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Abstract: Using a thermal gas, we model the signal of a trapped interferometer. This interferometer
uses two short laser pulses, separated by time T, which act as a phase grating for the matter waves.
Near time 2T, there is an echo in the cloud’s density due to the Talbot-Lau effect. Our model uses the
Wigner function approach and includes a weak residual harmonic trap. The analysis shows that the
residual potential limits the interferometer’s visibility, shifts the echo time of the interferometer, and
alters its time dependence. Loss of visibility can be mitigated by optimizing the initial trap frequency
just before the interferometer cycle begins.
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1. Introduction

Cold atom interferometry has been investigated for precision measurement applications [1,2],
particularly inertial navigation [3–6]. Atom interferometers have demonstrated orders of magnitude
improvement in bias stability over commercial navigation grade ring laser gyroscopes [7] and similar
gains are expected for accelerometers, gravimeters, magnetometers, and more.

Transitioning the technology to a real-world device has proven difficult. The most sensitive
atom interferometers use a 10-meter long apparatus [8]. These measurements rely on a Raman pulse
technique which changes the internal state of the interrogated atoms. Because of the difficulty in
confining multiple states with a magnetic field, atoms are allowed to propagate freely, necessitating a
large system.

Single internal state splitting has allowed atoms to be trapped for the duration of the interferometer
cycle, reducing the apparatus length to a few millimeters [9]. Techniques for confined splitting include
double-well potentials [10], optical lattices [11], and standing wave pulses [12,13]. However, these
interferometers have used Bose-Einstein condensates, which require cooling stages that increase power
consumption, decrease possible repetition rates, and lower atom numbers.

One single state technique has been shown to work at thermal (i.e., non-condensed)
temperatures [14–16]. These interferometers, in the “Talbot-Lau” configuration, confine the atomic
sample in two directions and allow free propagation in the third. In an ideal situation, the potential
along the third direction would vanish. However, due to the finite size of the device and uncontrollable
external fields, there is residual potential along the waveguide.

Unfortunately, the residual potential and other field imperfections reduce coherence times [13,17,18].
Recent research has demonstrated a high degree of control over the residual field [19]. Here, we
analyze the effect of a controlled residual potential in a Talbot-Lau interferometer with a gas of cold,
thermal atoms using a Wigner function approach.
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2. Interferometer Operation

To prepare the atomic gas for the interferometer cycle, a laser cooled sample is loaded into a
magnetic trap with frequencies ω

(e)
i , where i = (x, y, z). The collision rate is directly proportional to the

geometric average of these trap frequencies ω̄(e) = (ω
(e)
x ω

(e)
y ω

(e)
z )1/3, so ω̄(e) should be made as large

as possible to maximize the efficiency of the evaporative cooling. In typical atom chip experiments, the
gas is evaporatively cooled in a trap with frequency ω̄(e) ∼ 2π × 200 Hz.

Once the atoms are cooled to a temperature on the order of T ∼ 10 µK, the potential is
adiabatically transformed into a trap that tightly confines the atoms in the radial direction, with
frequencies ωy = ωz = ω⊥ ∼ 2π × 200 Hz; and in the axial direction, with frequency ωx = ω0.
Just before the interferometer cycle starts, the potential is non-adiabatically transformed into a
waveguide potential, while holding the radial trap frequency constant to reduce the effects of
transverse excitations. In a realistic device, there remains a residual potential along the waveguide
with frequency ω.

Once the atoms are loaded in the waveguide, the interferometer cycle begins. In this analysis, we
considered the case of the trapped atom Talbot-Lau interferometer schematically shown in Figure 1.
The figure traces the different paths that an initially stationary atom could experience when moving
through the device. Time moves from left to right, and the displacement of the atom along the
waveguide is shown in the vertical direction.
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Figure 1. The schematic of a Talbot-Lau interferometer. An atomic cloud is split in space (vertical axis)
by a laser pulse at time t = 0. The resulting diffracted orders separate, and are further diffracted at
t = T. At the recombination time t = 2T, the various orders overlap, allowing a probe laser to produce
a back scattered signal from the periodic atomic distribution. We only show two diffraction orders
because for typical laser pulses, higher orders are suppressed.

At time t = 0, the atomic cloud is illuminated with a short, standing wave laser pulse that acts as
a diffraction grating. The pulse is sufficiently short that it is in the Kapitza-Dirac regime, i.e., the atoms
do not move for the duration of the laser pulse. The pulse splits the wave function for each atom into
several momentum states separated by the two photon recoil momentum δP = 2h̄kl , where kl is the
wave number of the laser beams.

After the laser pulse, the atomic cloud propagates in the waveguide for a time T, at which
point it is illuminated with a second laser pulse. The paths of the different momentum states are
shown as blue lines between 0 and T. Ideally, the momentum of each mode should be constant in
time. However, the residual curvature along the waveguide will cause the paths to become curved
(not shown in the figure), giving rise to decoherence.

For simplicity, it is assumed that the laser pulse at time T has the same strength and affects the
atomic wave function in the same manner. Each of the momentum states that were populated after the
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first laser pulse are split into several modes. After the second laser pulse, the number of possible paths
increases dramatically. However, near time 2T, the different paths come together to form a density
modulation that has the same period as the standing wave.

An extraordinary feature of a Talbot-Lau interferometer is that the location of the density echo is
independent of the initial velocity of the atom. For example, if the initial atom in Figure 1 had some
momentum, each of the diffracted orders would maintain this additional momentum. After tracing out
all possible paths, it is easy to show that the density modulation appears in exactly the same location
as for the initially stationary atom. As a result, the density echo is still visible even when the initial
atomic gas is relatively hot.

In the absence of external forces, the density echo will have the same relative phase as the standing
wave laser pulse. However, if there is a force on the cloud, the echo will move in response to the force.
By detecting the shift in the echo, it is possible to measure the force on the cloud.

This phase shift can be measured by reflecting a traveling wave off the density modulation.
Due to the Bragg effect, there will be a strong backscattered signal for the duration of the echo.
By heterodyning the back-reflected light with a reference beam, the phase of the density echo can
be determined.

In this paper, we present a theoretical model of a trapped Talbot-Lau interferometer that includes
the decoherence due to the residual potential curvature. We use the Wigner function approach to
model the dynamics of a thermal gas, which can be extended to include more complex laser pulse
sequences [18]. For brevity, only the simple case of a two-pulse interferometer is discussed. Our model
predicts the amplitude of backscattered light for an arbitrary initial Wigner function and is then
specialized to the case of an initial thermal distribution. Decoherence due to finite temperature and
initial axial trap frequency are discussed. Finally the model is used to determine the ideal axial
frequency for a given initial phase space density and residual potential.

3. The Model

Following the prescription of [19], we assume that the potential is separable, i.e.,
V(rrr) = V(x) + V⊥(r⊥), and the k-vectors of the laser beams point in the x-direction. Collisions are
neglected as we have previously analyzed the effects of collisions in a similar interferometer and do
not expect atom-atom collisions to have a significant impact on the results [20]. We also ignore the
mean field interaction, as it is mainly relevant for strongly interacting condensates, which we do not
consider here. Inclusion of these terms may be possible, but are omitted to keep the discussion concise.
The Hamiltonian that governs the axial dynamics of the interferometer is one-dimensional and can be
written as

H =
P2

2M
+

1
2

MβX2 + h̄Ω cos(2klX), (1)

where X and P are the canonical operators with commutation relation [X, P] = ih̄, kl is the wave number
of the laser, M is the atomic mass, and β is the curvature of the residual potential. The parameter Ω
is the frequency of the AC-stark shift due to the standing wave laser pulse, which depends on the
intensity and detuning of the beam and is, in general, a function of time.

The Hamiltonian can be recast in the dimensionless form

H′ =
P′2

2
+

1
2

β′X′2 + Ω′ cos X′, (2)

where P′ = P/P0, X′ = X/X0, and t′ = t/t0 where P0 = 2h̄kl , X0 = 1/2kl , and t0 = M/4h̄k2
l .

The other parameters in Equation (1) become β′ = βt2
0 and, Ω′ = Ωt0. The other important

dimensionless parameter is the cloud temperature T ′ = T /T0, where T0 = 4h̄2k2
l /MkB, where

kB is the Boltzmann constant. For 87Rb where the standing wave laser is near the D2 transition,
t0 = 5.3 µs, and T0 = 1.4 µK. For the rest of this paper, primes will be dropped for clarity, and unless
otherwise stated, all introduced variables will be dimensionless.
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Since the interferometer uses an incoherent gas, the state of the system cannot be written as a
wave function. Instead, the system is described by the density operator ρ. The equation of motion for
the density operator, in dimensionless form, is

iρ̇ = [H, ρ], (3)

where the dot denotes the time derivative and the brackets are the usual commutation operator.
The density operator can be recast in terms of the Wigner function, which is defined as

f (x, p) =
1
π

∫
dξ〈x + ξ|ρ|x− ξ〉e−2ipξ (4)

where |x〉 are the eigenvectors of the coordinate operator, i.e., X|x〉 = x|x〉. The Wigner function f (x, p)
can be interpreted as the probability density, however for non-classical states the Wigner function may
be negative. As a result,

∫
dx f = P(p) is the momentum density of the cloud and

∫
dp f = ρ(x) is the

spatial density. Even when the Wigner function is negative, the densities, P and ρ are always positive.
It is worth noting that the Wigner approach works for pure states as well. In this case, it is

defined as
fpure(x, p) =

1
π

∫
dξψ∗(x + ξ)ψ(x− ξ)e−2ipξ . (5)

We will find that the results of the incoherent process are easily extended to include the results of a
pure state (BEC) interferometer.

Substituting Equation (4) into Equations (2) and (3) it can be shown that the equation of motion
for the Wigner function is(

∂

∂t
+ p

∂

∂x
− β

∂

∂p

)
f (x, p, t) = Ω sin x

[
f
(

x, p− 1
2

)
− f

(
x, p +

1
2

)]
, (6)

where the left side of the equation describes the motion of the distribution in the potential while the
right side describes the interaction with the standing wave laser field.

Since the duration of the laser pulses τp is much shorter than the interferometer time T (T � τp),
the evolution of the distribution can be separated into relatively slow dynamics when the distribution
is not being illuminated and fast dynamics when it is. Additionally, since each laser pulse is short
τp � 1/ω0 and strong Ω � ω0, the pulses are in the Kapitza-Dirac regime, which occurs in the
Raman-Nath limit. As a result, the coordinate and momentum derivatives in Equation (6) may be
neglected during the pulse.

The dynamics of the distribution for the periods when the laser is off, Ω = 0, are such that each
part of phase space evolves classically. For simplicity, it is useful to write the classical equations of
motion in the form

ẋxx = Mxxx (7)

where xxx = (x, p) is the coordinate-momentum vector, and the matrix M is

M =

(
0 1
−β 0

)
. (8)

The solution to Equation (7) can be written as xxx(t) = Utxxx(0), where Ut = exp(Mt). By direct
substitution it can be shown that in between the laser pulses the distribution evolves as

f f (xxx) = fi(U−txxx). (9)

The laser pulses are more involved and fundamentally quantum in nature (i.e., resulting in
negative Wigner distributions). The effect of the laser pulse is to transform an initial Wigner distribution
fi into a final distribution f f according to
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f f (Ω 6= 0) =
∞

∑
nk=−∞

(−i)n Jk(Ξ)Jn+k(Ξ)ei(n+2k)x fi

(
x, p− n

2

)
(10)

for the pulse area, Ξ =
∫

dτΩ(τ), where the functions Jn are the Bessel functions of the first kind.
In terms of xxx, Equation (10) can be written in the more compact form

f f (Ω 6= 0) = ∑
nk

αnkeigggnk ·xxx fi(xxx−Nn) (11)

where gnkgnkgnk = (n + 2k, 0), NNNn = (0, n/2), and αnk = (−1)n Jk Jn+k.
The interferometer sequence is characterized by four unique operations separated in time. The first

laser pulse at t = 0 operates on an initial Wigner distribution f0 and transforms it to f1 ( f0 → f1).
There is then a propagation period from t = 0 to T, over which the distribution transforms f1 → f2.
The second laser pulse at t = T transforms f2 → f3. Lastly, another propagation to t = 2T + τ

transforms the distribution to its final form f3 → f4.
Near the end of the interferometer cycle, the cloud is illuminated with a short traveling wave laser

pulse of duration τ0, where τ0 � T. To determine the time dependence of the back-scattered light, the
Wigner function must be found for times near the echo time, i.e., t = 2T + τ. By direct substitution
into Equations (9) and (11) for the interferometer cycle discussed in Figure 1, the Wigner function near
the echo time is

f4 = ∑
mlnk

αmlαnk

× exp [i(gggml ·UT + gggnk) ·U−2T−τ · xxx− igggnk ·U−T ·NNNm]

× f0(U−2T−τ · xxx−U−T ·NNNm −NNNn). (12)

According to [17], the amplitude of the back-scattered light is proportional to

S =
∫

d2xeiggg01·xxx f4(xxx). (13)

For the rest of the paper, the quantity S will be referred to as the signal of the interferometer.
Changing the integration variable from xxx to yyy, where

yyy = U−2T−τxxx−U−TNm −Nn, (14)

the signal can be written as

S = ∑
mlnk

αmlαnkeiΘmlnk

∫
d2yei∆∆∆mlnk ·yyy, (15)

where
∆∆∆mlnk = gggml ·UT + gggnk + ggg10 ·U2T+τ , (16)

and
Θmlnk = ∆∆∆mlnk · (U−T ·NNNm + NNNn)− gggnk ·U−T ·NNNm. (17)

In what follows below, it will be assumed that both the echo duration is small as compared to the
interferometer time τ � T, and the residual trap curvature is β� 1/T2. When these inequalities are
fulfilled, only the linear contributions in both τ and β are retained. In this limit, the time propagation
operator for small values of β is UT ≈ U(0)

T + βU(1)
T , where U(0)

t =
(

1 t
0 1
)
, and U(1)

t =
(

t2/2 t3/6
t t2/2

)
, and

for small values of time τ, Uτ = 1 + M(1)τ, where M(1) =
(

0 1
0 0
)
.

Equation (16) can now be written as

∆∆∆mlnk = ∆∆∆(0)
mlnk + β

(
gggml ·U

(1)
T + ggg10 ·U

(1)
2T

)
+ τ

(
ggg10U(0)

2T M(1)
)

, (18)
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where ∆(0) is given by Equation (16) where β → 0 and τ → 0. In the limit where the distribution
is slowly varying, the elements of the sum in Equation (13) are vanishingly small unless ∆(0) = 0.
This implies that gggml = −2ggg10 and gggnk = ggg10. Using the definition of ggg, these relations can be written as
k = (1− n)/2 and l = −(2 + m)/2. In addition, only the terms where n, (m) are even (odd) contribute
to the signal. Equation (18) becomes independent of the indices m, l, n, k.

Substituting the explicit matrix representations for ∆ and Θ, the interferometer signal is given by

S = A
∫

dudv exp
[
−iβT2u + iτ′v

]
f0(u, v), (19)

where τ′ = τ − βT3 and u, v are the components of the vector yyy. The parameter A in Equation (19) is
the amplitude of the signal and can be expressed as the sum

A = ∑
n,even

∑
m,odd

γnm

2i
exp

[
i
(

mT
2

+
m + n

2
τ′ +

5m
12

βT3
)]

, (20)

where
γnm = 2(−1)(n−1)/2+m/2 J(1−n)/2 J(1+n)/2 J−(2+m)/2 J−(2−m)/2 (21)

determines proportion of the atoms scattered into each mode.
Equation (19) is the primary result of this analysis, and will be used for the case of a thermal

atomic cloud in Section 4.

4. Discussion

By taking the limit where Ξ� 1, only the lowest order contributions to Equation (20) need to be
retained. If we keep n = ±1 and m = 0,±2 and use the limiting values of Jn for the small argument,
γ10 ≈ −2γ12 ≈ Ξ/4, then

A = sin
(

1
2

τ′
)

Ξ3

4

[
1 + cos

(
T +

5βT3

6
+ τ′

)]
. (22)

Assuming that the initial distribution is a thermal cloud of temperature T that is in equilibrium
with the trap with frequency ω0, the distribution f0 becomes

f0 =
ω0

2πT exp

(
− p2

2T −
ω2

0x2

2T

)
. (23)

By comparison, the initial distribution of a condensate would be well approximated by the ground
state of a harmonic oscillator. Using Equation (5), the pure state Wigner function is equivalent to
Equation (23) when T = ω0/2. During the transition from an incoherent thermal gas to a pure BEC,
the distribution is a sum of f0 and fpure, weighted by the number of atoms in and out of the ground
state, where N0/N = 1− (T /Tc)3 and Tc = ω̄0(N/ζ(3))1/3. N0/N is the ratio of condensed atoms to
the total, and ζ is the Riemann zeta function. This combined distribution can be used with Equation (19)
to find the expected signal.

Returning focus to the incoherent thermal gas, substituting Equations (22) and (23) into
Equation (19) and performing the integral yields

S = A exp

[
−T

2

(
βT2

ω0

)2

− T
2

τ′2
]

. (24)

To quantify the signal visibility, we define the echo strength as I = Ξ6
∫

dτ′S2, which is
proportional to the total number of photons (electromagnetic energy) of the backscattered light during
the read-out pulse. In the limit where T � 1, Equation (24) can be integrated, yielding
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I =
π1/2A2

32T 3/2 exp

[
−T

(
βT2

ω0

)2]
, (25)

where

A =
1
4

[
1 + cos

(
T +

5
6

βT3
)]

. (26)

Equation (25) appears to diverge in the limit T → 0, which is clearly an unphysical result. However the
numerical integration of Equation (24) remains finite.

Note that I is an oscillating function, and is well known in the β = 0 case [3]. Figure 2 shows
a schematic of Equation (25) as a function of interferometer time T for β > 0. The dotted line is
the envelope of the echo strength. Figure 3 shows a schematic of Equation (25) as a function of
interferometer time T for β < 0.

T

I

Figure 2. A schematic of the echo signal strength, I , as a function of interferometer time, T, for an
interferometer in a positive residual trapping potential, i.e., β > 0. The signal strength is proportional
to the total number of backscattered photons during the readout laser pulse. I is periodic with an
increasing frequency within an envelope defined by the dotted curve.

T

I

Figure 3. A schematic of the echo signal strength, I , as a function of interferometer time, T, for an
interferometer in a negative residual trapping potential, i.e., β < 0. Like the positive potential case, the
signal strength is periodic and contained within a decaying envelope. However, the negative potential
causes a decreasing frequency. Both positive and negative potentials have the same envelope.

The oscillation frequency increases when β > 0 and decreases when β < 0, and there is a maxima
when T + 5βT3/6 = 2πn. These oscillations depend only on the values of β and T. In a typical
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experiment, the oscillation frequency is much larger than depicted in Figure 2 or Figure 3. For the
remainder of the paper, it will be assumed that the interferometer time is tuned to be at the peak of an
oscillation, which will be referred to as Im.

In order to maximize signal strength, it is also useful to release the atomic sample into the
waveguide from the correct initial trap. Typically, the atomic gas is evaporatively cooled to a
temperature T (e) in a trap with frequency ω(e). After cooling, the trap frequencies are adiabatically
changed to a trap with frequency ω0 and then released into a waveguide with residual potential
curvature β. During the adiabatic transformation, the phase space density is constant. This condition
implies D = T 3/ω is held constant, assuming the radial trap frequencies ω⊥ are unchanged.
Then Equation (25) can be recast as

Im =
π1/2

32(D(e))2ω2
0

exp

[
− (D(e))1/3

ω5/3
0

(βT2)2

]
, (27)

where D(e) = (T (e))3/ω(e) is proportional to the phase space density at the end of the evaporation.
For this analysis, assume the cloud is evaporatively cooled in a trap with frequency

ω(e) = 2π × 10−4 and to a temperature T = 10. For 87Rb, these parameters correspond to a gas
cooled in a trap with a frequency of 20 Hz to a temperature of 14 µK. The phase space density is
proportional to D(e) = 10−6/2π. Figure 4 shows the echo strength, Equation (27), as a function of
decompressed trap frequency ω0. The remaining parameter |β|1/2T = 10−2, corresponds to a cycle
time of 10 ms and a residual frequency of 0.3 Hz. In this case, the decompressed trap frequency is
roughly half the evaporative trap frequency.

0 5 10 15 20
ω0 ×104

0

1

2

3

4

5

6

I×
10

−3

Figure 4. The signal strength as a function of injection trap frequency, ω0. After evaporation in a trap
with frequency ω(e), the trap potential is adiabatically transformed to ω0 before the interferometer
cycle begins. At the start of the cycle, the trap is snapped to ω =

√
β, where it stays. The signal

strength peaks at for a non-zero injection frequency ω0. For this case, βT2 = 10−4, and D(e) = 106/2π.

For small values of ω0 � 1, the echo strength vanishes because the weak trap creates a large
cloud, which experiences more de-phasing due to the residual potential. On the other hand, when
ω0 � 1, the echo strength vanishes because the tight trap increases the temperature of the cloud,
resulting in a shorter echo duration.

The ratio of ideal starting trap frequency ω0 and evaporation trap frequency ω(e) = 2π × 10−3

is shown as as a function of |β|1/2T in Figure 5. The dash-dot line is the ideal frequency if the gas is
cooled to a temperature of T = 1, the solid line is the ideal frequency when T = 10, and the dashed
line is when T = 20.
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0.01 0.02 0.03 0.04
|β|1/2T

0.0

0.5

1.0

1.5

2.0

2.5

ω
(m

)
0

/ω
(e
)

Figure 5. The ratio of the ideal injection trap frequency, ω0, to the evaporation trap frequency, ω(e),
as a function of |β|1/2T. Here we use ω(e) = 2π × 10−3, and plot for temperatures T = 1 (dash-dot),
T = 10 (solid), and T = 20 (dash). As the ratio ω0/ω(e) becomes greater than one, the gas should be
compressed before being released into the interferometer. This compression step raises the temperature,
but reduces the size of the cloud.

For values where ω0/ωe < 1, the ideal starting frequency is lower than the evaporation frequency,
i.e., the gas should be decompressed before the beginning of the interferometer cycle. At the cost
of increasing the cloud size, it is more advantageous the lower the temperature. For the case where
ω0/ωe > 1, the gas should be compressed, raising the temperature by reducing the size of the cloud.

5. Outlook

Tuning the interferometer time T and the injection trap frequency ω0 allows for maximal signal
visibility. However, these optimizations cannot overcome the exp(−β2) dependence in Equation (25).
Even a small residual potential dramatically reduces coherence times in this version of a trapped
Talbot-Lau interferometer. Figure 6 shows the signal visibility, Equation (25), for several residual
potentials. The dashed curve is β = 5× 10−13, the solid line is 10−12, and the dash-dot curve is 10−11.
For this plot, I0 = π1/2A2/32T 3/2, with A = 1/2 to correspond to maxima in the signal oscillation.
For the time axis, T × 10−2 corresponds roughly to 1 ms.

0 50 100 150 200
T×10−2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

I/
I 0

Figure 6. The signal visibility, i.e., the decaying envelope that limits the maximum possible signal
strength for a given interferometer time T. The decay is proportional to exp(−β2), causing rapid signal
loss for even small residual potentials. Here we show β = 5× 10−13 (dashed), 10−12 (solid), and 10−11

(dash-dot). T × 10−2 corresponds roughly to 1 ms.
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Clearly the signal visibility has a strong dependence on residual potential, which must be
extremely small for coherence times compared to free space interferometers. In future work, we
will explore modifications to the trapped Talbot-Lau scheme with the potential to minimize the
coherence time’s sensitivity on residual field imperfections.

The Wigner function approach allows a straightforward way to model interference in an
incoherent system such as a cold atomic gas. It can be readily applied to consider different
pulse schemes such as those of [17], as well as propagation in more complex confining potentials.
The Talbot-Lau interferometer’s ability to operate at thermal temperatures is a significant enough
benefit to a real-world device that further study is warranted.
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