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Abstract: Theoretical studies of tungsten ions in plasmas are presented. New calculations
of the radiative recombination and photoionization cross-sections, as well as radiative
recombination and radiated power loss rate coefficients have been performed for 54 tungsten
ions for the range W6+–W71+. The data are of importance for fusion investigations at
the reactor ITER, as well as devices ASDEX Upgrade and EBIT. Calculations are fully
relativistic. Electron wave functions are found by the Dirac–Fock method with proper
consideration of the electron exchange. All significant multipoles of the radiative field are
taken into account. The radiative recombination rates and the radiated power loss rates
are determined provided the continuum electron velocity is described by the relativistic
Maxwell–Jüttner distribution. The impact of the core electron polarization on the radiative
recombination cross-section is estimated for the Ne-like iron ion and for highly-charged
tungsten ions within an analytical approximation using the Dirac–Fock electron wave
functions. The effect is shown to enhance the radiative recombination cross-sections by
<∼20%. The enhancement depends on the photon energy, the principal quantum number of
polarized shells and the ion charge. The influence of plasma temperature and density on
the electron structure of ions in local thermodynamic equilibrium plasmas is investigated.
Results for the iron and uranium ions in dense plasmas are in good agreement with previous
calculations. New calculations were performed for the tungsten ion in dense plasmas on
the basis of the average-atom model, as well as for the impurity tungsten ion in fusion
plasmas using the non-linear self-consistent field screening model. The temperature and
density dependence of the ion charge, level energies and populations are considered.
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1. Introduction

Experimental and theoretical investigation of tungsten becomes important due to its employment in
up-to-date tokamaks. In fusion reactors, the core plasma temperature is expected to be about 25 keV.
Tungsten is used as a wall material for the divertor in JET and for the first-wall in ASDEX Upgrade.
It is assumed that tungsten will be used as a plasma-facing material in the fusion reactor ITER due
to such features as high thermal conductivity, a high melting point, low erosion, low sputtering and
low tendency to trap tritium [1–3]. However, tungsten as a high-Z plasma impurity is an efficient
radiator at high temperature, and the tungsten influx should be controlled. Because of this, the tungsten
radiative characteristics have become the subject of study. Radiative recombination (RR) of tungsten
impurity ions with plasma electrons and the inverse process of photoionization of tungsten ions are
significant mechanisms that influence the ionization equilibria and the thermal balance of fusion plasmas.
Tungsten is also investigated for such devices as ASDEX Upgrade and EBIT to produce data for ITER.
In particular, the new active spectroscopy diagnostic of highly-charged ions is applied in studies at
EBIT [4]. The diagnostic involves accurate theoretical values of the RR cross-sections for different
tungsten ions. However, until recently, the systematic theoretical data on ionization-recombination
cross-sections and coefficients for heavy-element ions have been practically unavailable.

Therefore, our purpose was to elaborate a new database, including accurate values of partial and
total RR cross-sections (RRCS), partial photoionization cross-sections (PCS), partial and total RR rate
coefficients (RR rates) and radiated power loss rate coefficients (RPL rates) for the majority of tungsten
ions. We have performed fully relativistic calculations of RRCS and PCS using the Dirac–Fock (DF)
method taking into account all significant multipoles of the radiative field for a large number of the
heavy element impurity ions, among which are tungsten ions with closed shells, namely, W6+, W28+,
W38+, W46+, W56+, W64+, as well as W72+–W74+ [5]. Then, calculations of the RR rates for these
highly-charged tungsten ions, with the exception of W6+, have been carried out in a wide temperature
range [6]. Analysis of data for tungsten ions and a comparison of our results with available previous
calculations are described in [7]. Numerical results of RPL rates for the eight highly-charged tungsten
ions are also given in [7].

In the framework of the IAEA Coordinated Research Project (CRP) “Spectroscopic and Collisional
Data for Tungsten in Plasma from 1 eV to 20 keV”, we performed new calculations of the RR and
photoionization data for additional 54 tungsten ions in the charge range W6+–W71+ [8–10]. Accurate
relativistic values of the partial and total RRCS, partial PCS, as well as partial and total RR/RPL rates
were obtained. Total RRCS were calculated in the electron energy range from 1 eV–∼80 keV. Partial
PCS and RRCS were fitted by an analytical expression with five fit parameters in the wide photon energy
range for all electron states with principal quantum numbers n ≤ 10 and orbital momenta ` ≤ 4. Partial
RR and RPL rates for the same states and the associated total rates are presented for eleven values of
temperature in the range from 104 K–109 K. Values of RR and RPL rates for W6+ are given in this paper
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(see Tables A1 and A2 in Appendix). Now, the part of our database concerning tungsten contains data for
62 ions from the range W6+–W74+. The results were added to our extended unified database containing
the RR and photoionization data for about 170 heavy element impurity ions occurring in fusion plasmas.
New data were included in the IAEA Atomic and Molecular database [11].

With the context of CRP, we estimated also an impact of the target core electron polarization
following the RR process on RRCS outside the regions of the dielectronic recombination resonances,
i.e., the so-called polarization RR effect (PRR effect). Calculations were carried out in the framework
of the analytical “stripping” approximation using the relativistic DF electron wave functions. The
approximation was shown to provide a reasonable estimation of the PRR effect.

The effect was considered for the Fe XVII ion where a comparison with experimental data was
performed [12]. The experimental values of the electron-impact excitation cross-section (EIECS) were
determined in [13] by normalizing to measured intensities of the RR peaks, which were independently
normalized to the associated theoretical RRCS. The experimental EIECS turned out to be lower by∼25%
as compared to all available theoretical values. We showed that the problem with the determination
of absolute values of the measured EIECS was that only the RR channel was taken into account in
theoretical RRCS used for normalization, while the PRR channel was overlooked. The inclusion of the
PRR channel eliminates this puzzling discrepancy between experimental and theoretical EIECS.

Then, the PRR effect was assessed for the tungsten highly-charged ions [14]. It was obtained that
enhancement factor Fn changes from ∼15% to <∼1%. We showed that the factor Fn depends on the
photon energy, the principal quantum number of polarized shells and the ion charge, but is practically
independent of the final electron state in the RR process.

We studied also an electron structure of ions in local thermodynamic equilibrium (LTE) plasmas [15].
The influence of plasma temperature and density on the energy spectrum and level populations of an
ion in dense and fusion plasmas was considered. The code PLASMASATOM was designed on the
basis of our computer program complex RAINE (Relativistic atom. Interaction of electromagnetic
radiation and nucleus with atomic electrons) [16–18]. The electron wave functions were calculated
by the Dirac–Slater (DS) method with approximate consideration for the electron exchange. The code
is of the type of the Los Alamos INFERNO code [19,20] and PURGATORIOcode [21], as well as
more advanced PARADISIO code [22]. Our results concerning the ionization charges of iron and
uranium ions are shown to be in a good agreement with data of previous calculations. New results
were obtained for the impurity tungsten ion in fusion plasmas at low temperatures using the non-linear
self-consistent field screening model and for the dense tungsten plasmas in the wide temperature range
using the average-atom model.

2. Radiative Recombination and Photoionization Data

2.1. Method of Calculations

The exact relativistic treatment of the photoionization process having regard to all multipoles of the
radiative field leads to the following expressions for PCS in the i-th atomic subshell [5]:
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Here, k is the photon energy, L is the multipolarity of the radiative field, κ = (` − j)(2j + 1) is the
relativistic quantum number, j and ` are the total and orbital momentum of the electron and α is the fine
structure constant. Equation (1) is written per one electron. Relativistic units (h̄ = m0 = c = 1) are
used in equations throughout this text, unless otherwise specified. The reduced matrix element QΛL(κ)

has the form:
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`10`20 is the Clebsch–Gordan coefficient and A
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 is the recoupling

coefficient for four angular momenta. Radial integrals R1Λ and R2Λ are given by:

R1Λ =

∞∫
0

Gi(r)F (r)jΛ(kr)dr

R2Λ =

∞∫
0

G(r)Fi(r)jΛ(kr)dr (3)

where G(r) and F (r) are the large and small components of the Dirac electron wave function multiplied
by r and jΛ(kr) is the spherical Bessel function of the Λ-th order. The subscript i ≡ ni`iji ≡ niκi

relates to the bound electron state, while designations with no subscript relate to the continuum state.
The electron wave functions are calculated in the framework of the DF method where the exchange
electron interaction is included exactly both between bound electrons and between bound and free
electrons [18]. The bound and continuum wave functions are calculated in the self-consistent fields
(SCF) of the corresponding ions with N + 1 and N electrons, respectively.

The partial RRCS σ
(i)
rr for a recombining ion Wq+, as an example, can be expressed in terms of

PCS σ(i)
ph for the associated recombined ion W(q−1)+, which makes up as the recombining ion with one

additional electron in the i-th subshell with quantum numbers ni, `i and ji:

W (q−1)+ = W q+ + (ni`iji) (4)
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We use the relativistic relationship between PCS and RRCS, which may be written as [23]:

σ(i)
rr =

k2

2m0c2Ek + E2
k

q(i)σ
(i)
ph (5)

where Ek is the kinetic electron energy and q(i) is the number of vacancies in the i-th subshell prior
to recombination.

The relativistic RR rates α
(i)
rel(T ) can be found using the thermal average over the relativistic

RRCS/PCS provided the continuum electron velocity is described by the relativistic Maxwell–Jüttner
distribution. The associated distribution function f(E) normalized to unity is written as follows [24]

f(E)dE =
E(E2 − 1)1/2

θexp(1/θ)K2(1/θ)
× exp[−(E − 1)/θ]dE (6)

Here, E is the total electron energy in units of m0c
2, including the rest energy, θ = kβT/m0c

2 is the
characteristic dimensionless temperature, kβ is the Boltzmann constant and T is the temperature. The
modified Bessel function of the second order is denoted by K2.

Taking account of the relativistic distribution (Equation (6)) along with the relativistic relationship
(Equation (5)), the expression for the relativistic RR rates takes the factorized form:

α
(i)
rel(T ) =< vσ(i)

rr >= Frel(θ) · α(i)(T ) (7)

Here, v = (p/E)c is the electron velocity with the momentum p =
√
E2 − 1. The factor α(i)(T ) is

the usual RR rate with the non-relativistic Maxwell–Boltzmann distribution, which can be written as:

α(i)(T ) = (2/π)1/2c−2(m0kβT )−3/2q(i)

∞∫
εi

k2σ
(i)
ph(k)e(εi−k)/(kβT )dk (8)

where εi is the ionization threshold energy of the i-th subshell. According to Equation (7), to obtain
the relativistic RR rates, α(i)(T ), involving relativistic values of σ(i)

ph(k), should be multiplied by the
relativistic factor Frel(θ), which is written as:

Frel(θ) =

√
π

2
θ

/
K2(1/θ)exp(1/θ) (9)

This is just the factor that comes from the relativistic Maxwell–Jüttner distribution with allowance
made for relativistic relationship between PCS and RRCS. The factor has been obtained for the first time
by us [6,7,25]. It has been taken into consideration in all our calculations of RR/RPL rates.

Similarly, the expression for relativistic RPL rates can be found as:

γ
(i)
rel(T ) = 〈vkσ(i)

rr 〉 = Frel(θ) · γ(i)(T ) (10)

Here, γ(i)(T ) is the RPL rate obtained using the non-relativistic Maxwell–Boltzmann electron
distribution:

γ(i)(T )=(2/π)1/2c−2(m0kβT )−3/2q(i)

∞∫
εi

k3σ
(i)
ph(k)e(εi−k)/(kβT )dk (11)

Note once again that Equations (8) and (11) have to involve relativistic values of PCS. Numerical
methods used for calculations of integrals in Equations (8) and (11) are described at length in [7].
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2.2. Results and Discussion

The influence of relativistic, non-dipole and exchange effects on PCS, RRCS and RR/RPL rates
was considered in [7,25]. It is significant that relativistic and non-dipole effects are of importance
for highly-charged ions and at high energies. For example, as is evident from Figure 1, where the
factor Frel(θ) is displayed versus temperature, the relativistic Maxwell–Jüttner distribution decreases
RR/RPL rates considerably at a high temperature as compared with the commonly-used non-relativistic
Maxwell–Boltzmann distribution. For example, the decreasing is ∼25% at the highest temperature in
our calculations T = 109 K ≈ 86 keV.

Figure 1. The relativistic factor Frel for radiative recombination (RR) rates and radiated
power loss (RPL) rates.

On the contrary, the exact consideration of the electron exchange is of importance in the RR
and photoionization calculations for low-charged ions, especially at low energies. Partial RRCS for
recombination of W6+ with an electron captured in the 5d3/2, 5f5/2 and 6p1/2 states calculated by the
DF method having regard to the exact exchange (red curves) and by the DS method having regard to
the approximate exchange according to Slater (blue curves) [16] are presented in Figure 2. As is seen,
there is a significant difference between the two calculations especially at low electron energies and in
the vicinity of the Cooper minimum. The exact consideration of the electron exchange may change
partial RRCS and PCS by several times at electron energies Ek <∼ 1, 000 eV and up by ∼70% at high
electron energies.

Calculations were performed for the most stable tungsten ions. For each ion, the electron
configuration with the lowest total energy was found by the DF method taking into account the Breit
magnetic interaction between electrons. It should be noted that all ion configurations obtained by us
coincide with those presented in compilation [26], where the experimentally-derived energy levels are
used. The adopted electron configuration for 54 ions considered in the framework of CRP are listed in
Table 1 along with the values of total energies. For these ions, partial and total RRCS were calculated for
46 values of the electron energy Ek. The energies are logarithmic over the range 4 eV ≤ Ek <∼ 80 keV.
In addition, three values near the threshold, Ek = 1, 2, 3 eV, are included. Partial α(i)

rel(T ) and total
αtot(T ) RR rates, as well as partial γ(i)

rel(T ) and total γtot(T ) RPL rates were calculated for eleven values
of temperature in the range from 104 K–109 K, i.e., from 0.86 eV–86 keV.
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Figure 2. Partial RR cross-sections (RRCS) for RR of W6+ with an electron captured in
the 5d3/2, 5f5/2 and 6p1/2 states. Red, Dirac–Fock (DF) calculation with regard to the exact
electron exchange; blue, Dirac–Slater (DS) calculation with approximate consideration for
the exchange.

Table 1. Electron configurations adopted for tungsten ions along with total energies
calculated by the DF method taking into account the Breit magnetic interaction
between electrons.

Ion Configuration −Etot (eV) Ion Configuration −Etot (eV)

W6+ [Xe]4f6
5/2 4f

8
7/2 438,971.5 W42+ [Ar]3d4

3/2 3d
6
5/2 4s

2 4p2
1/2 407,964.5

W14+ [Kr]4d4
3/2 4d

6
5/2 4f

6
5/2 4f

6
7/2 5s

2
1/2 437,397.8 W43+ [Ar]3d4

3/2 3d
6
5/2 4s

2 4p1
1/2 405,819.8

W15+ [Kr]4d4
3/2 4d

6
5/2 4f

6
5/2 4f

5
7/2 5s

2
1/2 437,072.6 W44+ [Ar]3d4

3/2 3d
6
5/2 4s

2 403,613.8

W16+ [Kr]4d4
3/2 4d

6
5/2 4f

6
5/2 4f

5
7/2 5s

1
1/2 436,712.7 W45+ [Ar]3d4

3/2 3d
6
5/2 4s

1 401,260.9

W17+ [Kr]4d4
3/2 4d

6
5/2 4f

6
5/2 4f

5
7/2 436,327.5 W47+ [Ar]3d4

3/2 3d
5
5/2 394,795.1

W18+ [Kr]4d4
3/2 4d

6
5/2 4f

6
5/2 4f

4
7/2 435,907.9 W48+ [Ar]3d4

3/2 3d
4
5/2 390,616.1

W19+ [Kr]4d4
3/2 4d

6
5/2 4f

6
5/2 4f

3
7/2 435,448.6 W49+ [Ar]3d4

3/2 3d
3
5/2 386,307.9

W20+ [Kr]4d4
3/2 4d

6
5/2 4f

6
5/2 4f

2
7/2 434,948.3 W50+ [Ar]3d4

3/2 3d
2
5/2 381,869.1

W21+ [Kr]4d4
3/2 4d

6
5/2 4f

6
5/2 4f

1
7/2 434,405.8 W51+ [Ar]3d4

3/2 3d
1
5/2 377,298.0

W22+ [Kr]4d4
3/2 4d

6
5/2 4f

6
5/2 433,819.9 W52+ [Ar]3d4

3/2 372,593.2

W23+ [Kr]4d4
3/2 4d

6
5/2 4f

5
5/2 433,181.3 W53+ [Ar]3d3

3/2 367,673.9

W24+ [Kr]4d4
3/2 4d

6
5/2 4f

4
5/2 432,496.8 W54+ [Ar]3d2

3/2 362,615.4

W25+ [Kr]4d4
3/2 4d

6
5/2 4f

3
5/2 431,765.3 W55+ [Ar]3d1

3/2 357,416.2

W26+ [Kr]4d4
3/2 4d

6
5/2 4f

2
5/2 430,985.6 W57+ [Ne]3s2 3p2

1/2 3p
3
3/2 346,348.4

W27+ [Kr]4d4
3/2 4d

6
5/2 4f

1
5/2 430,156.8 W58+ [Ne]3s2 3p2

1/2 3p
2
3/2 340,497.7

W29+ [Kr]4d4
3/2 4d

5
5/2 428,149.4 W59+ [Ne]3s2 3p2

1/2 3p
1
3/2 334,522.0

W30+ [Kr]4d4
3/2 4d

4
5/2 426,971.7 W60+ [Ne]3s2 3p2

1/2 328,420.1
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Table 1. Cont.

Ion Configuration −Etot (eV) Ion Configuration −Etot (eV)

W31+ [Kr]4d4
3/2 4d

3
5/2 425,744.0 W61+ [Ne]3s2 3p1

1/2 321,835.9

W32+ [Kr]4d4
3/2 4d

2
5/2 424,465.6 W62+ [Ne]3s2 315,110.6

W33+ [Kr]4d4
3/2 4d

1
5/2 423,135.8 W63+ [Ne]3s1 308,108.4

W34+ [Kr]4d4
3/2 421,754.1 W65+ [He]2s2 2p2

1/2 2p
3
3/2 285,369.8

W35+ [Kr]4d3
3/2 420,299.3 W66+ [He]2s2 2p2

1/2 2p
2
3/2 269,426.1

W36+ [Kr]4d2
3/2 418,790.9 W67+ [He]2s2 2p2

1/2 2p
1
3/2 253,138.4

W37+ [Kr]4d1
3/2 417,228.1 W68+ [He]2s2 2p2

1/2 236,503.6

W39+ [Ar]3d4
3/2 3d

6
5/2 4s

2 4p2
1/2 4p

3
3/2 413,781.3 W69+ [He]2s2 2p1

1/2 218,086.5

W40+ [Ar]3d4
3/2 3d

6
5/2 4s

2 4p2
1/2 4p

2
3/2 411,897.7 W70+ [He]2s2 199,257.1

W41+ [Ar]3d4
3/2 3d

6
5/2 4s

2 4p2
1/2 4p

1
3/2 409,958.8 W71+ [He]2s1 179,889.0

To have a chance of getting partial cross-sections at any energies and presenting a great body of data in
compact form, PCS for all electron states with principal quantum numbers n ≤ 10 and orbital momenta
` ≤ 4 were fitted by the following analytical expression [27]:

σ
(n`j)
ph (k) = σ0

{[
(k/k0 − 1)2 + y2

w

](
k/k0

)0.5p−`−5.5 [
1 +

√
k/(k0ya)

]−p}
(12)

where σ0, k0, yw, p and ya are fit parameters. With Equation (12), the fit parameters were found by
minimizing the mean-square deviation of fitted PCS from calculated values with the simplex search
method. The fitting was performed in the following range of the photon energy:

εn`j + 1 eV ≤ k ≤ kmax (13)

where εn`j ≡ εi is the ionization threshold energy. The maximum fitting energy kmax is determined by
decreasing PCS σ(n`j)

ph (kmax) as compared with its maximum by five/six orders of magnitude. Usually,
kmax is of the order of a few hundred of εn`j for the s, p and d states and of a few tens of εn`j for the f
and g states. Consequently, the fit parameters and Equation (12) allow one to obtain PCS at any value of
k ≤ kmax. The associated value of RRCS is readily obtainable using Equation (5).

Calculations of partial PCS are performed with a numerical precision 0.1%. However, the accuracy
may be changed in the course of fitting. Therefore, the real root-mean-square (RMS) error δav was found
for each a state as follows:

δav =

√√√√ 1

M

M∑
m=1

[
σ

(n`j)
phc (km)− σ(n`j)

phf (km)

σ
(n`j)
phc (km)

]2

· 100% (14)

where M is the number of the energy points involved in the fitting and σ(n`j)
phc and σ(n`j)

phf are calculated
and fitted values of PCS, respectively. As a rule, the error is δav <∼ 2%. However, for comparatively
low-charged ions, the RMS error may be larger. For example, for the nf shells with n ≥ 5, as well as for
the ns and np shells with n ≥ 7 of W14+, the maximal error reaches ∼7%. The PCS fit parameters are
presented for recombined ions along with associated ionization threshold energies εn`j , maximum fitting
energies kmax and RMS errors δav (see [5,7–10]).



Atoms 2015, 3 94

Total RRCS σtot(Ek) are determined by summation of partial values over all electron states beginning
from the lowest open shell up to shells with the principal quantum number n = 20 as follows [5,7]:

σtot(Ek) =
20∑

n=nmin

−n∑
κ=∓1

σ(n`j≡nκ)
rr (Ek) (15)

where nmin along with a corresponding value of κ refers to the ground state. To obtain total RR/RPL
rates, summations over electron states are performed in the same manner.

A part of our calculations refers to the comparatively low-charged tungsten ions with charges
6 ≤ q <∼ 20. A peculiarity of the ions is that RRCS, PCS as well as RR/RPL rates may be bent or even
nonmonotonic functions of the energy. Such ions are more difficult for calculations and especially for
fitting. Figure 3 demonstrates total RRCS (3a), RR rates (3b) and RPL rates (3c) for eight representative
tungsten ions in the charge range 6 ≤ q ≤ 57. As is seen, curves σtot(Ek) and αtot(T ) for ions
with q <∼ 20 have noticeable bends at energies ∼100–300 eV. This tendency brings into existence the
minimum and maximum in σtot(Ek), explicit bends in αtot(T ) and into the oscillating curve γtot(T ) for
the low-charged tungsten ion W6+ (rose curves). The Ek-dependence of σtot and the T -dependence of
αtot for ions with q >∼ 20 become smooth curves. As is evident from Figure 3c, the behavior of total
RPL rates is nonmonotonic for ions W6+–W17+ and has noticeable bends up to W45+. Only for W57+,
the curve γtot(T ) becomes smooth.

Figure 3. Total RRCS (a), RR rates (b) and RPL rates (c) for representative tungsten ions.
Rose, W6+; black solid, W14+; red, W17+; green, W20+; blue, W23+; yellow, W35+; light
blue, W45+; black dashed W57+.

It is self-evident that such a structure of total cross-sections and rates for low-charged ions is caused
by the behavior of the associated partial cross-sections and rates. Displayed in Figure 4 are partial
RRCS (4a), RR rates (4b) and RPL rates (4c) for states contributing significantly to the relevant total
values for W6+. The oscillating and bent Ek/T -dependence of the 5d, 5f , 6s, 6p and other higher states
manifests itself in total RRCS and RR/RPL rates. Total RRCS are found by summation up to states with
n = 20 (see Equation (15)). For low-charged ions, like W6+, all nd and nf states with, at least, n <∼ 15

have a bent or oscillating structure. Certainly, the contributions of higher states are less. For example,
contributions of states with n = 6 are ∼3–4-times less than of states with n = 5, and contributions of
states with n = 7 are ∼2-times less than of states with n = 6, etc. However, these states contribute



Atoms 2015, 3 95

noticeably. It should be noted that increasing the fitting error δav mentioned above is just due to such
behavior of partial PCS and RRCS.

Figure 4. Partial RRCS (a), RR rates (b) and RPL rates (c) for the recombination of the
W6+ ion with an electron captured in various states. Black, the 5d3/2; red, the 5f5/2; green,
the 6s1/2; blue, the 6p1/2.

We would like to emphasize that RR and RPL rates for the ion W6+ were first obtained in this work.
Partial and total values of the rates are presented in Tables A1 and A2 in Appendix.

Although total RR rates were computed at eleven values of temperature, an analytical expression is
convenient to use in fusion studies. Therefore, total RR rates for tungsten ions under consideration were
fitted by the following expression [8,28]:

αtot(T ) = a

[√
T/T0 (1 +

√
T/T0)1.5−b(1 +

√
T/T1)2.5+b

]−1

(16)

where a, b, T0 and T1 are fit parameters. The temperature range of the fitting is from 104 K–109 K.
The RMS error was calculated using the expression that is analogous to Equation (14) with M = 11.
Usually, the RMS error is <∼1.5%. Note once more that the fitting becomes less accurate when the ion
charge decreases. The fit parameters for αtot(T ) together with the associated RMS error δav are presented
for all tungsten ions in [8–11].

3. Polarization Radiative Recombination Effect

3.1. Model Used in Calculations

To obtain more accurate values of RRCS, we estimated the impact on RRCS of the core electron
polarization following the RR process for highly-charged ions. It has been revealed previously (see [29]
and the references therein) that the standard RR probability may be enhanced due to virtual excitations
(polarization) of the ion core electrons by the Coulomb field of an incident electron. In the PRR process,
the photon is emitted not by the incident electron as in the RR process, but by core electrons. The RR
and PRR amplitudes are shown in Figure 5a,b, respectively.
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Figure 5. Feynman diagrams for amplitudes of the RR (a) and PRR (b) processes.

Here, thin lines describe the transition of the incident electron with the energy ε into the bound
f -state. Thick lines “c” relate to the target electrons and “v” to their virtual states. Dashed lines denote
the emitted photon with the energy ω. The Coulomb interaction is indicated with wave lines.

Since the initial continuum electron states ε and final bound states f in the RR and PRR amplitudes
are identical, there is quantum interference between them. At energies of dielectronic resonances, PRR
is indistinguishable from an interfering part of dielectronic recombination (DR), leading to the final
state with a single excited electron. Quantum interference between RR and DR for highly-charged ions
was first considered in [30]. In energy regions free from dielectronic resonances, PRR is the dominant
process, where its main effect is the enhancement of the RR background [31,32]. Such non-resonance
photon energy ranges for polarization of the n`j shells may be written as:

εns <∼ k <∼ ε(n−1)`maxjmax (17)

where εns is the ionization energy of the ns shell and ε(n−1)`maxjmax is the ionization energy of the most
outer subshell with the principal quantum number n − 1. Such energy intervals may be rather wide,
because ionization potentials are well separated for highly-charged ions. The total cross-section of the
RR and PRR processes for intervals defined by Equation (17) is written as:

σ(tot) = σrr + σint + σprr (18)

where σrr is the standard RRCS, σprr is the PRR cross-section and σint is the interference term. The term
σprr was shown in [29,31,32] to be much less than σrr, i.e., σprr/σrr � 1. Therefore, it is the interference
term σint, which is responsible for the RRCS enhancement. The contribution to the interference term
comes from all virtual electron excitations, including excitations into the continuum. Therefore, the
enhancement factor for RRCS due to PRR may be written as:

Fn =
σ(tot)

σrr

≈ 1 +
σint

σrr

(19)

where the subscript n denotes the principal quantum number of the polarized shell.
We used the “stripping approximation” for an analytical estimation of the enhancement factor Fn.

The “stripping” approximation is based on the assumption that outer electrons with the ionization energy
εout < k are considered as quasi-free. As a result, the enhancement factor is given by the expression [31]:

Fn ≈ 1 +
2Nout(r0)

k2r3
0

(20)
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where Nout is the number of the outer-shell electrons with the principal quantum number n within the
sphere of radius r0, which may be written in the relativistic case as:

Nout(r0) =

r0∫
0

∑
`j

Qn`j[G
2
n`j(r) + F 2

n`j(r)]dr (21)

Here, quantum numbers n`j refer to polarized electrons, and Qn`j is the occupation number of the
n`j shell. According to the quasi-classical theory of radiative transitions [33], the emission of photons
with the energy k by an electron is most effective in the turning point r0 of the classical trajectory for
which the angular electron velocity is close to k. Therefore, the distance r0 in Equation (21) may be
determined as a root of the equation, which is written in atomic units as follows:

Ek = −Z
r0

+ Uel(r0) +
k2r2

0

2
(22)

where Uel(r) is the electrostatic potential of ion electrons. We used the relativistic DF electron wave
functions and the potential Uel(r), because highly-charged ions of tungsten were considered.

To check the validity of this model, we compare enhancement factors Fn obtained within the
analytical “stripping” approximation by the use of the relativistic DF electron wave functions with the
exact non-relativistic Hartree–Fock values obtained in [31] for the Ni-like and Ne-like ions of Ru, Cd
and Xe. Factors F2 and F3 for the Ni-like ions are displayed in Figure 6. Here, the RR process with
a capture of an electron into the 4p state (4p1/2 in the relativistic case) is followed by the polarization
of ion electrons with n = 3 in the photon energy range I3s <∼ k <∼ I2p3/2 and with n = 2 in the range
k >∼ I2s. In the case of Xe26+, the only non-resonant interval is presented.

Figure 6. Enhancement factors F2 and F3 for the capture in the 4p state of the Ni-like ions.
Red, present calculations; blue, exact non-relativistic calculations [31]. Vertical lines denote
ionization energies obtained in the DF calculations. The lines relate from left to right to the
3d5/2 and 3d3/2 states merged together, the 3p3/2, 3p1/2, 3s and the 2p3/2, 2p1/2, 2s states.
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One can see that with exception of the narrow energy ranges close to ionization thresholds, our
approximate results (red curves) correlate rather well with exact calculations (blue curves). The
agreement becomes better when the ion charge increases. The relative difference between the exact
enhancement factor F (ex)

n from [31] and our approximate value F (appr)
n is written as:

∆(Fn) = [(F (ex)
n − F (appr)

n )/F (ex)
n ]× 100% (23)

The difference ∆(F3) does not exceed 6% for Ru16+, 5% for Cd20+ and 4% for Xe26+, except for
threshold ranges. For the highest-charged ion Xe26+, ∆(F3) equals ∼5% even at the very threshold.
The difference ∆(F2) is less than ∼4% in the range k > I2s for ions Ru16+ and Cd20+.

In Figure 7, the similar comparison of factors F2 is given for RR of Ne-like ions with an electron
captured in the 3s shell. As is seen, the difference ∆(F2) is small at any electron energy and
tends to decrease when the ion charge increases. Maximal ∆(F2) changes from 5.5% for Ru34+ to
3.8% for Xe44+.

Figure 7. The enhancement factor F2 for the capture in the 3s states of the Ne-like ions.
Red, present calculations; blue, the exact non-relativistic calculations [31]. Vertical lines
denote ionization energies of the 2p3/2, 2p1/2 and 2s states (from left to right) obtained by the
DF method.

3.2. PRR Effect for Fe XVII

We assessed the PRR effect for the Ne-like ion Fe XVII to explain the puzzling discrepancy between
experimental and theoretical values of EIECS [12]. Measurements of EIECS for dominant X-ray lines
from Fe XVII and RR of the beam electrons into the M-shell levels of the source ions were reported
in [13]. Absolute values of EIECS σEIE were determined by normalizing to the measured intensity of the
RR peaks, which were, in turn, independently normalized to theoretical RRCS σrr calculated by the DS
method for the 3s, 3p and 3d states at electron energy Ek= 964 eV. Experimental values of σEIE turned
out to be lower by ∼25% as compared to all available theoretical EIECS. We assumed that the problem
with the determination of absolute values of the measured σEIE by normalizing the measured intensity of
RR peaks to the theoretical σrr is that only the RR channel is taken into account in the σrr calculations,
while the PRR channel is overlooked.

To account for the PRR channel, we estimated the enhancement factor F2 using the “stripping”
approximation and the DF method. The resulting value of F2, on average, equals 1.22 for RR into



Atoms 2015, 3 99

Table 2. Values of RRCS in barns for RR of the ion Fe XVII with the capture
in the 3`j electron states calculated by the DF and DS methods at Ek = 964 eV.
∆ = [(σDS − σDF)/σDF]× 100%.

n`j σDF (barn) σDS (barn) ∆ (%)

3s1/2 33.9 35.6 5
3p1/2 + 3p3/2 84.7 89.4 6
3d3/2 + 3d5/2 29.5 31.6 7

the 3`j levels of the ion Fe16+. Comparison between our approximate and exact results for the Ne-like
ion Kr26+ [31] suggests the uncertainty in F2 to be '4%. Therefore, the corrected value for Fe16+ is
F2 = 1.26.

Besides, we verify by inspection relevant theoretical data used in [13] for normalizing the measured
intensity of RR peaks by comparison with our RRCS calculations by the DF method. The DF values of
RRCS σDF for the 3s, 3p and 3d states at electron energy Ek = 964 eV are listed in Table 2 together
with RRCS calculated by the DS method σDS and differences ∆ between the two calculations.

As is seen from Table 2, the DF method decreases RRCS, on average, by 6%, as compared to the DS
method. Thus, the correction associated with the inclusion of PRR channel (26%) along with the use
of the more appropriate DF method in the RRCS calculations (6%) increases RRCS and, consequently,
EIECS by ∼20%. This resolved the contradiction between experimental and theoretical values of σEIE.

3.3. PRR Effect for Highly-Charged Tungsten Ions

The agreement of our calculations with exact results [31] and, particularly, a good agreement between
experimental and theoretical values of EIECS resulting from including the PRR effect in the RRCS
calculations give good grounds for believing that the adopted approximation provide a reasonable
estimation of the RRCS enhancement for highly-charged tungsten ions. We consider the PRR effect
for tungsten ions with charges 24 ≤ q ≤ 64. The k-dependence of Fn is demonstrated in Figure 8
for representative tungsten ions. The enhancement factor F4 is presented in the photon energy range
I4s <∼ k <∼ I3d5/2; the factor F3 is given in the range I3s <∼ k <∼ I2p3/2; and the factor F2 for k >∼ I2s.
Electron configurations of tungsten ions along with the states in which an electron is captured in the RR
process are listed in Table 3.

As is evident from Figure 8, the enhancement factors F3 and F4 drop rapidly as the photon energy
increases (see Equation (20)). All factors decrease gradually when the ion charge increases. For example,
the maximum value of F3 decreases from 17% for W24+ to 11% for W46+ in spite of the fact that the 3s,
3p and 3d subshells are closed in both ions. The largest enhancement factor is F3 provided that the 3d

electrons are involved into polarization. The factor F4 involving the closed 4d subshells is not so large.
For example, the maximum value of F3 for W28+ equals ∼15%, while F4 equals ∼6%, both the 3d and
4d shells being closed. Polarization of the ns and np shells at n = 3, 4 results in a small effect, F3 and
F4 being less than 3%. For W56+ and W60+ where the 3s and 3p subshells are polarized, F3 <∼ 2.5%

and <∼1.1%, respectively. Calculations also showed that for W38+ and W42+ with polarization of the
4s and 4p shells, the maximum value of F4 is ∼2% and 1.3%, respectively. The factor F2 associated
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with polarization of the 2s and 2p shells decreases gradually from ∼7% down to ∼3% when the photon
energy increases. The factor also decreases with increasing the ion charge. It should be noted that, as is
shown in Figure 6, our values of F3 are overestimated at low energies as compared with the Hartree–Fock
calculations in [31]. Because of this, it is quite possible that enhancement factors F3 presented in Figure 8
for tungsten ions are also overestimated near the threshold.

Table 3. Electron configurations adopted for recombining tungsten ions given in Figure 8
and the electron state in which an electron is captured.

Ion Electron Configuration Final State

W24+ [Kr]4d4
3/2 4d

6
5/2 4f

4
5/2 4f5/2

W28+ [Kr]4d4
3/2 4d

6
5/2 5s1/2

W34+ [Kr]4d4
3/2 4d5/2

W46+ [Ar]3d4
3/2 3d

6
5/2 4s1/2

W56+ [Ar] 3d3/2

W64+ [Ne] 3s1/2

The difference between F3 and F4 involving the 3d and 4d shells, respectively, is associated with the
fact that the 3d density in the interval [0–r0] (see Equations (20)–(22)) is considerably larger than the 4d

density. Relativistic electron densities for these shells of W28+ are compared in Figure 9 at the photon
energies close to their ionization thresholds that determine different values of r0. In spite of the fact
that r0 = 0.183 a.u. for the 3d3/2 electron is less than r0 = 0.303 a.u. for the 4d3/2 electron in the
case displayed in Figure 9, it is evident that the density, and hence, the integral value Nout(r0), is much
larger for the 3d3/2 shell. In line with this, as is seen from Figure 8, the maximum value of F3 for W28+

considerably exceeds the maximum value of F4.

Figure 8. Enhancement factors Fn for RR of representative tungsten ions with an electron
captured in the lowest state. Green, F4; blue, F3; rose, F2. Vertical lines denote
ionization energies.
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As is clear from Table 3, enhancement factors in Figure 8 are presented for RR of tungsten ions with
an electron captured in the lowest ion state. However, there is only a slight difference between Fn for
a capture in various electron states within the approximation used here. The enhancement factors for
various final electron states in the photon energy ranges free from DR resonances are listed in Table 4.
As is seen, the difference between Fn at the electron capture in various states does not exceed 0.3%.

Figure 9. The electron density G2(r) + F 2(r) in the range [0 − r0] for the 3d3/2 (red) and
4d3/2 (blue) shells of the ion W28+. Vertical lines denote values of r0 for the 3d3/2 (red) and
4d3/2 (blue) shells.

Table 4. The percentage enhancement factor (Fn − 1) × 100% for RR of W28+ with an
electron captured in various states.

n k, keV 5s 4f5/2 5d3/2 6p1/2 5g7/2 7s

3
3.82 14.8 15.0 14.7 14.8 14.8 14.7
7.00 5.2 5.2 5.2 5.2 5.2 5.2
11.23 2.2 2.2 2.2 2.2 2.2 2.2

4
1.70 4.9 5.0 4.9 4.9 4.9 4.8
2.79 3.5 3.5 3.4 3.4 3.4 3.3

Consequently, we showed that the simple analytical “stripping” approximation provides a reasonable
estimation of the PRR enhancement factor for RRCS. The approximation was used for an assessment of
the PRR enhancement for RR with a capture of an electron in the 3`j levels of Fe XVII. Enhancement
factors for highly-charged tungsten ions were calculated. It was obtained that the most enhancement
occurs when the 3d3/2 and 3d5/2 electrons are involved in the polarization. The enhancement factor
decreases with increasing of the photon energy. The factor depends on the principal quantum number of
polarized shells and on the ion charge. This factor should be taken into account in the RRCS calculations.



Atoms 2015, 3 102

4. Ions in Dense Laser and Fusion Plasmas

4.1. Average-Atom Model

To study the electron structure of ions in LTE plasmas, the code PLASMASATOM has been designed
on the basis of our computer program complex RAINE [16–18]. The code PLASMASATOM is
based on the average-atom model. The model has been applied in the Los Alamos code INFERNO [19,20],
code PURGATORIO [21] and the more advanced code PARADISIO [22].

In the average-atom model, the plasma is taken to consist of the neutral Wigner–Seitz (WS)
cells [34,35]. Each of them contains a nucleus with a charge Z and Z bound and continuum electrons.
The bound wave function and its derivative coincide with those of a neighboring atom. The continuum
density is finite at the WS cell boundary and merges into the uniform free-electron density outside the
cell. Therefore, we treat an isolated neutral cell in a local thermodynamic average sense, neglecting the
interaction of the cell with other ones. The radius of the WS cell RWS is determined from the material
density and atomic weight.

In the following studies, we used the relativistic DS method where an electron is assumed to satisfy
the system of the Dirac central-field equations:

dG(r)

dr
= −κ

r
G(r) + [E + 1− V (r)]F (r)

dF (r)

dr
=

κ

r
F (r)− [E − 1− V (r)]G(r) (24)

Here, E is the total electron energy, and V (r) is the electron potential energy. The potential with the
exchange term in the local density approximation may be written as:

V (r) =

 −
αZ
r + α

r

[
r∫
0

4πr2ρ(r)dr + r
RWS∫
r

4πrρ(r)dr

]
− α

[
3
πρ(r)

]1/3

at r ≤ RWS

0 at r > RWS

(25)

where ρ(r) is the total electron density:

ρ(r) = ρb(r) + ρc(r) (26)

The bound density contribution ρb(r) is written as:

4πr2ρb(r) =
∑
i

(2ji + 1)fi(εi, µ)[G2
i (r) + F 2

i (r)] (27)

where the summation is over all bound states, and the Fermi–Dirac factor fi(εi, µ) is given by the
Fermi distribution:

fi(εi, µ) =

[
1 + exp

(
εi − µ
kβT

)]−1

(28)

Here, εi = 1 − E < 0 is the electron binding energy, µ is the chemical potential and kβT is the
temperature. The occupation number of the i-th level is determined by:

Ni = (2ji + 1)fi(εi, µ) (29)
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Bound electron wave functions are normalized so that:

RWS∫
0

[G2
i (r) + F 2

i (r)]dr = 1 (30)

The continuum density contribution ρc(r) has the form:

4πr2ρc(r) =

∞∫
0

dεf(ε, µ)
±∞∑
κ=±1

2|κ|[G2
κ(r) + F 2

κ (r)] (31)

Here, ε = E − 1 > 0, and the associated Fermi–Dirac factor f(ε, µ) is given by:

f(ε, µ) =

[
1 + exp

(
ε− µ
kβT

)]−1

(32)

Continuum wave functions are normalized per unit energy interval, so that:

limr→∞

[
G2
κ(r) +

E + 1

E − 1
F 2
κ (r)

]
=

1

π

√
E + 1

E − 1
(33)

The chemical potential µ appearing in Equations (28) and (32) is determined provided that the cell
with the radius RWS is electrically neutral:

F (µ) = Z − 4π

RWS∫
0

r2ρ(r)dr = 0 (34)

The sum over κ in Equation (31) converges slowly. Because of this, to eliminate the need of a direct
calculations of the sum, we transform Equation (31) by the method, which makes it possible to perform
the summation over κ not to infinity, but only for a few values of |κ| ≤ |κmax| [36]. In the case of
the DS method and for our notations, Equation (31) may be rearranged by the following way. Where
the influence of the potential V (r) is negligible, the continuum wave function normalized according to
Equation (33) may be written as:

Gκ(r) = Nεpr[cosδ j`(pr) + sinδ y`(pr)]

Fκ(r) =
κ

|κ|
Nεpr

√
E − 1

E + 1
[cosδ j¯̀(pr) + sinδ y¯̀(pr)] (35)

where δ(r) is the phase shift, p =
√
E2 − 1, Nε =

√
E + 1
πp is the normalization factor and j` and y` are

the spherical Bessel functions of the first and second kind, respectively.
Setting in Equations (35) δ = 0, we arrive to functions G(r) and F (r) for a free wave:

Gδ=0,κ(r) = Nεprj`(pr)

Fδ=0,κ(r) =
κ

|κ|

√
E − 1

E + 1
Nεprj¯̀(pr) (36)
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Further, we replace the summation over κ in Equation (31) by two sums:

±∞∑
κ=±1

2|κ|[G2
κ(r) + F 2

κ (r)] =

±|κmax|∑
κ=±1

2|κ|[G2
κ(r) + F 2

κ (r)] +
±∞∑

κ=±(|κmax|+1)

2|κ|[G2
κ(r) + F 2

κ (r)] (37)

In addition, to accelerate the sum convergence, we subtract from the real density (G2
κ + F 2

κ ) the
relevant density for a free wave (G2

δ=0,κ + F 2
δ=0,κ) in each κ-term of the first sum in the right part of

Equation (37). To compensate these terms and to include the second sum in Equation (37), we add the
total sum of such terms for ±1 ≤ κ ≤ ±∞. Then, the expression for ρc(r) takes the form:

ρc(r) =

∞∫
0

dεf(ε, µ)

{ ±|κmax|∑
κ=±1

|κ|
2π

[
G2
κ(r) + F 2

κ (r)

r2
−N2

ε p
2

(
j2
` (pr)+

E − 1

E + 1
j2

¯̀(pr)

)]

+
N2
ε p

2

2π

[ ±∞∑
κ=±1

|κ|j2
` (pr) +

E − 1

E + 1

±∞∑
κ=±1

|κ|j2
¯̀(pr)

]}
(38)

Terms in the second line of Equation (38) compensate the sum over ±1 ≤ κ ≤ ±|κmax| for a free
wave, which we have subtracted, as well as include approximately the sum over ±(|κmax| + 1) ≤ κ ≤
±∞. It is easy to check that:

±∞∑
κ=±1

|κ|j2
` (pr) =

∞∑
`=0

(2`+ 1)j2
` (pr) = 1 (39)

±∞∑
κ=±1

|κ|j2
¯̀(pr) =

∞∑
`=0

(2`+ 1)j2
` (pr) = 1 (40)

Taking into consideration Equations (33), (39) and (40), we arrive at the following expression for
the continuum density:

ρc(r) =

∞∫
0

dεf(ε, µ)

{±|κmax|∑
κ=±1

|κ|
2π

[
G2
κ(r) + F 2

κ (r)

r2
− (E + 1)p

π

(
j2
` (pr) +

E − 1

E + 1
j2

¯̀(pr)

)]
+
Ep

π2

}
(41)

It is instructive to evaluate how many terms have to be taken into account in sum over κ in
Equation (41). We present in Table 5 results obtained with various values of |κmax| for the iron ion
at temperature 100 eV and RWS = 2.672 a.u. Data of Table 5 demonstrate differences in a third or fourth
significant digit of the εi, Ni and µ magnitudes obtained in calculations having regard to |κmax| = 10

and |κmax| = 15. This means that the difference between the two calculations is less than 0.5%. We
checked that further increasing |κmax| has no influence on the results. Therefore, the value |κmax| = 10

is slightly lacking to give a high accuracy, while |κmax| = 15 is quite enough. Consequently, adoption of
Equation (41) for ρc(r) permits one to restrict |κmax| = 15, while the direct summation in Equation (31)
requires several tens of κ-terms to reach the same accuracy.

The integral over ε in Equation (41) is evaluated up to εmax, where εmax is chosen so that the
Fermi–Dirac factor is small:

f(εmax, µ) ≤ δε (42)
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where δε = 10−8. The integrand is calculated for 103 equidistant points ε in the interval [0 − εmax]. This
energy grid is used for calculation of the integral in Equation (41) by the Simpson method. Calculations
where the continuum density is based on Equations (31)–(42) will be refereed to as the DS-DS model.

Table 5. Binding energies εi, occupation numbers Ni, Nbound (see Equation (53) below),
the charge q and the chemical potential µ calculated for various |κmax| for the iron ion at
kβT = 100 eV and RWS = 2.672 a.u.

Shell
|κmax| = 10 |κmax| = 15

εi (eV) Ni εi (eV) Ni

1s −7,110.09 2.0000 −7,110.47 2.0000
2s −931.53 1.9986 −931.91 1.9986

2p1/2 −822.19 1.9957 −822.84 1.9957
2p3/2 −809.54 3.9903 −809.92 3.9903
3s −169.74 0.8141 −170.02 0.8122

3p1/2 −136.00 0.6576 −136.27 0.6559
3p3/2 −133.85 1.2963 −134.12 1.2928
3d3/2 −80.11 0.8752 −80.38 0.8725
3d5/2 −79.76 1.3094 −80.06 1.3054
4s −16.98 0.2594 −17.06 0.2580

Nbound 15.1966 15.1814
q 10.8015 10.8186

µ (eV) −207.37 −208.04

To simplify and significantly accelerate the computational procedure, we also elaborated another
version of code PLASMASATOM, where ρc is evaluated within the framework of the semi-classical
Thomas–Fermi (TF) approximation according to [34]. In this case, a continuum density is written in
atomic units as follows:

ρc(r) =
(2mkβT )3/2

2π2
I1/2(b, x) (43)

Here, I1/2(b, x) is the incomplete Fermi integral:

I1/2(b, x) =

∞∫
b

y1/2dy

1 + exp(y − x)
(44)

where:
x = {µ− [V (r)− Vex(r)]}/kβT (45)

b = −[V (r)− Vex(r)]/kβT (46)

and Vex(r) is the exchange term of the potential V (r). Calculations where the continuum density is based
on Equations (43)–(46) will be refereed to as the DS-TF model.

In the both models, the SCF values of V (r), ρ(r) and µ are found by the iterative method. The process
starts from calculations for a neutral atom by the DS method without regard for a temperature. The initial
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potential V 0(r) constructed from the DS bound wave functions allows us to determine the initial density.
Two initial values of the chemical potential µ0 and µ′0 have to be specified so that:

F (µ0)F (µ′0) < 0 (47)

Further, on the n-th iteration, we calculate a root of Equation (34) µn. Knowledge of a new value of
µn permits finding Fermi–Dirac factors fi(εi, µ) and f(ε, µ), then new densities ρb(r), ρc(r) and ρ(r),
which permit, in turn, to determine a new potential V n+1(r). The iterative process is accomplished when
the following condition is fulfilled:

maxr|V n+1(r)− V n(r)| < δV (48)

The accuracy of SCF calculations is chosen as δV = 10−5.
In a general case, the iterative process is unstable. Because of this, the initial potential for the

(n+ 1)-th iteration V (n+1)i(r) is determined using the initial and final potentials for previous n-th and
(n− 1)-th iterations in the following manner. If the iteration number (n+ 1) is odd, the initial potential
is determined as:

V (n+1)i(r) = AV ni(r) + (1− A)V nf (r) (49)

where the mixing coefficient A is prescribed within the limits 0.2 ≤ A ≤ 0.9.
If the iteration number (n + 1) is even, the initial potential is calculated using the following scheme

(see [16] and the references therein):

V (n+1)i(r) =


V nf (r) for B(r) < 0

V (r) for 0 ≤ B(r) ≤ A

AV ni(r) + (1− A)V nf (r) for B(r) > A

(50)

Here:

B(r) =
V nf (r)− V (r)

V nf (r)− V ni(r)
(51)

and:

V (r) =
V (n−1)i(r)V nf (r)− V ni(r)V (n−1)f (r)

[V nf (r)− V (n−1)f (r)]− [V ni(r)− V (n−1)i(r)]
(52)

If the iterative process diverges just the same, the mixing coefficient A should be increased.

4.2. Comparison with Previous Calculations

Our results were verified by comparing with calculations [34] for iron. The bound, continuum and
total densities for the iron ion in plasmas with the normal density at kβT = 100 eV are shown in
Figure 10.

As is seen from Figure 10, our results (red curves) are very close to the results from [34] (blue curves).
The slight differences occur in ρb in ranges of maxima and minima where electron wave functions are
usually very sensitive to all details of calculations and in ρc near the very WS boundary.
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Next, we compare our final results for the iron ion with calculations [34]. Presented in Table 6 are the
spectrum of binding energies εi, level populations Ni (Equation (29)), the chemical potential µ, the ion
charge q and a number of bound electrons Nbound in the resulting ion:

Nbound =
∑
i

Ni = Z − q (53)

Our data were obtained using the DS-TF and DS-DS models. One can see that the results calculated
by the DS-TF model correlate with data from [34], where the same model has been adopted. Our binding
energies are in excellent agreement with those from [34]. The largest difference for the binding energy
of the valence 4s level is likely to be due to different boundary conditions. However, the difference
in level occupation numbers reaches ∼12%. In addition, data of Table 6 allow one to compare results
obtained within the DS-DS and DS-TF models. As is seen, there is a minor difference between the two
calculations. The largest difference (∼5%) occurs for the binding energy of the valence 4s shell. Values
of µ obtained in the two models differ by <∼0.3%, and values of the charge q only by ∼0.2%. It should
be noted that all levels and the chemical potential become lower, as well as the charge increases when
passing from the DS-TF model to the DS-DS one.

Figure 10. The bound and continuum electron densities (a) and the total density (b)
calculated using the DS-Thomas–Fermi (TF) model for the iron ion in laser plasmas at
temperature kβT = 100 eV and the normal density 7.87 g/cm3, RWS = 2.67 a.u. Red,
present calculations; blue, calculations [34].

As is well known, the DS and TF continuum densities diverge drastically, the DS density ρc(r) being
an oscillating function, while the TF ρc(r) is a quite smooth function. Nevertheless, the results obtained
using the DS-DS and DS-TF models are very close to each other.

In addition, we compare our ion charge q for iron in three cases listed in Table 7 with mean ionization
stages < q > obtained by eight groups from Los Alamos, Livermore and with the data from Opacity
Project (OPAC collaboration). The results have been calculated with different eleven codes to prepare
LULI (Laboratoire pour L’Utilization des Lasers Intenses) 2010 experiments [37]. The difference in
the mean ionization stage obviously implies the discrepancy between the frequency-dependent opacity.
Therefore, the data are of importance for astrophysics.
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As is shown in Figure 11, our values of q (red asterisks versus codes with numbers 12 and 3) correlate
well with previous calculations. Besides, the data of Table 7 show that our results are in excellent
agreement with the best results [37] of < q > from OP. The largest difference is 4%.

Figure 11. Iron mean ionization stages < q > obtained by various codes. Codes used are:
1: FLYCHK (NLTE ); 2: FLYCHK (LTE); 3: OP (·) and present results (?); 4: STA ;
5: AA -ZP ; 6: AA-ZM ; 7: CASSANDRA ; 8: OPAS ; 9: SCO(rel.) ; 10: SCO-RCG ;
11: LEDCOP ; 12: present calculations (?), PLASMASATOM. Codes 5, 6 and 12 are
LTE average atom ionization models. Figure is taken from [37] with our results added
for comparison.

Table 6. Spectrum of binding energies εi, level populations Ni, Nbound, the charge q and the
chemical potential µ for the iron ion at kβT = 100 eV and RWS = 2.67 a.u.

Shell

Present Calculations Calculations [34]

DS–DS DS–TF DS–TF

εi (eV) Ni εi (eV) Ni εi (eV) Ni

1s −7,110.47 2.0000 −7,110.04 2.0000 −7,109.00 2.0000
2s −931.91 1.9986 −931.50 1.9986 −930.76 1.9988

2p1/2 −822.84 1.9957 −822.16 1.9957 −821.40 1.9964
2p3/2 −809.92 3.9903 −809.51 3.9903 −808.75 3.9919
3s −170.02 0.8122 −169.77 0. 8147 −169.96 0.9087

3p1/2 −136.27 0.6559 −136.03 0. 6581 −136.19 0.7453
3p3/2 −134.12 1.2928 −133.88 1.2973 −134.04 1.4707
3d3/2 −80.38 0.8725 −80.08 0.8757 −80.14 1.0131
3d5/2 −80.06 1.3054 −79.76 1.3103 −79.81 1.5159
4s −17.06 0.2580 −16.14 0.2577 −9.55 0.2868

Nbound 15.1814 15.1985 15.9277
q 10.8186 10.8015 10.0723

µ (eV) −208.04 −207.27 −188.27
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Table 7. Comparison of ionization stages q for Fe obtained in present calculations with mean
ionization stages < q > from OP [38].

Case kβT (eV) ρ (mg/cm3) q, Present < q >, OP

1 15.3 5.48 5.58 5.35
2 27.3 3.39 8.69 8.65
3 38.5 2.63 11.22 11.2

We also compared results for the heavy uranium ion with those obtained in [22] using code
PARADISIO. In Figure 12, the number of bound electrons Nbound (Equation (53)) versus a temperature
is presented for the uranium ion in plasmas with the density ρ = 0.01 g/cm3 (Nion=2.5 ·1019 cm−3). As is
seen, our calculation (red curve) is in excellent agreement with the previous results (blue dashed curve)
in the wide temperature range 0.1 eV≤ kβT ≤ 10 keV.

Figure 12. A number of bound electrons Nbound(kβT ) for the uranium ion. Red
solid, present calculations; blue dashed, results obtained in [22]. The plasma density is
ρ = 0.01g/cm3.

4.3. Results for Tungsten Ions

New calculations were performed within the DS-DS model for the tungsten ion in laser plasmas
of two densities ρ1 = 1.93 g/cm3 (the ion density Nion = 6.3 × 1021cm−3) and ρ2 = 0.01g/cm3

(Nion = 3.3 × 1019cm−3). The spectrum of energies εi and level occupation numbers Ni are given in
Table 8 for the tungsten ion in plasmas with densities ρ1 and the associated value of RWS = 6.339 a.u.
at temperatures 100 eV and 1,000 eV, as well as for ρ2 and RWS = 36.635 a.u. at temperature 100 eV.
Comparing data for ρ1 at different temperatures, it may be noted that the ion compresses when the
plasmas temperature increases, i.e., the levels become deeper and the outer shell occupation numbers
decrease. As is seen from comparison data for various densities at kβT = 100 eV, the ion compresses
when the plasmas density decreases. As is seen from Table 8, high electron states contribute significantly
at the higher density and lower temperature. For example, the 5f , 5g, 6s, 6p, 6d, 6f and 7d levels have
occupation numbers from ∼0.1–∼0.5 in the case of ρ1 and kβT = 100 eV. Occupation numbers for all
levels decrease with the temperature increasing and the density decreasing.
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The temperature dependence of Nbound is presented in Figure 13 for the two densities. The blue
curve refers to ρ1 and the red curve to ρ2. A comparison between the two curves gives an idea of the
plasmas density dependence. As is seen, the red and blue curves are not too different, even though the
associated densities differ by ∼200-times. Increasing of a plasmas density shifts the curve Nbound(kβT )

to higher temperatures.

Figure 13. A number of bound electrons Nbound(kβT ) for the tungsten ion in plasmas of
various densities. Blue, ρ1 = 1.93 g/cm3; red, ρ2 = 0.01 g/cm3.

Table 8. Spectrum of energies εi and level populations Ni for the tungsten ion in plasmas
with densities ρ1 = 1.93 g/cm3, RWS = 6.339 a.u. and ρ2 = 0.01 g/cm3, RWS = 36.635 a.u.

ρ (g/cm3) 1.93 0.01

kβT (eV) 100 1000 100

Shell εi (eV) Ni εi (eV) Ni εi (eV) Ni

1s −69,722.54 2.0000 −73,417.13 2.0000 −70,164.51 2.0000
2s −12,372.45 2.0000 −15,833.79 1.9999 −12,814.53 2.0000

2p1/2 −11,855.50 2.0000 −15,375.08 1.9998 −12,297.85 2.0000
2p3/2 −10,501.65 4.0000 −13,987.02 3.9982 −10,943.37 4.0000
3s −3,166.07 2.0000 −6,021.08 0.8729 −3,599.70 2.0000

3p1/2 −2,935.18 2.0000 −5,847.31 0.7885 −3,369.64 2.0000
3p3/2 −2,641.56 4.0000 −5,486.22 1.2483 −3,074.47 4.0000
3d3/2 −2,250.91 4.0000 −5,240.91 1.0478 −2,686.26 4.0000
3d5/2 −2,187.19 6.0000 −5,156.31 1.4756 −2,622.14 6.0000
4s −943.61 1.9899 −2,992.50 0.0722 −1,341.97 1.9793

4p1/2 −846.60 1.9737 −2,917.45 0.0672 −1,244.62 1.9461
4p3/2 −771.68 3.8903 −2,777.18 0.1173 −1,164.57 3.7675
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Table 8. Cont.

ρ (g/cm3) 1.93 0.01

kβT (eV) 100 1000 100

Shell εi (eV) Ni εi (eV) Ni εi (eV) Ni

4d3/2 −611.08 3.5074 −2,675.58 0.1063 −1,003.80 3.0579
4d5/2 −596.36 5.1603 −2,641.73 0.1542 −987.58 4.4041
4f5/2 −393.86 2.6872 −2,559.40 0.1423 −788.06 1.6374
4f7/2 −390.46 3.5159 −2,545.99 0.1873 −784.05 2.1200
5s −340.19 0.6434 −1,699.91 0.0204 −664.83 0.1973

5p1/2 −301.56 0.4875 −1,661.98 0.0196 −622.67 0.1340
5p3/2 −279.82 0.8237 −1,593.62 0.0367 −594.56 0.2057
5d3/2 −217.64 0.4890 −1,542.96 0.0349 −525.70 0.1060
5d5/2 −213.51 0.7072 −1,526.14 0.0514 −519.92 0.1503
5f5/2 −141.06 0.3649 −1,485.69 0.0494 −438.97 0.0678
5f7/2 −140.15 0.4824 −1,478.91 0.0654 −437.49 0.0891
5g7/2 −81.19 0.2749 −1,453.32 0.0638 −372.22 0.0467
5g9/2 −81.09 0.3432 −1,449.76 0.0795 −371.92 0.0582
6s −138.52 0.1188 −1,033.83 0.0105 −393.88 0.0145

6p1/2 −121.22 0.1008 −1,012.24 0.0103 −372.63 0.0117
6p3/2 −112.55 0.1857 −974.08 0.0198 −359.21 0.0205
6d3/2 −84.58 0.1420 −945.29 0.0193 −324.12 0.0145
6d5/2 −82.89 0.2096 −935.78 0.0286 −321.26 0.0211
6f5/2 −50.56 0.1531 −912.78 0.0280 −280.20 0.0140
6f7/2 −50.17 0.2034 −908.90 0.0371 −279.43 0.0185
7s −52.94 0.0522 −647.85 0.0072 −256.64 0.0037

7p1/2 −44.39 0.0481 −634.47 0.0071 −244.52 0.0033
7p3/2 −40.42 0.0925 −611.16 0.0138 −237.03 0.0061
7d3/2 −26.66 0.0808 −593.27 0.0136 −216.78 0.0050
7d5/2 −25.89 0.1203 −587.41 0.0202 −215.14 0.0073

Nbound 56.8484 16.9143 48.1074
q 17.1516 57.0857 25.8926

µ (eV) −414.80 −6,276.71 −886.06

To study tungsten impurities in fusion plasmas, we use the non-linear SCF screening model [39,40]
for the calculation of the screening impurity potential. In the model, impurities in plasmas are considered
as neutral pseudo-atoms. RWS is assumed to be large. The chemical potential µ is found before the SCF
calculations on the basis of the prescribed values of the plasmas electron density Ne and temperature
kβT using the following expression [40]:

Ne =

√
2

π2
(kβT )3/2

∞∫
0

y1/2dy

1 + exp(y − µ/kβT )
(54)
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We consider the typical fusion plasmas density Ne = 1014cm−3 and the low temperature range
1 eV ≤ kβT ≤ 5 eV. The SCF potential V (r) and the total electron density ρ(r) are found by the iterative
process described above. The DS-DS model is used.

In Figure 14, the ion charge q (14a) and the chemical potential µ (14b) are displayed. As is evident,
values of the charge and chemical potential change noticeably when the temperature increases. In
Table 9, we present spectra obtained for the tungsten ion at various values of temperature. The case
kβT = 0 refers to the usual DS calculations for a free neutral tungsten atom. One can see that the
increasing of temperature causes all binding energies of inner levels to become lower by approximately
the same value. Outer levels also become lower, relatively to a greater extent. Consequently, the energy
spectrum depends considerably on a plasma temperature, the changes being different for inner and outer
levels. Calculations showed that only valence 5d3/2 and 5d5/2 states have large occupation numbers,
while other excited states involved in calculations with regard to a temperature, for example 5f , 6d, 6f ,
7d, 7s and 7p, have zero occupation numbers. The 6s and especially 6p states have very small occupation
numbers (<∼ 0.1), which decrease when temperature increases.

Figure 14. The charge q (a) and the chemical potential µ (b) for the impurity tungsten ion
in fusion plasmas.

The data of Table 9 demonstrate different results for the free neutral atom (kβT = 0) and for
calculations with regard to a temperature. Nevertheless, this was just calculations for a free neutral
atom, which were adopted as the initial data, as for instance in [41], where the non-LTE calculations in
the collisional radiative model were performed. The average ionization stage < q > = 2.07 was obtained
in [41] for the tungsten ion at the electron density Ne = 1014 cm−3 and kβT = 2 eV. It was also shown
that the largest contributions were made by transitions 5d36s1 → 5d36p1 and 5d4 → 5d36p1. This means
that the 5d, 6s and 6p states are of primary importance in [41] as in our calculations. We obtained the
ionization stage q = 3.45. Therefore, we believe that our results could be used as initial data in more
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sophisticated calculations rather than data for a free neutral atom. This may considerably change the
results of these calculations.

Table 9. Spectrum of energies εi and level populations Ni for the tungsten ion at low
temperatures (kβT = 2, 3 eV) as well as for a free neutral tungsten atom (kβT = 0).

kβT (eV) 0.0 2.0 3.0

Shell εi (eV) Ni εi (eV) Ni εi (eV) Ni

1s –69,312.37 2.0 –69,346.96 2.0000 –69,367.14 2.0000
2s –11,956.28 2.0 –11,990.83 2.0000 –12,011.08 2.0000

2p1/2 –11,439.93 2.0 –11,474.51 2.0000 –11,494.76 2.0000
2p3/2 –10,088.80 4.0 –10,123.37 4.0000 –10,143.62 4.0000
3s –2752.49 2.0 –2786.88 2.0000 –2806.91 2.0000

3p1/2 –2521.35 2.0 –2555.74 2.0000 –2575.79 2.0000
3p3/2 –2229.29 4.0 –2263.68 4.0000 –2283.70 4.0000
3d3/2 –1837.59 4.0 –1872.00 4.0000 –1892.07 4.0000
3d5/2 –1774.01 6.0 –1808.42 6.0000 –1828.49 6.0000
4s –566.71 2.0 –601.09 2.0000 –621.06 2.0000

4p1/2 –470.77 2.0 –505.15 2.0000 –525.13 2.0000
4p3/2 –402.85 4.0 –437.23 4.0000 –457.21 4.0000
4d3/2 –244.71 4.0 –279.10 4.0000 –299.07 4.0000
4d5/2 –232.20 6.0 –266.58 6.0000 –286.56 6.0000
4f5/2 –34.17 6.0 –68.50 6.0000 –88.39 6.0000
4f7/2 –31.93 8.0 –66.26 8.0000 –86.13 7.9992
5s –78.80 2.0 –112.82 2.0000 –132.23 2.0000

5p1/2 –50.29 2.0 –84.06 2.0000 –103.16 2.0000
5p3/2 –40.40 4.0 –73.90 4.0000 –92.67 4.0000
5d3/2 –5.10 4.0 –36.20 1.2052 –53.32 0.5788
5d5/2 –35.20 1.2392 –52.15 0.6149
6s –6.35 2.0 –31.99 0.0996 –45.45 0.0242

6p1/2 –25.14 0.0034 –37.44 0.0017
6p3/2 –23.47 0.0030 –35.25 0.0016

Nbound 74.0 70.5504 69.2204
q 0.0 3.4496 4.7796

µ (eV) –37.89 –58.66

5. Conclusions

• Our unified database on the RR and photoionization data was supplemented with partial and total
RRCS and RR/RPL rates, as well as partial PCS for 54 tungsten ions from the range W6+–W71+.
Fully relativistic calculations were performed by the DF method. All multipoles of a radiative
field were taken into account. Total RRCS were calculated in the electron energy range from
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1 eV–∼80 keV. Partial PCS were fitted in a wide photon energy range by the analytical expression
with five fit parameters for all electron states with n ≤ 10 and ` ≤ 4. The fitting accuracy is
usually better than 2%. Partial RRCS may be found by the use of the fit parameters and the
relationship between RRCS and PCS. The partial and total RR/RPL rates were calculated in the
temperature range from 104 K–109 K. Total RR rates were fitted by an analytical expression with
four fit parameters. All results were added to the IAEA electronic database. The data are required
for fusion studies, for example at the reactor ITER and devices ASDEX Upgrade and EBIT.
• The influence of the core electron polarization following the RR process on RRCS was investigated

for the ion Fe XVII, as well as highly-charged tungsten ions. The inclusion of the PRR channel
was shown to eliminate the puzzling discrepancy between experimental and theoretical values of
EIECS for dominant X-ray lines from Fe XVII. It was found for highly-charged tungsten ions
that the PRR enhancement factor may reach more than 15%. The factor depends on the photon
energy, the principal quantum number of polarized shells and the ion charge. However, the factor
is practically independent of the state into which an electron is captured in the RR process.
• The effect of plasmas temperature and density on the electron structure of an ion in LTE plasmas

was studied. For this purpose, the code PLASMASATOM was created on the basis of the
average-atom model. The bound and continuum electron densities are calculated by the relativistic
DS method. Our calculations for the iron and uranium ions in dense plasmas are in good agreement
with previous results. In particular, our calculations of the Fe ion charge q correlate well with the
mean ionization stages <q> obtained by collaboration OPAC using various codes. Our values of
q are in excellent agreement with the best data of <q> from the Opacity Project, the difference
being in the range from 0.2%–4%.
• New calculations for the tungsten ion in dense plasmas demonstrated the temperature and

dense dependence of the energy spectrum and level populations in a wide temperature range.
Calculations were also performed for the impurity tungsten ion in fusion plasmas at low
temperature. Comparison of the results with previous non-LTE calculations for tungsten impurity
atoms allow one to arrive at the conclusion that our results could be used as initial data in more
sophisticated calculations rather than data for a free neutral atom. This may change the results of
these calculations.
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Appendix

Table A1. Radiative recombination rate coefficients for W6+ in cm3 × s−1. Presented for a
value to its right is the decimal order, e.g., 8.42–13 = 8.42 × 10−13.

Shell
log10 T (K)

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0

5d3/2 8.42−13 4.54−13 2.26−13 9.38−14 3.30−14 2.23−14 2.36−14 1.57−14 6.29−15 1.68−15 3.16−16
5d5/2 1.14−12 6.12−13 3.02−13 1.24−13 4.44−14 3.26−14 3.43−14 2.22−14 8.64−15 2.26−15 4.17−16
5f5/2 2.02−13 1.01−13 4.22−14 1.34−14 8.99−15 1.21−14 8.25−15 3.08−15 7.78−16 1.53−16 2.38−17
5f7/2 2.59−13 1.29−13 5.35−14 1.70−14 1.23−14 1.66−14 1.12−14 4.15−15 1.04−15 2.04−16 3.17−17
5g7/2 1.10−13 5.35−14 2.17−14 6.90−15 1.74−15 3.75−16 7.35−17 1.36−17 2.40−18 4.02−19 5.90−20
5g9/2 1.38−13 6.73−14 2.73−14 8.67−15 2.19−15 4.73−16 9.26−17 1.71−17 3.03−18 5.07−19 7.44−20

6s1/2 1.83−14 1.07−14 6.75−15 4.79−15 3.94−15 3.62−15 3.35−15 2.77−15 1.89−15 9.96−16 3.73−16
6p1/2 6.71−14 3.63−14 1.85−14 8.55−15 3.91−15 2.61−15 2.66−15 2.41−15 1.52−15 6.50−16 1.84−16
6p3/2 8.69−14 4.73−14 2.46−14 1.26−14 7.61−15 6.71−15 6.61−15 5.19−15 2.86−15 1.08−15 2.74−16
6d3/2 2.66−13 1.43−13 7.02−14 2.86−14 9.62−15 5.72−15 5.87−15 3.92−15 1.57−15 4.22−16 7.92−17
6d5/2 3.78−13 2.02−13 9.87−14 3.97−14 1.35−14 8.59−15 8.75−15 5.66−15 2.22−15 5.81−16 1.07−16
6f5/2 1.78−13 9.01−14 3.82−14 1.22−14 6.13−15 7.32−15 5.02−15 1.89−15 4.78−16 9.38−17 1.47−17
6f7/2 2.30−13 1.16−13 4.88−14 1.55−14 8.23−15 9.96−15 6.75−15 2.52−15 6.33−16 1.24−16 1.93−17
6g7/2 1.25−13 6.11−14 2.48−14 7.89−15 1.99−15 4.29−16 8.40−17 1.55−17 2.75−18 4.60−19 6.76−20
6g9/2 1.57−13 7.65−14 3.11−14 9.90−15 2.50−15 5.40−16 1.06−16 1.95−17 3.46−18 5.80−19 8.51−20

7s1/2 8.09−15 4.82−15 3.10−15 2.20−15 1.72−15 1.48−15 1.34−15 1.10−15 7.48−16 3.95−16 1.48−16
7p1/2 3.97−14 2.12−14 1.05−14 4.60−15 1.96−15 1.20−15 1.17−15 1.05−15 6.64−16 2.83−16 8.01−17
7p3/2 5.18−14 2.76−14 1.38−14 6.59−15 3.66−15 3.04−15 2.94−15 2.31−15 1.28−15 4.82−16 1.22−16
7d3/2 1.49−13 7.95−14 3.88−14 1.56−14 5.12−15 2.84−15 2.84−15 1.89−15 7.60−16 2.04−16 3.83−17
7d5/2 2.16−13 1.15−13 5.56−14 2.21−14 7.28−15 4.30−15 4.25−15 2.75−15 1.08−15 2.82−16 5.21−17
7f5/2 1.32−13 6.70−14 2.86−14 9.14−15 4.06−15 4.48−15 3.06−15 1.15−15 2.92−16 5.74−17 8.98−18
7f7/2 1.72−13 8.67−14 3.67−14 1.17−14 5.41−15 6.07−15 4.10−15 1.53−15 3.86−16 7.56−17 1.18−17
7g7/2 1.09−13 5.31−14 2.16−14 6.88−15 1.74−15 3.75−16 7.34−17 1.36−17 2.41−18 4.04−19 5.96−20
7g9/2 1.37−13 6.65−14 2.71−14 8.64−15 2.18−15 4.71−16 9.23−17 1.71−17 3.02−18 5.06−19 7.43−20

8s1/2 4.31−15 2.62−15 1.73−15 1.23−15 9.27−16 7.73−16 6.84−16 5.60−16 3.80−16 2.01−16 7.51−17
8p1/2 2.65−14 1.39−14 6.67−15 2.82−15 1.14−15 6.58−16 6.24−16 5.59−16 3.53−16 1.50−16 4.25−17
8p3/2 3.49−14 1.83−14 8.82−15 4.00−15 2.09−15 1.66−15 1.58−15 1.24−15 6.85−16 2.59−16 6.56−17
8d3/2 9.38−14 4.99−14 2.41−14 9.59−15 3.10−15 1.65−15 1.61−15 1.07−15 4.32−16 1.16−16 2.17−17
8d5/2 1.38−13 7.31−14 3.50−14 1.37−14 4.45−15 2.50−15 2.43−15 1.57−15 6.13−16 1.61−16 2.97−17
8f5/2 9.63−14 4.88−14 2.09−14 6.68−15 2.77−15 2.90−15 1.97−15 7.44−16 1.89−16 3.71−17 5.80−18
8f7/2 1.25−13 6.34−14 2.69−14 8.56−15 3.68−15 3.92−15 2.64−15 9.88−16 2.49−16 4.88−17 7.62−18
8g7/2 8.83−14 4.31−14 1.76−14 5.59−15 1.41−15 3.04−16 5.95−17 1.11−17 1.99−18 3.40−19 5.09−20
8g9/2 1.11−13 5.40−14 2.20−14 7.01−15 1.77−15 3.82−16 7.48−17 1.38−17 2.47−18 4.19−19 6.21−20

9s1/2 2.57−15 1.59−15 1.06−15 7.57−16 5.59−16 4.55−16 3.98−16 3.25−16 2.21−16 1.16−16 4.35−17
9p1/2 1.88−14 9.71−15 4.55−15 1.87−15 7.30−16 4.03−16 3.73−16 3.33−16 2.10−16 8.96−17 2.53−17
9p3/2 2.50−14 1.29−14 6.04−15 2.64−15 1.32−15 1.01−15 9.53−16 7.45−16 4.11−16 1.55−16 3.93−17
9d3/2 6.32−14 3.35−14 1.61−14 6.33−15 2.02−15 1.04−15 1.01−15 6.70−16 2.70−16 7.23−17 1.36−17
9d5/2 9.38−14 4.95−14 2.35−14 9.13−15 2.92−15 1.59−15 1.52−15 9.81−16 3.84−16 1.01−16 1.86−17
9f5/2 7.12−14 3.60−14 1.54−14 4.93−15 1.96−15 1.97−15 1.34−15 5.05−16 1.28−16 2.52−17 3.94−18
9f7/2 9.29−14 4.69−14 1.99−14 6.33−15 2.60−15 2.66−15 1.79−15 6.70−16 1.69−16 3.31−17 5.17−18
9g7/2 7.02−14 3.43−14 1.40−14 4.43−15 1.12−15 2.41−16 4.74−17 8.92−18 1.61−18 2.72−19 4.00−20
9g9/2 8.78−14 4.29−14 1.75−14 5.56−15 1.41−15 3.03−16 5.95−17 1.11−17 1.99−18 3.36−19 4.94−20

10s1/2 1.65−15 1.04−15 7.04−16 4.99−16 3.63−16 2.90−16 2.52−16 2.06−16 1.39−16 7.35−17 2.75−17
10p1/2 1.39−14 7.10−15 3.25−15 1.30−15 4.95−16 2.65−16 2.42−16 2.15−16 1.35−16 5.77−17 1.63−17
10p3/2 1.86−14 9.46−15 4.33−15 1.83−15 8.83−16 6.58−16 6.18−16 4.83−16 2.66−16 1.01−16 2.55−17
10d3/2 4.50−14 2.37−14 1.13−14 4.40−15 1.39−15 7.05−16 6.75−16 4.48−16 1.80−16 4.83−17 9.07−18
10d5/2 6.71−14 3.52−14 1.66−14 6.38−15 2.02−15 1.07−15 1.02−15 6.55−16 2.56−16 6.73−17 1.24−17
10f5/2 5.38−14 2.72−14 1.16−14 3.70−15 1.43−15 1.40−15 9.49−16 3.58−16 9.10−17 1.79−17 2.80−18
10f7/2 7.04−14 3.54−14 1.50−14 4.76−15 1.90−15 1.89−15 1.27−15 4.74−16 1.20−16 2.35−17 3.66−18
10g7/2 5.60−14 2.72−14 1.11−14 3.52−15 8.88−16 1.94−16 3.80−17 7.03−18 1.24−18 2.08−19 3.05−20
10g9/2 6.98−14 3.40−14 1.39−14 4.41−15 1.11−15 2.41−16 4.76−17 8.94−18 1.60−18 2.69−19 3.96−20

Total 2.13−11 7.34−12 2.66−12 8.81−13 3.04−13 2.11−13 1.77−13 1.03−13 4.22−14 1.30−14 3.03−15
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Table A2. Radiated power loss rate coefficients for W6+ in Watts × cm3. Presented for a
value to its right is the decimal order, e.g., 8.75–30 = 8.75 × 10−30.

Shell
log10 T (K)

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0

5d3/2 8.75−30 4.84−30 2.57−30 1.22−30 6.56−31 1.76−30 4.78−30 6.47−30 4.82−30 2.20−30 6.48−31
5d5/2 1.16−29 6.42−30 3.39−30 1.59−30 9.11−31 2.62−30 6.82−30 8.88−30 6.37−30 2.78−30 7.80−31
5f5/2 1.03−30 5.42−31 2.46−31 9.77−32 2.70−31 8.47−31 1.04−30 6.32−31 2.32−31 5.90−32 1.08−32
5f7/2 1.32−30 6.92−31 3.11−31 1.26−31 3.76−31 1.16−30 1.40−30 8.39−31 3.05−31 7.67−32 1.39−32
5g7/2 3.62−31 1.88−31 8.70−32 3.36−32 1.09−32 3.14−33 8.09−34 1.83−34 3.62−35 6.37−36 9.54−37
5g9/2 4.53−31 2.36−31 1.09−31 4.23−32 1.37−32 3.96−33 1.02−33 2.31−34 4.57−35 8.05−36 1.20−36

6s1/2 1.60−31 9.75−32 6.88−32 6.78−32 1.10−31 2.60−31 6.77−31 1.56−30 2.87−30 3.95−30 3.76−30
6p1/2 4.98−31 2.79−31 1.57−31 9.19−32 7.78−32 1.79−31 5.82−31 1.37−30 2.04−30 1.94−30 1.21−30
6p3/2 6.17−31 3.49−31 2.02−31 1.39−31 1.82−31 4.87−31 1.35−30 2.65−30 3.38−30 2.76−30 1.44−30
6d3/2 1.39−30 7.85−31 4.37−31 2.22−31 1.31−31 4.03−31 1.16−30 1.60−30 1.20−30 5.50−31 1.62−31
6d5/2 1.96−30 1.10−30 6.07−31 3.04−31 1.90−31 6.16−31 1.69−30 2.25−30 1.63−30 7.14−31 2.01−31
6f5/2 5.91−31 3.20−31 1.55−31 6.26−32 1.51−31 4.98−31 6.28−31 3.86−31 1.43−31 3.63−32 6.65−33
6f7/2 7.62−31 4.12−31 1.98−31 8.03−32 2.08−31 6.73−31 8.36−31 5.08−31 1.86−31 4.68−32 8.49−33
6g7/2 2.91−31 1.55−31 7.55−32 3.09−32 1.06−32 3.18−33 8.48−34 1.95−34 3.91−35 6.91−36 1.04−36
6g9/2 3.64−31 1.95−31 9.47−32 3.88−32 1.33−32 4.01−33 1.07−33 2.47−34 4.93−35 8.72−36 1.31−36

7s1/2 3.97−32 2.52−32 1.98−32 2.25−32 3.97−32 9.84−32 2.63−31 6.14−31 1.13−30 1.56−30 1.49−30
7p1/2 1.72−31 9.76−32 5.60−32 3.42−32 3.09−32 7.50−32 2.50−31 5.91−31 8.85−31 8.44−31 5.26−31
7p3/2 2.17−31 1.23−31 7.25−32 5.20−32 7.33−32 2.08−31 5.89−31 1.17−30 1.50−30 1.23−30 6.42−31
7d3/2 4.95−31 2.86−31 1.67−31 9.04−32 5.69−32 1.88−31 5.51−31 7.69−31 5.80−31 2.66−31 7.85−32
7d5/2 7.14−31 4.10−31 2.37−31 1.26−31 8.43−32 2.90−31 8.12−31 1.09−30 7.90−31 3.47−31 9.76−32
7f5/2 3.09−31 1.73−31 8.84−32 3.72−32 8.75−32 2.97−31 3.81−31 2.36−31 8.75−32 2.23−32 4.10−33
7f7/2 4.00−31 2.23−31 1.13−31 4.77−32 1.20−31 4.01−31 5.05−31 3.09−31 1.13−31 2.86−32 5.20−33
7g7/2 1.89−31 1.04−31 5.33−32 2.30−32 8.21−33 2.56−33 7.00−34 1.67−34 4.14−35 1.20−35 2.71−36
7g9/2 2.37−31 1.31−31 6.69−32 2.89−32 1.03−32 3.23−33 8.84−34 2.06−34 4.15−35 7.35−36 1.10−36

8s1/2 1.38−32 9.24−33 8.06−33 1.03−32 1.94−32 4.91−32 1.33−31 3.11−31 5.76−31 7.95−31 7.57−31
8p1/2 7.64−32 4.38−32 2.58−32 1.65−32 1.56−32 3.90−32 1.32−31 3.13−31 4.69−31 4.48−31 2.79−31
8p3/2 9.80−32 5.61−32 3.37−32 2.52−32 3.74−32 1.09−31 3.14−31 6.29−31 8.07−31 6.59−31 3.45−31
8d3/2 2.19−31 1.30−31 7.97−32 4.57−32 3.03−32 1.05−31 3.11−31 4.35−31 3.29−31 1.51−31 4.46−32
8d5/2 3.20−31 1.89−31 1.14−31 6.44−32 4.54−32 1.62−31 4.59−31 6.18−31 4.49−31 1.97−31 5.56−32
8f5/2 1.68−31 9.72−32 5.24−32 2.30−32 5.46−32 1.89−31 2.45−31 1.52−31 5.65−32 1.44−32 2.64−33
8f7/2 2.19−31 1.26−31 6.72−32 2.95−32 7.50−32 2.55−31 3.24−31 1.99−31 7.32−32 1.85−32 3.36−33
8g7/2 1.20−31 6.85−32 3.66−32 1.65−32 6.12−33 1.96−33 5.55−34 1.74−34 7.36−35 3.25−35 8.79−36
8g9/2 1.51−31 8.57−32 4.59−32 2.08−32 7.71−33 2.47−33 6.91−34 1.83−34 6.29−35 2.35−35 2.63−36

9s1/2 5.82−33 4.14−33 4.00−33 5.63−33 1.10−32 2.82−32 7.67−32 1.80−31 3.34−31 4.61−31 4.39−31
9p1/2 3.90−32 2.27−32 1.38−32 9.15−33 9.00−33 2.30−32 7.80−32 1.86−31 2.79−31 2.67−31 1.66−31
9p3/2 5.07−32 2.94−32 1.82−32 1.41−32 2.18−32 6.48−32 1.88−31 3.77−31 4.84−31 3.96−31 2.07−31
9d3/2 1.10−31 6.73−32 4.35−32 2.62−32 1.82−32 6.48−32 1.93−31 2.72−31 2.05−31 9.43−32 2.79−32
9d5/2 1.63−31 9.90−32 6.29−32 3.72−32 2.73−32 1.01−31 2.86−31 3.86−31 2.81−31 1.24−31 3.48−32
9f5/2 9.73−32 5.80−32 3.28−32 1.49−32 3.62−32 1.27−31 1.65−31 1.03−31 3.84−32 9.80−33 1.79−33
9f7/2 1.27−31 7.53−32 4.22−32 1.92−32 4.97−32 1.71−31 2.19−31 1.35−31 4.97−32 1.26−32 2.27−33
9g7/2 7.74−32 4.55−32 2.55−32 1.20−32 4.57−33 1.50−33 4.82−34 1.74−34 4.56−35 8.84−36 1.36−36
9g9/2 9.68−32 5.70−32 3.19−32 1.50−32 5.75−33 1.89−33 5.70−34 1.84−34 4.83−35 9.51−36 1.48−36

10s1/2 2.82−33 2.13−33 2.26−33 3.41−33 6.84−33 1.77−32 4.83−32 1.14−31 2.11−31 2.91−31 2.77−31
10p1/2 2.20−32 1.30−32 8.15−33 5.60−33 5.68−33 1.47−32 5.02−32 1.20−31 1.80−31 1.72−31 1.07−31
10p3/2 2.90−32 1.71−32 1.08−32 8.68−33 1.38−32 4.17−32 1.21−31 2.44−31 3.13−31 2.56−31 1.34−31
10d3/2 6.13−32 3.86−32 2.61−32 1.64−32 1.18−32 4.29−32 1.29−31 1.81−31 1.37−31 6.29−32 1.86−32
10d5/2 9.11−32 5.70−32 3.80−32 2.34−32 1.78−32 6.67−32 1.91−31 2.58−31 1.88−31 8.26−32 2.32−32
10f5/2 5.95−32 3.66−32 2.16−32 1.02−32 2.52−32 8.96−32 1.17−31 7.31−32 2.72−32 6.95−33 1.27−33
10f7/2 7.79−32 4.77−32 2.79−32 1.31−32 3.46−32 1.20−31 1.55−31 9.54−32 3.52−32 8.89−33 1.62−33
10g7/2 5.12−32 3.11−32 1.82−32 8.85−33 3.45−33 1.09−33 2.59−34 5.11−35 9.22−36 1.55−36 2.28−37
10g9/2 6.39−32 3.89−32 2.28−32 1.11−32 4.35−33 1.47−33 5.11−34 1.53−34 3.38−35 6.11−36 9.19−37

Total 4.12−29 2.20−29 1.15−29 5.55−30 4.82−30 1.41−29 3.05−29 4.02−29 3.65−29 2.60−29 1.52−29
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