
atoms

Article

Influence of the p̄-p Nuclear Interaction on the Rate of
the Low-Energy p̄ + Hµ→ (p̄p)α + µ− Reaction

Renat A. Sultanov 1,*, Dennis Guster 2 and Sadhan K. Adhikari 3

1 Business Computing Research Laboratory, St. Cloud State University, St. Cloud, MN 56301-4498, USA
2 Department of Information Systems, St. Cloud State University, St. Cloud, MN 56301-4498, USA;

dguster@stcloudstate.edu
3 Instituto de Física Teórica, UNESP–Universidade Estadual Paulista, São Paulo 01140, SP, Brazil;

adhikari@ift.unesp.br
* Correspondence: rasultanov@stcloudstate.edu or r.sultanov2@yahoo.com; Tel.: +1-320-308-5756

Received: 11 December 2017; Accepted: 1 April 2018; Published: 9 April 2018
����������
�������

Abstract: The influence of an additional strong p̄-p nuclear interaction in a three-charge-particle
system with arbitrary masses is investigated. Specifically, the system of p̄, µ−, and p is considered in
this paper, where p̄ is an antiproton, µ− is a muon and p is a proton. A numerical computation in the
framework of a detailed few-body approach is carried out for the following protonium (antiprotonic
hydrogen) formation three-body reaction: p̄ + Hµ(1s) → (p̄p)α + µ−. Here, Hµ(1s) is a ground
state muonic hydrogen, i.e., a bound state of p and µ−. A bound state of p and its antimatter
counterpart p̄ is a protonium atom in a quantum atomic state α, i.e., Pn = (p̄p)α. The low-energy
cross sections and rates of the Pn formation reaction are computed in the framework of coupled
Faddeev-Hahn-type equations. The strong p̄-p interaction is included in these calculations within
a first order approximation. It was found, that the inclusion of the nuclear interaction results in
a quite significant correction to the rate of the three-body reaction.

Keywords: slow antiprotons; muonic hydrogen; protonium; few-body systems

1. Introduction

The first detection and exploration of antiprotons, p̄’s, [1] occurred more than a half of
a century ago. Since that time this research field, which is related to stable baryonic particles, has seen
substantial developments in both experimental and theoretical aspects. This field of particle physics
represents one of the most important sections of such research work at CERN.

It will suffice to mention such experimental research groups as ALPHA [2], ATRAP [3],
ASACUSA [4,5] and others, which carry out experiments with antiprotons. By using slow antiprotons
it is then possible to create ground state antihydrogen atoms H̄1s (a bound state of p̄ and e+, i.e.,
a positron) at low temperatures. The resulting two-particle atom at present can be viewed as one
of the simplest and most stable anti-matter species [6]. A comparison of the properties of the
resulting hydrogen atom H with H̄ reveals that this antiatom lends itself well to support testing
of the fundamentals of physics [2]. Developments in regard to atomcules and H̄ atoms have increased
interest in the protonium (Pn) atom as well. This atom can be viewed as a bound state of p̄ and
p [7–9]. The two-heavy-charge-particle system can also be described as antiprotonic hydrogen.
Its characteristics within the atomic scale are that it is a heavy and an extremely small system containing
strong Coulomb and nuclear interactions. There is an interplay between these interactions inside the
atom. This situation is responsible for the creation of interesting resonance and quasi-bound states in
Pn [10]. Thus, Pn can be considered as a useful tool in the examination of the antinucleon-nucleon
(N̄N) interaction potential [11–14] as well as the annihilation processes [15–17].
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In other words, the interplay between Coulomb and nuclear forces contributes greatly to p̄ and
p quantum dynamics [18]. Further, the p̄+p elastic scattering problem has also been examined in
numerous papers. A good representative example would be paper [16]. It is also worthwhile to note
that Pn formation is related to charmonium-a hydrogen-like atom (c̄c), which is also known as a bound
state of a c-antiquark (c̄) and c-quark [16]. In sum, the fundamental importance of protonium and
problems related to its formation, i.e., bound or quasi-bound states, resonances and spectroscopy, have
resulted in this two-particle atom gaining much attention in recent decades. Several few-charge-particle
collisions can be used in order to produce low-energy Pn atoms. The following reaction is, for instance,
one of them:

p̄ + H(1s)→ (p̄p)α′ + e−. (1)

This process is a Coulomb three-body collision which was computed in a few works in which
different methods and techniques have been applied [19–22]. Because in this three-body process
a heavy particle, i.e., a proton, is transferred from one negative “center”, e−, to another, p̄, it would be
difficult to apply a computational method based on an adiabatic (Born-Oppenheimer) approach [23].
Besides, experimentalists use another few-body reaction to produce Pn atoms, i.e., a collision between
a slow p̄ and a positively charged molecular hydrogen ion, i.e., H+

2 :

p̄ + H+
2 → (p̄p)α′ + H. (2)

Nonetheless, this paper is devoted to another possible three-body process of the Pn formation
reaction in which we compute the cross-section and rate of a collision between p̄ and a muonic
hydrogen atom Hµ, which is a bound state of p and a negative muon:

p̄ + (pµ)1s → (p̄p)α + µ−. (3)

Here, α=1s, 2s or 2p is the final quantum atomic state of Pn. Since the participation of µ−

in (3), at low-energy collisions Pn would be formed in a very small size—in the ground and
close to ground states α. It is obvious that in these states the hadronic nuclear force between p̄
and p will be strong and pronounced. In its ground state the Pn atom has the following size:
a0(Pn) = h̄2/(e2

0mp/2) ∼ 50 fm, in which the Coulomb interaction between p̄ and p becomes extremely
strong. The corresponding Pn’s binding energy without the inclusion of the nuclear p̄-p interaction
is: En(Pn) = −e4

0mp/2/(2h̄n2) ∼ −10 keV. We take: n = 1, h̄ is the Planck constant, e0 is the electron
charge, and mp is the proton mass. Muons are already used as an effective tool to search for “new
physics” and to carry out precise measurements of some fundamental constants [24]. For example, in
the atomic analog of the reaction (3) Pn would be formed at highly excited Rydberg states with α′ ≈ 30.
Therefore, it is interesting to investigate the p̄-p nuclear interaction in the framework of the muonic
three-body reaction (3) at low-energy collisions.

In this paper the reaction (3) is treated as a Coulomb three-body system (123) with arbitrary masses:
m1, m2, and m3. This is shown in Figures 1 and 2. A few-body method based on a Faddeev-type
equation formalism is used. In the next sections we will introduce notation pertinent to the few-body
system (123), the basic equations, boundary conditions, and a brief derivation of the set of coupled
one-dimensional integral-differential equations. The muonic atomic units (m.a.u. or m.u.) are used in
this work, i.e., e = h̄ = mµ = 1 and mµ = 206.769 me is the mass of the muon, where me is the electron
mass. The proton (anti-proton) mass is mp = m p̄ = 1836.152 me.
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Figure 1. The three-body system p̄, µ−, p+ or “123” is depicted in this figure. The only possible two
asymptotic spacial configurations before the three-body break-up channel are presented together with
their few-body Jacobi coordinates {~ρi,~rjk}, where i 6= j 6= k = 1, 2, 3. Ψ1 and Ψ2 are the few-body
Faddeev-type components of the total wave function of the three-body system: Ψ = Ψ1 + Ψ2.

Figure 2. Configurational triangle4123 of the three-body system p̄, µ− and p+ is presented in this
figure together with the few-body Jacobi coordinates (vectors): {~ρ1,~r23} and {~ρ2,~r13},~r12 is the vector
between two negative particles in the system. The angles between the vectors such as η1(2), ν1(2), ζ and
ω are also depicted here.
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2. A Few-Body Approach

The main thrust of this paper is the three-body reaction (3). As we have already mentioned,
a quantum-mechanical Faddeev-type few-body method is applied in this work. A coordinate space
representation is used. In this approach the three-body wave function is decomposed into two
independent Faddeev-type components [25]. Each component is determined by its own independent
Jacobi coordinates. Since the reaction (3) is considered at low energies, i.e., well below the three-body
break-up threshold, the Faddeev-type components are quadratically integrable over the internal target
variables~r23 and~r13. They are shown in Figures 1 and 2.

2.1. Coupled Integral-Differential Equations

In general, the Faddeev approach is based on a reduction of the total three-body wave function
Ψ on three Faddeev-type components [25]. However, when one has two negative and one positive
charges only two asymptotic configurations are possible below the system’s total energy (E) break-up
threshold. In the framework of an adiabatic hyperspherical close-coupling approach, the Coulomb
three-body system has been considered in Ref. [26]. Nevertheless, one can also apply a few-body type
method to the three-body system in which one can decompose Ψ on two components and devise a set
of two coupled equations [27]. This is done in the current paper.

Additionally, it would be interesting to investigate and estimate the effect of the strong p̄-p
nuclear interaction in the final state of the reaction (3). In this work, the nuclear p̄-p interaction
is included approximately by shifting the Coulomb (atomic) energy levels in Pn. For a number
of reasons the direct p̄-p annihilation channel in (3) is not included in the current calculations.
This approximation is discussed at the end of this subsection. Next, a modified close coupling approach
(MCCA) is applied in this work in order to solve the Faddeev-Hahn-type (FH-type) equations [28–32].
In other words, we carry out an expansion of the Faddeev-type components into eigenfunctions of the
subsystem Hamiltonians [33,34]. This technique provides an infinite set of coupled one-dimensional
integral-differential equations.

We denote an antiproton p̄ by 1, a negative muon µ− by 2, and a proton p by 3, and use the
following system of units: e = h̄ = m2 = 1. The total Hamiltonian of the three-body system is:

Ĥ = Ĥ0 + V12(~r12) + V23(~r23) +V13(~r13), (4)

where Ĥ0 is the total kinetic energy operator of the three-body system, V12(~r12) and V23(~r23) are
Coulomb pair-interaction potentials between particles 12 and 23 respectively, and:

V13(~r13) = V13(~r13) + vN̄N
13 (~r13) (5)

is the Coulomb+nuclear interaction between particles 13, i.e., p̄ and p. vN̄N
13 (~r13) is the N̄N strong

short-range interaction between the particles. The last potential is considered as an approximate
spherical symmetric interaction in this work. The system is depicted in Figures 1 and 2 together with
the Jacobi coordinates {~rj3,~ρk} and the different geometrical angles between the vectors:

~rj3 =~r3 −~rj, (6)

~ρk =
(m3~r3+mj~rj)

(m3+mj)
−~rk, (j 6= k = 1, 2). (7)

Here ~rξ , mξ are the coordinates and the masses of the particles ξ = 1, 2, 3 respectively.
This circumstance suggests a few-body Faddeev formulation which uses only two components.
A general procedure to derive such formulations is described in Ref. [27]. In this approach,
the three-body wave function is represented as follows:

|Ψ〉 = Ψ1(~r23,~ρ1) + Ψ2(~r13,~ρ2), (8)
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where each Faddeev-type component is determined by its own Jacobi coordinates.
Moreover, Ψ1(~r23,~ρ1) is quadratically integrable over the variable ~r23, and Ψ2(~r13,~ρ2) over the
variable~r13. To define |Ψl〉, (l = 1, 2) a set of two coupled Faddeev-Hahn-type equations would be:(

E− Ĥ0 −V23(~r23)
)

Ψ1(~r23,~ρ1) =
(

V23(~r23) + V12(~r12)
)

Ψ2(~r13,~ρ2), (9)(
E− Ĥ0 −V13(~r13)

)
Ψ2(~r13,~ρ2) =

(
V13(~r13) + V12(~r12)

)
Ψ1(~r23,~ρ1). (10)

Here, Ĥ0 is the kinetic energy operator of the three-particle system, Vij(rij) are paired Coulomb
interaction potentials (i 6= j = 1, 2, 3), E is the total energy, and V13(~r13) is represented in Equation (5).
It is important to point out here that the constructed equations satisfy the Schrődinger equation
exactly [27]. For the energies below the three-body break-up threshold, these equations exhibit the
same advantages as the Faddeev equations [25], because they are formulated for the wave function
components with correct physical asymptotes.

In addition, in the framework of these equations the two-particle atomic states, i.e., subsystems
(pµ) and (p̄p), are considered in a similar way, and the Faddeev approach prevents the
overcompleteness problem—two independent complete-basis expansion functions are used within a
set of two coupled equations. Next, the kinetic energy operator Ĥ0 in Equations (9) and (10) can be
represented as: Ĥ0 = T̂ρi + T̂rij , then one can re-write the Equations (9) and (10) in the following way:(

E− T̂ρ1 − ĥ23(~r23)
)

Ψ1(~r23,~ρ1) =
(

V23(~r23) + V12(~r12)
)

Ψ2(~r13,~ρ2), (11)

(
E− T̂ρ2 − ĥN̄N

13 (~r13)
)

Ψ2(~r13,~ρ2) =
(

V13(~r13) + vN̄N
13 (~r13) + V12(~r12)

)
×Ψ1(~r23,~ρ1).

(12)

The two-body target hamiltonians ĥ23(~r23) = T̂~r23
+ V23(~r23) and ĥN̄N

13 (~r13) = T̂~r13
+ V13(~r13) +

vN̄N
13 (~r13) with an additional p̄-p nuclear interaction are represented explicitly in these equations.

In order to solve Equations (11) and (12) a modified close-coupling approach is applied, which leads to
an expansion of the system’s wave function components Ψ1 and Ψ2 into eigenfunctions ϕ

(1)
n (~r23) and

ϕ
(2)N̄N
n′ (~r13) of the subsystem (target) Hamiltonians:

Ψ1(~r23,~ρ1) ≈
(∫

+ ∑
)

n

f (1)n (~ρ1)ϕ
(1)
n (~r23),

Ψ2(~r13,~ρ2) ≈
(∫

+ ∑
)

n′
f (2)n′ (~ρ2)ϕ

(2)N̄N
n′ (~r13).

(13)

This provides a set of coupled one-dimensional integral-differential equations after the

partial-wave projection. The two complete sets of functions, i.e., {ϕ
(1)
n (~r23)} and {ϕ

(2)N̄N
n′ (~r13)},

represent the eigenfunctions of the two-body target hamiltonians ĥ23(~r23) and ĥN̄N
13 (~r13) respectively:

ĥ23(~r23)ϕ
(1)
n (~r23) =

[
T̂~r23

+ V23(~r23)
]

ϕ
(1)
n (~r23) = εn ϕ

(1)
n (~r23) (14)

ĥN̄N
13 (~r13)ϕ

(2)N̄N
n′ (~r13) =

[
T̂~r13

+ V13(~r13) + vN̄N
13 (~r13)

]
ϕ
(2)N̄N
n′ (~r13) = En′ϕ

(2)N̄N
n′ (~r13) (15)
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In addition to the Coulomb potential, the strong interaction, vN̄N
13 (~r13), is also included in

Equation (15). Coulomb is a central symmetric potential. Therefore, the eigenfunctions ϕ
(1)
n and

the corresponding eigenstates are [35]:

ϕ
(1)
n (~r23) = ∑lm R(1)

nl (r23)Ylm(~r23), (16)

εn = − µ1
2n2 . (17)

The full potential between p̄ and p is more complex, because its second part, vN̄N
13 (~r13), possesses

an asymmetric N̄N nuclear interaction [16,17]. We did not explicitly include the strong interaction in
the current calculations. Therefore, in the case of the target Pn eigenfunctions we used the two-body
pure Coulomb (atomic) wave functions. Nonetheless, the strong p̄-p interaction is approximately
taken into account in this work through the eigenstates En′ which have shifted values from the original
Coulomb levels εn′ [36], that is:

ϕ
(2)N̄N
n′ (~r13) ≈ ∑l′m′ R(2)N̄N

n′ l′ (r13)Yl′m′(~r13) ≈ ∑l′m′ R(2)
n′ l′(r13)Yl′m′(~r13) (18)

En′ ≈ εn′ + ∆EN̄N
n′ = − µ2

2n′2 + ∆EN̄N
n′ . (19)

In Equations (16) and (18) Ylm(~r) are spherical functions [35] and R(i)
nl (r) (i = 1, 2) is an analytical

solution to the radial part of the two-charge-particle Schrődinger equation [35]. The method outlined
above is a first order approximation. In the framework of this approach it would be interesting to
estimate the level of influence of the strong p̄-p interaction on the three-charge-particle proton transfer

reaction (3). Broadly speaking, the two-body Coulomb-nuclear wave functions of Pn, i.e., ϕ
(2)N̄N
n′ (~r13)

and corresponding eigenstates, En′ , have been of a significant interest for a long time. To build these
states one needs to solve the two-charge-particle Schrődinger equation with an additional strong
short-range N̄N interaction, i.e., Equation (15), see for instance [14]. In Ref. [37] the authors explicitly
included the nuclear p̄-p interaction in the framework of a variational approach for the case of an
H̄ + H scattering problem. However, as a first step, one can also apply an approximate approach
(Equations (16)–(18)) with an energy shift in the eigenstate of Pn En′ , i.e., Equation (19), εn′ is the
Coulomb level and ∆EN̄N

n′ is its nuclear shift. It can be computed, for example, with the use of the
following formula [36]:

∆EN̄N
n′ = − 4

n′
as

BPn
εn′ , (20)

where as is the strong interaction scattering length in the p̄ + p collision, i.e., without inclusion of
the Coulomb interaction between the particles, BPn is the Bohr radius of Pn. In the literature one
can find other approximate expressions to compute ∆EN̄N

n′ , see for example [38,39]. It would also be
interesting to apply some of these formulas in conjunction with the relativistic effects in protonium,
see for example works [40].

After determining a proper angular momentum expansion one can obtain an infinite set of
coupled integral-differential equations for the unknown functions f (1)α (ρ1) and f (2)α′ (ρ2) [29]:[

(k(1)n )2 +
∂2

∂ρ2
1
− λ(λ + 1)

ρ2
1

]
f (1)α (ρ1) = g1 ∑

α′

√
(2λ + 1)(2λ′ + 1)

2L + 1

×
∫ ∞

0
dρ2 f (2)α′ (ρ2)

∫ π

0
dω sin ωR(1)

nl (|~r23|)
[
− 1
|~r23|

+
1
|~r12|

]
R(2)

n′ l′(|~r13|) (21)

×ρ1ρ2 ∑
mm′

DL
mm′(0, ω, 0)CLm

λ0lmCLm′
λ′0l′m′Ylm(ν1, π)Y∗l′m′(ν2, π),



Atoms 2018, 6, 18 7 of 13

[
(k(2)n )2 +

∂2

∂ρ2
2
− λ′(λ′ + 1)

ρ2
2

]
f (2)α (ρ2) = g2 ∑

α′

√
(2λ + 1)(2λ′ + 1)

2L + 1

×
∫ ∞

0
dρ1 f (1)α′ (ρ1)

∫ π

0
dω sin ωR(2)

nl (|~r13|)
[
− 1
|~r13|

+
1
|~r12|

]
R(1)

n′ l′(|~r23|) (22)

×ρ2ρ1 ∑
mm′

DL
mm′(0, ω, 0)CLm

λ0lmCLm′
λ′0l′m′Ylm(ν2, π)Y∗l′m′(ν1, π).

Here, gi = 4πMi/γ3 (i = 1, 2), L is the total angular momentum of the three-body system,

α = (nlλ) are quantum numbers of a three-body state, k(i)n =

√
2Mi(E− E(j)

n ), with M1 = (m2 +

m3)m1/(m1 + m2 + m3), M2 = (m1 + m3)m2/(m1 + m2 + m3), E(j)
n is the binding energy of (j3),

(i 6= j = 1, 2), γ = 1−m1m2/((m1 + m3)(m2 + m3)), DL
mm′(0, ω, 0) is the Wigner function [35], CLm

λ0lm
is the Clebsh-Gordon coefficient [35], ω is the angle between the Jacobi coordinates ~ρi and ~ρi′ , νi is
the angle between~ri′3 and ~ρi, νi′ is the angle between~ri3 and ~ρi′ . The following relationships are
used for the numerical calculations: sin νi = (ρi′ sin ω)/(γri′3), cos νi = (βiρi + ρi′ cos ω)(γri′3),
where (i 6= i′ = 1, 2). A detailed few-body treatment of the heavy-charge-particle reaction (3) is the
main goal of this work. The geometric angles of the configurational triangle 4123: ν1(2), η1(2), ζ,
and ω are shown in Figure 2 together with the Jacobi coordinates, i.e., {~rj3, ~ρk} (j 6= k = 1, 2) and
~r12. The center of mass of the (123) system is O. O1 and O2 are the center of masses of the targets.
The Faddeev decomposition avoids over-completeness problems because the subsystems are treated
in an equivalent way in the framework of the two-coupled equations.

In the framework of the first order approximation approach, the direct p̄-p annihilation channel
in the reaction (3) is not included in this work. In the input channel of the reaction (3), p̄ + (p+µ−)1s,
the relatively heavy muon very effectively screens the strong Coulomb potential of the proton,
and therefore it significantly prevents direct annihilation in (3) before the Pn formation. In other
words, the Pn formation process dominates. However, it is another matter in the case of the atomic
version of the Pn formation reaction (1). Here, the electron cloud around the proton can also block the
p̄ movement to p, but because of the quantum-tunneling effect the massive antiproton can penetrate
with a significant probability through the light electron cloud and then directly annihilate with proton
before protonium forms. Therefore, in the framework of the reaction (1) it would be necessary to take
into account the tunneling effect. As far as we know, this is still not done in a suitable way.

In terms of the Pn annihilation in the reaction (3) (which can occur after the two-body system
formation) and an inclusion of this effect in calculations, it was mentioned above that in this case one
needs to build precise Coulomb-nuclear p̄-p two-body wave functions ϕ

(2)N̄N
n′ (~r13) from Equation (15).

In this special case, one needs to consider not only the shifts of the Coulomb levels in Equation (19),
but also their widths. However, in the current work, as a first order approximation the nuclear effect is
considered only through Equations (19) and (20).

We believe that to some extent this approximation is justified. In this work, we were mostly
interested in the Pn atom formation process (3), where the values of the Coulomb-nuclear atomic levels
at which the atom can form are important. As we mentioned, these levels have widths, but they are
mostly responsible for the annihilation reaction that follows.

2.2. Boundary Conditions and Reaction cross Section

In order to reach the next step it is necessary to obtain a unique solution for Equations (21) and (22).
While doing so it is important that the appropriate boundary conditions are chosen. They should be
related to the physical situation of the system. In this paper we apply the same boundary conditions as
in our previous papers [29,30]. In order to compute the cross sections we use the K-matrix formalism.
This would appear to be a prudent step because this method has been successfully used to obtain
solutions in various three-body problems within the framework of both the Schrődinger equation [41]
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and the coordinate space Faddeev equation [42,43]. Specifically, in regard to the rearrangement
scattering problem i + (j3) as the initial state within the asymptotic region it will be necessary to devise
two solutions to Equations (21) and (22) which then will satisfy the boundary conditions that follow:

f (i)nl (ρi) ∼
ρi→ 0

0

f (i)1s (ρi) ∼
ρi→+∞

sin(k(i)1 ρi) + Kii cos(k(i)1 ρi)

f (j)
1s (ρj) ∼

ρj→+∞

√
vi/vjKij cos(k(j)

1 ρj) ,

(23)

where Kij represents the appropriate scattering coefficients, and vi(j) (i 6= j = 1, 2) is the i(j) channel
velocity between the particles. Next, one can use the following change of variables in Equations (21)
and (22), i.e., f(i)1s (ρi) = f (i)1s (ρi)− sin(k(i)1 ρi), (i = 1, 2). This substitution results in a modification
of the variables and provides two sets of inhomogeneous equations which can now be conveniently
solved numerically. The transition also allows the coefficients Kij to be gained by reaching a numerical
solution for the previously described FH-type equations. The reaction cross section can be expressed
as follows:

σij =
4π

k(i)21

∣∣∣∣ K
1− iK

∣∣∣∣2 =
4π

k(i)21

δijD2 + K2
ij

(D− 1)2 + (K11 + K22)2 , (24)

where (i, j = 1, 2) refer to the two channels and D = K11K22 − K12K21. Next, in accord with the

quantum-mechanical unitarity principle the scattering matrix K =

(
K11 K12

K21 K22

)
has an important

feature: K12 = K21, i.e., χ(E) = K12/K21 = 1. The last equation has been checked for all considered
collision energies within the framework of the 1s, 1s + 2s and 1s + 2s + 2p MCCA approximations, i.e.,
Equations (13).

3. Results and Conclusions

Below in this section we report our computational results. First of all, before attempting large
scale production calculations one needs to investigate numerical convergence of the method and the
computer program. It was very carefully undertaken in this work. The Pn formation three-body
reaction is computed at low energies. A Faddeev-like equation formalism Equations (11) and (12)
has been applied. The few-body approach has been explained in previous sections. In order to
solve the coupled equations, two different independent sets of target expansion functions have been
employed (13). The goal of this paper is to carry out a reliable quantum-mechanical computation of
the cross sections and corresponding rates of the Pn formation reaction at low and very low collision
energies. It is very interesting to estimate the influence of the strong short-range finale state p̄-p
interaction on the rate of the reaction (3).

The three-body reaction (3) could, probably, be used to investigate the strong p̄-p nuclear potential
and the annihilation process in future experiments with the anti-protonic hydrogen atom or protonium
Pn. The coupled integral-differential Equations (21) have been solved numerically for the case of
the total angular momentum L = 0 in the framework of the two-level 2×(1s), four-level 2×(1s + 2s),
and six-level 2×(1s + 2s + 2p) close coupling approximations in Equation (13). The sign “2×” indicates
that two different sets of expansion functions are applied. The L = 0 computation is justified, because
we are interested in a very low-energy collision: εcoll ∼ 10−4 eV−10 eV. The following boundary
conditions (23) have been applied. To compute the charge transfer cross sections the expression (24)
has been used.

Because we compared the Pn formation rates, σtrvc.m., of the process (3) with the corresponding
results from Ref. [26], we also multiplied our data by factor of “×5”, as was done in [26]. We compared
some of our findings with the corresponding data from the older work [26]. The Pn formation cross
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section in the reaction (3) are shown in Figure 3. Here we use 1s, 1s + 2s and 1s + 2s + 2p states within
the modified close-coupling approximation, i.e., MCCA approach. One can see that the contribution of
the 2s- and 2p-states from each target is becoming even more significant while the collision energy
becomes smaller. This is a well known fact that the 2p-atomic-states are mostly responsible for the
polarization effects in few-charge-particle systems. Our result from Figure 3 clearly depicts that this
effect is becoming more important at low energy collisions.

It would also be useful to make a comment about the behavior of σtr(εcoll) at very low collision
energies: εcoll ∼ 0. From our calculations we found the following relationship in the proton transfer
cross sections: σtr → ∞ as εcoll → 0. However, the proton transfer rates, λtr, are proportional to the
product σtrvc.m. and this trends to a finite value as vc.m. → 0.
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Figure 3. This figure shows final results (after numerical convergence test calculations) for the
low-energy proton transfer reaction 3-body integral cross section σtr, i.e., p̄ + Hµ → (p̄p)α + µ−.
Here, Hµ is a muonic hydrogen atom: a bound state of a proton and a negative muon. The reaction’s
final channel with α = 1s is only considered in this paper in the framework of the 1s, 1s + 2s and 1s + 2s
+ 2p MCCA approach. The solid line with open circles is the result with an approximate inclusion of
the final state strong p̄-p+ nuclear interaction.

To compute the proton transfer rate the following formula λtr = σtr(εcoll → 0)vc.m. can be
used. Therefore, for process (3) we can compute the numerical value of the following important
quantity: Λ(Pn) = σtr(εcoll → 0)vc.m. ≈ const, which is proportional to the actual Pn formation rate
at low collision energies. In the framework of the 2×(1s + 2s + 2p) MCCA approach, i.e., when six
coupled Faddeev-Hahn-type integral-differential equations are solved, our result for the Pn formation
rate has the following value: Λ1s2s2p(Pn) ≈ 0.32 m.a.u. The corresponding rate from work [26]
is: Λ′(Pn) ≈ 0.2 m.a.u. Both of these results are in agreement with each other. For comparison
purposes, our original result for Λ1s2s2p(Pn) has been multiplied by a factor of “×5” to match work [26].
The unitarity relationship, i.e., χ(E) = K12/K21 = 1, has been checked for different values of collision
energies. It was shown, that χ always exhibits fairly constant values close to one. One of the main
goals of this work is to investigate the effect of the p̄-p nuclear interaction on the rate of the reaction (3).
In Figure 3 we additionally provide our cross sections for (3) including the nuclear effect in the final Pn
state. One can see, that the contribution of the strong interaction becomes even more substantial when
the collision energy becomes lower. A few additional comments about the inclusion of the p̄-p nuclear
interaction are appropriate. First of all, we neglected the p̄+p annihilation channel. This approximation
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has been discussed above. However, the effect of the strong nuclear forces on the reaction (3) is
incorporated through the energy shifts ∆EN̄N

n′ to the original Coulomb energy levels in the Pn atom,
i.e., εn′ in Equation (19). To compute ∆EN̄N

n′ the expression (20) is used from [36]. The p̄+p elastic
scattering length, i.e parameter as, was adopted from work [12] and equals 0.57 fm in our calculations.
In [12] the Kohno-Weise strong interaction potential [44] has been applied. The next two Figures 4
and 5 represent results in which we compare cross sections and rates computed with and without the
inclusion of the strong potential within the different close-coupling approximation.

Figure 4 shows our results in the framework of the 1s and 1s + 2s MCCA approaches. The results
are numerically stable. It is seen that the contribution of the strong nuclear interaction is higher in
the case of the 1s + 2s approximation. For example, in this case the rate of the reaction (3) is about
0.12 m.a.u., however, with the inclusion of the nuclear interaction it becomes 0.15 m.a.u. The last
figure in this paper, Figure 5, represents our computational data in the 1s + 2s + 2p approach. The very
important polarization effect is included. The inclusion of the nuclear interaction brings a significant
change to the rate of the reaction (3). At very low collision energies around 10−4 − 10−2 eV, the rate is
∼0.5 m.a.u. It is important to restate that all calculations carried out in this work have been done for
the ground-to-ground state of (3), i.e., α = 1.
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Figure 4. Upper plot: integral cross sections σtr in the reaction (3) with and without inclusion of the p̄-p
strong interaction. Only the 1s and 1s + 2s approximations are used. Lower plot: corresponding results
as on the top plot, but for the low-energy reaction rate: σtr multiplied by the collision velocity v = vc.m..

In summation: the complexity of the few-body system and the method utilized necessitated that
only the total orbital momentum L = 0 be taken into account. However, the method was indeed
adequate for the slow and ultraslow collisions discussed previously. Further, it is important to note
that the devised few-body Equations (9) and (10) do exactly satisfy the Schrődinger equation. In cases
in which the energies below the three-body break-up threshold occur, this methodology provides
advantages similar to the Faddeev equations [25]. This is because these equations are formulated
to include wave function components which contain the correct physical asymptotes. The solution
of these equations begins by using a close-coupling approach. This then leads to an expansion of
the system’s wave function components into eigenfunctions of the subsystem (target) Hamiltonians,
which results in a set of one-dimensional integral-differential equations upon completion of the
partial-wave projection. In an effort to expand the scope of the results a strong proton-antiproton
interaction was included by appropriately shifting the Coulomb energy levels of the Pn atom [14,36].
Interestingly, this process increased the magnitude of the resulting values of the reaction cross section



Atoms 2018, 6, 18 11 of 13

and corresponding rate by ∼50%. Therefore, one further three-body reaction similar to (3) can also be
of sufficient future interest:

p̄ + 2Hµ(1s)→ (p̄d)α + µ−, (25)

where 2H = d is the deuterium nucleus, µ− and p̄ are muon and antiproton respectively. This is
because of a possible effect of the isotopic few-body quantum dynamic differences between reactions (3)
and (25), and the nuclear interaction differences between p̄ and p and p̄ and d. In the future, it would
be very interesting to compare the cross sections of both reactions. Based on the results herein it
seems logical for future work to include in Equations (13) the higher atomic target states as well
as the continuum spectrum. Calculations of this type would be very interesting but challenging.
The challenge is because at very low energy collisions the higher energy channels are closed and there
is a significant energy gap between the states and the actual collision energies. Despite this limitation
the primary contribution from s- and p-states (polarization) is still evaluated. In closing, the authors
feel that including the strong p̄-p interaction explicitly in the numerical solution of Equations (11)
and (12) could also provide an interesting and challenging direction for future theoretical research in
this area.
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Figure 5. Upper plot: the reaction rate, i.e., integral cross sections σtr of the reaction (3) multiplied by the
collision velocity v with and without inclusion of the p̄-p strong interaction for comparison purposes.
Only the 1s + 2s + 2p MCCA method is used in these calculations. Lower plot: corresponding results
as on the top plot, but for the elastic scattering cross section of the process (3), σel , multiplied by the
collision velocity v = vc.m..
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