sources of the asymmetry,
as discussed in more detail below in the first paragraph of Section 2). Often, the blue maximum
of the spectral line is higher than the red maximum, and the positions of the intensity maxima are
asymmetrical with respect to the unperturbed line center.

A new diagnostic method for measuring the electron density using the asymmetry of hydrogenic
spectral lines in dense plasmas was proposed and implemented in paper [8]. In that paper, in particular,
from the experimental asymmetry of the C VI Lyman-delta line emitted by a vacuum spark discharge,
the electron density was deduced to be Ne = 3 × 1020 cm−3. This value of Ne was in good
agreement with the electron density determined from the experimental widths of C VI Lyman-beta
and Lyman-delta lines.
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Later, this diagnostic method was also employed in the experiment presented in paper [9]. In that
laser-induced breakdown spectroscopy experiment, the electron density Ne ~ 3 × 1017 cm−3 was
determined from the experimental asymmetry of the H I Balmer-beta (H-beta) line.

This new diagnostic method has the following advantages compared to the method of deducing
Ne from the experimental widths of spectral lines. First, the latter, traditional, method requires
measuring widths of at least two spectral lines—because the widths are affected not only by the
Stark broadening, but also by competing broadening mechanisms, such as, e.g., Doppler broadening.
In distinction, to use the new diagnostic method, it is sufficient to obtain the experimental profile of
just one spectral line—because the Doppler broadening does not cause the asymmetry.

Second, the traditional method based on experimental widths would be difficult to implement if
the center of the spectral lines were optically thick. In distinction, the new diagnostic method can still
be used even if the spectral line is optically thick in its central part. This is because the overwhelming
contribution to the asymmetry originates from the wings of the spectral line, the wings usually being
optically thin. More details can be found in Section 1.6 of [10]1.

In the theory underlying this new diagnostic method, the contribution of plasma ions to the
spectral line asymmetry was calculated only for configurations where the perturbing ions were outside
the “atomic sphere”, i.e., outside the bound electron cloud of the radiating atom/ion (non-penetrating
configurations). In the present paper, we take into the contribution to the spectral line asymmetry
from penetrating configurations, i.e., from configurations where the perturbing ion is inside the bound
electron cloud of the radiating atom/ion (hereafter, radiator). We show that, in high-density plasmas,
the allowance for penetrating ions can result in significant corrections to the electron density deduced
from the spectral line asymmetry.

2. Allowance for Penetrating Ions

Let us first present a brief overview of the underlying theory for non-penetrating configurations.
The dipole interaction of the radiator with perturbing ions outside the bound electron cloud, being
calculated in the first order of the perturbation theory, splits the spectral line into Stark components
symmetrically with respect to the unperturbed frequency or wavelength—in terms of both positions
and intensities of the Stark components. The quadrupole interactions of the radiator with perturbing
ions outside the bound electron cloud, being calculated in its first nonvanishing order, causes the
asymmetry of the Stark splitting—in terms of both positions and intensities of the Stark components.
The latter is the primary source of the asymmetry: other sources of the asymmetry—such as, but not
limited to, e.g., the dipole interaction in the second order (known as the quadratic Stark effect),
the quadrupole interaction in the second order, the octupole interaction in the first order—add
to the asymmetry only higher-order corrections in terms of the corresponding small parameter
n2a0Ne

1/3/Z4/3, where n is the principal quantum number of the upper level involved in the
radiative transition, a0 is the Bohr radius, Z is the charge of plasma ions and the nuclear charge
of the radiating ion.2

1 We note that Ref. [40] from chp. 1 of [10] on the paper referred to here as [8] has typographic errors. The correct one is our
Ref. [8] here.

2 The Boltzmann factor exp(−h̄ ∆ω/T) also contributes to the asymmetry (here ∆ω is the detuning from the unperturbed
frequency of the spectral line and T is the temperature). For quasistatic wings, h̄ ∆ω/T scales with the electron density as
(a0Ne

1/3)2. Therefore, for plasmas of the electron densities Ne << 6.7 − 1024 cm−3 (the right side being the atomic unit of the
electron density), the Boltzmann factor contribution to the asymmetry is much smaller than the quadrupole interaction
contribution to the asymmetry that scales as a0Ne

1/3. Additionally, there is also the factor (1 +ω/ω0)4 caused by the scaling
of the dipole radiation intensity (ω0 being the unperturbed frequency). The asymmetry contributions of this factor and of
the Boltzmann factor essentially cancel each other out (see, e.g., Section 5.11 of paper [5]). (Continued at the bottom of the
next page). There is also so-called trivial contribution to the asymmetry caused by the conversion from the frequency scale
to the wavelength scale. This consists of two factors (see, e.g., Section 5.8 of paper [5]): the transformation of the argument
∆ω (given by Equation (24) from [5]) and the transformation of the intensity (given by Equation (25) from [5]). These two
factors essentially cancel each other out (as shown in [5]), so that the resulting trivial contribution to the asymmetry is much
smaller than the quadrupole interaction contribution to the asymmetry.
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However, in paper [11], it was shown that the quadrupole interaction, despite causing the
asymmetric splitting of the spectral line into Stark components, does not shift the center of gravity
of the line profile. Therefore, in the new diagnostic method presented in paper [8], first the center
of gravity of the experimental profile was determined, and then it was taken as the reference point.
Then, with respect to this point, the integrated intensities of the blue (IB) and red (IR) wings of the
experimental profile were found. After that, the experimental degree of asymmetry, defined as

ρquad =
IB − IR

0.5[IB + IR]
, (1)

was determined and then compared with the corresponding theoretical value given below.
The theoretical intensities of the blue and red wings, resulting from dipole and quadrupole

interactions of the radiator with perturbing ions outside the bound electron cloud, can be expressed as
follows (see paper [8]):

IB = ∑
k>0

I(0)k

(
1 +

ao

ZrRo
ε
(1)
k 〈

R0

R
〉
)

, (2)

and

IR = ∑
k<0

I(0)k

(
1 +

ao

ZrRo
ε
(1)
k 〈

R0

R
〉
)

, (3)

where Zp is the charge of perturbing ions, Zr is the nuclear charge of the radiator, ao is the Bohr
radius, and Ro = [(4π/3)Np]−1/3 is the mean interionic distance, Np = Ne/Zp being the perturbing

ion density. Here, I(0)k and ε
(1)
k are the unperturbed intensity and the quadrupole correction to the

intensity, respectively, the subscript k being the label of Stark components of the spectral line; k > 0
and k < 0 correspond to the blue-shifted and red-shifted components, respectively (the values of I(0)k

and ε
(1)
k for several Lyman and Balmer lines were tabulated in paper [2]). The quantity <R0/R> is the

scaled inverse distance between the perturbing ion and the radiator averaged over the distribution of
such distances.

Finally, the theoretical degree of asymmetry was presented in paper [8] in the form:

ρquad = 0.46204

(
Ne
[
cm−3]

1021

) 1
3 1

Z
1
3
p Zr

∑
k>0

I(0)k ε
(1)
k , (4)

Then the electron density Ne was determined in paper [8] by substituting the experimental degree
of asymmetry into the left side of Equation (4).

In the present paper, we consider the contribution of penetrating ions to the spectral line
asymmetry in order to refine this diagnostic method. For simplicity, we limit ourselves below to
the practically important case Zp = Zr = Z. The energy shifts due to penetrating ions can be calculated
by the perturbation theory on the basis of the spherical wave functions of the so-called “united atom”
of the nuclear charge 2Z.

The perturbed energy shifts (counted from the unperturbed energies) for the orbital quantum
number l > 0 are given by (see, e.g., Equations (6) and (7) from paper [12] or Equations (5.11) and
(5.12) from book [13]):

Enlm = −
8
[
l(l + 1)− 3m2] Z4R2 e2

ao3 n3l(l + 1)(2l− 1)(2l + 1)(2l + 3)
. (5)

For the case of l = 0, the calculated energy shift is:

En00 =
8 Z4R2e2

3 ao3n3 . (6)
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We note that Equation (6) can also be obtained from Equation (5), first by setting m = 0, and then
by canceling out l(l + 1) in the numerator and denominator, and by setting l = 0. (This was mentioned in
book [12], but in Equation (5.11) from [12] corresponding to our Equation (6), there was a typographic
error in the sign.)

The frequency change of an individual Stark component is thus given by

∆ωk = −
Z2e2∆1

k
2 } ao3 R2, (7)

where

∆1
k = 16 Z2

[
l(l + 1)− 3 m2

n3l(l + 1)(2l − 1)(2l + 1)(2l + 3)
− l′(l

′+1) − 3 m′2

n′3l′(l′ + 1)(2l′ − 1)(2l′ + 1)(2l′ + 3)

]
. (8)

For the specific case where either l = 0 or l′ = 0, Equation (8) reduces to

∆1
k =


16 Z2

[
1

3 n3 −
l′(l′+1)− 3 m′2

n′3l′(l′+1)(2l′−1)(2l′+1)(2l′+3)

]
, l = 0; l′ 6= 0

16 Z2
[

l(l+1)− 3 m2

n3l(l+1)(2l−1)(2l+1)(2l+3) −
1

3 n′3

]
, l′ = 0; l 6= 0

. (9)

Then, the quasi-static profile of each Stark component can be represented in the form:

Sk(∆λ) =
∫ umax

0
W(u)

[
I(0)k + I(1)k

]
δ

(
∆λ−

Z2e2∆1
k λ0

2

4 π c } ao3 u

)
du. (10)

Here, u ≡ R2, and the probability of finding the perturbing ion a distance u away from the
radiating atom is taken to be the binary distribution. For simplifying the integration, we use the
expansion of the distribution in powers u/R0

2 and keep the terms up to ~u2:

W(u)du =
3
√

u
2 R3

o
exp

(
−
√

u3

R3
o

)
du ≈ 3

√
u

2 R3
o
− 3 u2

2 R6
o

. (11)

For the case of a hydrogenic radiator under the presence of a penetrating ion, the relative intensities
of each line component can be best calculated analytically using the robust perturbation theory
developed by Oks and Uzer [14]. A more detailed explanation of this procedure is outlined in
Appendix A. The relative intensities of each component can be written as

Ik = ∆0
Ik + Z2∆1

Iku2, (12)

where ∆0
Ik and ∆1

Ik are tabulated in Appendix B for each component of the spectral line Balmer-alpha,
considered here as an example. These coefficients represent corrections to the intensity of the line,
calculated from the perturbation theory briefly mentioned above.

The upper limit umax of the integration in Equation (10) should be the smallest of the following
two “candidates”. One candidate for umax is the root mean square size of the bound electron cloud,
which depends on the sublevel in consideration:

rrms =

√
n2

2 Z2 [5 n2 + 1− 3 l (l + 1)] . (13)

The other candidate for umax is defined by the limit of the applicability of the perturbation theory.
Of course, this would ensure that formally calculated corrections to the energy and intensities of the
spectral line would remain relatively small.
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The allowance for penetrating ions shifts the center of gravity of the spectral line, as shown in
paper [15]. (This is the only contribution to the shift of the center of gravity, since the dipole and
quadrupole interactions of the radiator with perturbing ions outside the bound electron cloud do not
shift the center of gravity, as shown in paper [11] and mentioned above). For the He II Balmer-alpha
line, which we use as an example, the center of gravity shift due to penetrating ions was calculated
analytically in paper [15] to be

∆λPI

(
mÅ
)
= 17

Ne
(
cm−3)

1017 . (14)

So, with the allowance for penetrating ions, the reference point for calculating the integrated
intensities of the blue and red wings must be shifted by the amount given by Equation (14).

After carrying out the integration in Equation (10), the profile reduces to

Sk(∆λ) =

(
Z2e2∆1

k λ0
2

4 π c } ao3

)−1

Ik(u0)

(
3u0

1
2

2 R3
o
− 3u0

2

2 R6
o

)
Θ

[
umax

Z2e2∆1
k λ0

2

4 π c } ao3 − |∆λ|
]

, (15)

where Θ[. . .] is the Heaviside step function and u0 is the root of the delta function, given by

u0 =
4 π c } ao

3

Z2e2∆1
k λ02

∆λ. (16)

Thus, for the contributions of the penetrating ions to the integrated intensities of the blue and
read parts of the line profile, we get

IPI,B = ∑
k<0

∫ ∆λPI

−∆λmax
Sk(∆λ)d∆λ (17)

and

IPI,R = ∑
k>0

∫ ∆λmax

∆λPI

Sk(∆λ)d∆λ, (18)

respectively. Here

∆λmax = umax
Z2e2∆1

k λ0
2

4 π c } ao3 , (19)

which is obtained by equating to zero the argument of the Heaviside step function. Additionally, what
is meant in Equations (17) and (18) by k < 0 (or k > 0) is the inclusion of only those components which
involve corrections to the energy that are positive (or negative), implying blue-shifted (or red-shifted)
components of the spectral line.

By combining the above result with the contribution of the quadrupole interaction (the interaction
of the radiator with perturbing ions outside the bound electron cloud) to the integrated intensities of
the blue and read parts of the profile, we obtain our final result for the degree of asymmetry

ρact =
IB + IPI,B − IR − IPI,R

0.5[IB + IPI,B + IR + IPI,R]
, (20)

where subscript act stands for actual—in distinction to ρquad.
The combination of Equations (4) and (20) connects the degree of asymmetry with the electron

density Ne and thus allows a more accurate determination of the electron density from the experimental
asymmetry. We illustrate this below by the example of the He II Balmer-alpha line.

Table 1 presents the following quantities for the He II Balmer-alpha line at five different values of
the actual electron density:

- the theoretical degree of asymmetry ρact calculated with the allowance for penetrating ions,
- the theoretical degree of asymmetry ρquad calculated without the allowance for penetrating ions,
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- the electron density Ne,quad that would be deduced from the experimental asymmetry degree
while disregarding the contribution of the penetrating ions,

- the relative error |Ne,quad – Ne,act|/Ne,act in determining the electron density from the
experimental asymmetry degree while disregarding the contribution of the penetrating ions.

Table 1. The relative error in determining the electron density Ne from the experimental asymmetry
degree while disregarding the contribution of the penetrating ions for the He II Balmer-alpha line. The
physical quantities in Table 1 are explained in the text directly above Table 1.

Ne,act/(1018 cm−3) ρact ρquad Ne,quad/(1018 cm−3) |Ne,quad − Ne,act|/Ne,act

2 0.0925 0.0955 1.82 9.03%
4 0.114 0.120 3.42 14.5%
6 0.128 0.138 4.86 19.1%
8 0.139 0.152 6.16 23.1%

10 0.147 0.163 7.33 26.7%

It is seen that in high-density plasmas, the allowance for penetrating ions can indeed result in
significant corrections to the electron density deduced from the spectral line asymmetry.

3. Conclusions

To improve the diagnostic method for measuring the electron density using the asymmetry of
spectral lines in dense plasmas, we took into account the contribution to the spectral line asymmetry
from penetrating configurations, i.e., from the configurations where the perturbing ion is inside the
bound electron cloud of the radiating atom/ion. After performing the corresponding analytical
calculations, we demonstrated that in high-density plasmas, the allowance for penetrating ions can
result in significant corrections to the electron density deduced from the spectral line asymmetry.

It is worth clarifying why we took into account the shift of the line as a whole due to penetrating
ions, but did not take into account other mechanisms shifting the line as a whole, such as, e.g., plasma
polarization shift and the shift by plasma electrons. The experimental integrated intensities of the blue
(IB) and red (IR) parts of the profile are calculated with respect to the experimental center of gravity
of the profile. The latter shifts of the line as a whole do not contribute to the asymmetry, and thus
should not affect the experimental values of IB and IR. The reason why we took into account the shift
of the line as a whole by penetrating ions is that penetrating ions contribute simultaneously to both the
asymmetry and the shift of the line as the whole. Since these two effects of penetrating ions are two
sides of the same coin, both of them should be taken into account.

We mention in passing that the potential transition of electrons into the quasistatic regime is
practically irrelevant to the asymmetry. Indeed, as Demura and Sholin wrote in paper [3], for the
quadrupole interaction U ~ Q/R3, which controls the asymmetry of hydrogenic spectral lines, electrons
can become quasistatic at the frequency detuning from the line center ∆ω ~ vTe

3/2/Q1/2, where vTe

is the mean thermal velocity of plasma electrons—according to Holstein [16] (see also Sobelman
book [17]). However, such detuning significantly exceeds the mean separation between spectral
lines—both for the Lyman and Balmer series, as noted by Demura and Sholin [3], thus making the
potential transition of electron into the quasistatic regime irrelevant to the problem of asymmetry of
hydrogenic spectral lines. A similar conclusion was drawn also in paper [18].

Finally, we note that the electron densities Ne ~(1018—1019) cm−3, which we used in the illustrative
example of the He II Balmer-alpha line, are achievable in plasma spectroscopy. Examples include
experiment [19], with a hydrogen plasma, and experiment [20], with a helium plasma.

Author Contributions: Both authors contributed equally to this work.

Conflicts of Interest: The authors declare no conflict of interests.
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Appendix A. Details of Calculating Perturbed Matrix Elements

The redistribution of intensities of Stark components, along with wavelength shifts due to the
presence of perturbing ions, play a crucial role in determining the degree of asymmetry of the spectral
line. These values have been tabulated according to the robust perturbation theory developed by
Oks and Uzer [14] based on using the super-generalized Runge-Lenz vector derived by Kryukov
and Oks [21]. Since the unperturbed system has an additional constant of the motion (namely the
Runge-Lenz vector), the task of calculating the corrections to the state is simplified. The reason for
this beneficial result is that the correction to the Runge-Lenz vector is non-degenerate with respect to
the same states that are degenerate in the correction to the Hamiltonian. The mixing of the states is
elucidated by the Runge-Lenz vector correction under the influence of the perturbing ion. Here are
some details, formulas being presented in atomic units.

According to paper [21], for the problem of an electron in the field of two Coulomb centers
of charges Z1 and Z2, the additional conserved quantity is the following projection of the
super-generalized Runge-Lenz vector on the internuclear axis

Az = p × L · ez − L2/R − Z1 z/r − Z2(R − z)/|R − r| + Z2, (A1)

where p, L, and r are the linear momentum, the angular momentum, and the radius-vector of the
electron, respectively; R is the vector directed from charge Z1 to charge Z2. For the case where R << r,
the unperturbed partAz0 of the operator Az can be chosen as

Az0 = −L2/R, (A2)

corresponding to the unperturbed Hamiltonian of the so-called “united atom” of the nuclear charge
Z1 + Z2:

H0 = p2/2 − (Z1 + Z2)/r. (A3)

Operators H0 and Az0 have common eigenfunctions (the spherical eigenfunctions of the Coulomb
problem). The spectrum of eigenvalues of the operator H0 is degenerate. Therefore, calculating
corrections to the eigenfunctions of the operator H0 using the standard perturbation theory would
require going to the 2nd order of the degenerate perturbation theory, thus involving generally infinite
summations (see, e.g., the textbook [22]).

In distinction, the spectrum of eigenvalues of the operator Az0 is nondegenerate (the eigenvalues
being—l(l + 1)/R). Therefore, the corrections to the eigenfunctions can be easily calculated in the 1st
order of the standard nondegenerate perturbation theory. The coefficients of the corresponding linear
combinations of the unperturbed eigenfunctions are

<nl’m|(Az − Az0)|nlm>/{[l’(l’ + 1) − l(l + 1)]/R} (A4)

and do not involve infinite summations. This example is another illustration of the advantages of the
robust perturbation theory developed in paper [14] over the standard perturbation theory.

In this way, by using the first nonvanishing term of the expansion of the operator (Az − Az0) in
powers of R, we obtained the following expression for the 1st order corrections to the eigenfunctions
for the specific case of Z1 = Z2 = Z:

Ψ(1)
nlm =

5
[
(l2

>−m2)(n2−l2
>)

(2 l>+1)(2 l>−1)

] 1
2

n [l(l + 1)− l′(l′ − 1)]
Z R Ψ(0)

nl′m′ , (A5)

where l> denotes the greater value between l and l′. The selection rules are l′ = l ± 1 and m′ = m.
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We note that in the opposite case, where R >> r, the unperturbed part Az1,0 of the operator Az can
be chosen in the usual way

Az1,0 = zp2 − pz(rp) − Z1z/r, (A6)

where the notation (rp) stands for the scalar product (also known as the dot-product) of the operators r
and p. The corresponding unperturbed Hamiltonian is

H1,0 = p2/2—Z1/r. (A7)

The operator Az1,0 has a nondegenerate spectrum of eigenvalues equal to q/n, where q = (n1 − n2)
is the difference of the parabolic quantum numbers. Therefore, the first nonvanishing corrections to the
common eigenfunctions of the operators H1,0 and Az1,0 can be easily calculated in the 1st order of the
standard nondegenerate perturbation theory. The coefficients of the corresponding linear combinations
of the unperturbed eigenfunctions are

<nl’m|L2|nlm>/[(q’/n − q/n)R], (A8)

where |q’ − q| = 2, as follows from the selection rules.
In distinction, to obtain the same corrections to the eigenfunctions using the operator H1,0, whose

spectrum of eigenvalues is degenerate, it would require going to the 2nd order of the degenerate
perturbation theory and dealing with its complications, as Sholin did in his paper [2].

We note in passing that we also applied the robust perturbation theory [14] to analytically
calculating corrections to the eigenfunctions due to the quadrupole interaction with ions outside the
atomic electron cloud (non-penetrating ions), and we obtained the same analytical results as in the
Sholin paper [2], but in a much simpler way. We also note that in paper [23], some corrections were
presented to the input data from the tables in the Sholin paper [2].

Appendix B. Table of Intensities and Energy Level Corrections for the He II Balmer-alpha line

The perturbed intensity and frequency corrections for He II Balmer-alpha line are presented below.
The quantum numbers of the upper and lower sublevels are in the spherical quantization.

Table A1. Corrections to the intensity and frequency of the He II Balmer-alpha line components.

Upper Sublevel Lower Sublevel ∆0
Ik ∆1

Ik ∆1
k

322 211 768
4715 0 173

5670

321 211 384
4715 − 32

14145
197
5670

321 210 384
4715 − 64

2829 − 37
567

321 200 0 2792
127305

949
2835

320 211 128
4715 − 128

127305
41

1134

320 210 512
4715 − 3968

127305 − 181
2835

320 200 0 11168
381915

953
2835

311 211 0 32
14145

19
810

311 210 0 232
14145 − 31

405

311 200 160
2829 − 400

25461
131
405

310 211 0 8
3105

43
810

310 210 0 2512
127305 − 19

405

310 200 160
2829 − 280

8487
143
405

300 211 5
943 − 40

25461 − 53
810

300 210 5
943 − 295

101844 − 67
405

300 200 0 5525
305532

19
81
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