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1. Introduction

The subject of invariants in physics, even restricted to the narrower field of atomic
physics, is far too broad for any complete survey. The aim of the present article was
accordingly rather more limited: attempting to review a a selection of works, starting from
the Kepler problem and then considering the cases of electric and magnetic fields.

The German mathematician Noether showed, in 1918, that any invariance in a con-
tinuous group of transformations, of spatio-temporal nature or not, with n parameters,
implies the existence of n conservation laws [1,2]. As Curie’s principle (the symmetries of
the causes are to be found in the effects) and Wigner’s theorem (specifying how physical
symmetries such as rotations, translations, as well as charge, parity, and time-reversal
symmetries manifest themselves on the Hilbert space of states), Noether’s theorem allows
one to exploit the knowledge of the continuous symmetries of a system. Noether showed
that, conversely, a conservation law is never accidental, but derives from the existence of a
continuous symmetry. It is worth mentioning that the importance of Noether’s contribution
to science was only recognized around 1960.

In the case of mechanics problems, “dynamical” invariants are revealed, which cannot
be associated with any continuous space–time symmetry and are, therefore, linked to the
particular analytical properties of the interactions responsible for the motion. The first exam-
ple of dynamical symmetry was discovered in 1710 by Hermann, who demonstrated [3,4]
with the help of Bernoulli [5] that the motion of a mass in a Keplerian potential is character-
ized by two invariants: the angular momentum, which determines the plane of motion, and
a second vector—called today the Laplace–Runge–Lenz vector—which fixes the orientation
of the major axis of the elliptical orbit in its plane and whose modulus is proportional
to the eccentricity of the orbit. Laplace exploited the existence of this vector [6], which
was rediscovered by Hamilton [7], described by Runge in a didactic work [8], and finally,
used by Lenz [9] and Pauli [10] to find the quantum properties of the hydrogen atom [11],
characterized by a specific degeneracy of the energy levels called Coulomb degeneracy. In
1873, Bertrand showed that the orbit of a particle placed in central potential does not close
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on itself, except if the potential is Keplerian or harmonic [12]: in the first case, there is a
unique privileged direction in the plane of the orbit, which is precisely that of the Laplace
vector; in the second case, there are two privileged directions, which are perpendicular and
constitute the proper directions of the invariant tensor. According to Noether’s theorem, a
dynamical symmetry is associated with the Laplace vector: it is that of the SO(4) group
(with six parameters) of rotations in four-dimensional space, obtained by Fock [13] and
Bargmann [14]. The symmetry of the isotropic harmonic oscillator in three dimensions was
discovered in 1940 by Jauch and Hill [15] and is that of the SU(3) group (with eight param-
eters) of unitary matrices 3× 3 of determinant + 1. More than twenty years later, Redmond
found an invariant in the presence of an electric field [16]. It is worth mentioning that
there was a more-general finding that the Kepler system and the tri-dimensional harmonic
oscillator (stricto sensu, the proper terminology would be “parabolic oscillator”, “harmonic”
applying rather to oscillations, but since this expression is widespread in the literature, we
kept it throughout the paper.) with specific rational frequency ratios (1, 2 and 1/2) have
common symmetries (which possess the combined Kepler/harmonic oscillator system as
well), which are recognized in various fields of physics. In this framework, Alhassid et al.
studied the spectrum of hydrogen subject to a certain class of perturbations, including the
van der Waals and the diamagnetic interactions, and found a universal adiabatic invariant
for this class [17]. Blümel et al. studied chaos for laser-cooled ions in a Paul trap. They
discovered that the two-, three-, and four-ion crystals are stable until the Mathieu instability
is reached. The authors proposed a simple model of radiofrequency heating, as well as a
classification of the ion dynamics into four regimes: the crystal, the quasi-periodic regime,
the chaotic regime, and the Mathieu regime [18]. Simonović and Nazmitdinov showed that
a magnetic field gives rise to dynamical symmetries of a three-dimensional axially symmet-
ric two-electron quantum dot with a parabolic confinement. The authors pointed out that
such symmetries manifest themselves as near-degeneracies in the quantum spectrum at
particular values of the magnetic field [19].

There are two main versions of the so-called two-center problem. The first one is the
motion of an electron in the field of two stationary Coulomb centers of charges Z and Z′

separated by a distance R, which is one of the most-fundamental problems in quantum
mechanics. The second one is the motion of a planet in the gravitational field of two
stationary stars of generally different masses, which is one of the most-important problems
in celestial mechanics. Kryukov and Oks [20,21] derived a supergeneralized Runge–Lenz
vector whose projection on the internuclear or interstellar axis is conserved.

A dyon is a hypothetical particle with both electric and magnetic charges. When its
electric charge is zero, the particle is usually referred to as a magnetic monopole. Many
grand unified theories predict the existence of both magnetic monopoles and dyons. Dyons
were first proposed as a phenomenological alternative to quarks [22]. Schwinger extended
the Dirac quantization condition [23] to the dyon and predicted the existence of a particle
with the properties of the J/ψ meson prior to its discovery in 1974. There is much interest
in the problem of bound states of a fermion in the field of a fixed Dirac monopole.

In Section 2, we introduce the Runge–Lenz vector in classical mechanics and discuss
the Bertrand theorem. In Section 3, in the framework of the SO(4) rotation group, the
quantum mechanical analog to the Lenz vector is obtained and applied to the determination
of the energy levels of the hydrogen atom and their degeneracy. In Section 4, the analogy
between the Kepler and harmonic potentials is discussed and the Laplace invariant tensor
is introduced. The Redmond invariant in the presence of an electric field is introduced in
Section 5, and the Kryukov–Oks supergeneralized Runge–Lenz vector for the two-center
problem is presented in Section 6. The Landau–Avron–Sivardière approach of the case of a
magnetic field is discussed in Section 7, as well as the treatment of the hydrogen atom in
crossed electric and magnetic fields. Finally, the dyon–dyon system is briefly evoked in
Section 8 in the framework of the McIntosh–Cisneros (MIC)–Kepler problem. The linear
Stark effect in the MIC–Kepler problem describing the interaction of charged particles with
Dirac’s dyon is considered.
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2. The Kepler Problem: The Runge–Lenz Vector and Bertrand’s Theorem

Let us consider a mass m subject to the (attractive) Kepler potential of a mass M. The
reduced mass being µ = mM/(m + M), the potential reads

U(r) = −α

r
= −G

Mm
r

= −G
µ(m + M)

r
= −κ

µ

r
. (1)

with α = κµ > 0 and G the Cavendish gravitational constant. One, thus, has κ = G(m+ M).
The potential has spherical symmetry and is independent of time. Therefore, kinetic energy
and angular momentum have no explicit time dependence. We also know that, whatever
the initial conditions, the orbit is an ellipse for the bound states (negative energy), a parabola
for the zero-energy states, and a hyperbola for the positive-energy states.

2.1. The Runge–Lenz, Eccentricity, and Hamilton Vectors

As mentioned in the Introduction, the so-called Runge–Lenz vector was discovered
by Hermann, transmitted by Bernoulli, used intensively by Laplace, exhumed by Runge
at the beginning of the 20th Century, and used by Lenz and Pauli in quantum mechanics
in order to study the hydrogen atom. Although the vector should, therefore, be called the
Hermann–Bernoulli–Laplace–Runge–Lenz vector [4,5,24], we will, in the following, for
simplicity and because it is the most-common way it is referred to in the literature, retain
the denomination “Runge–Lenz” vector. The Runge–Lenz vector reads [25,26]

A = v ∧ L− α
r
r
= v ∧ L− αur, (2)

where v is the velocity of our system (mass m), L = µr ∧ v the angular momentum, and
ur = r/r the radial unit vector. Throughout the paper, the symbol ∧ denotes the vector
product (note that the “cross” symbol is often used to represent the vector product. Since
we use the cross symbol as a usual product in some equations or for the direct product of
Lie algebras, to avoid confusion, we will use the “wedge” symbol throughout the paper,
which corresponds to the French convention. It was introduced by Italian mathematicians
Burali-Forti and Marcolongo in 1908 [27]): a1

a2
a3

 ∧
 b1

b2
b3

 =

 a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

. (3)

There are other invariant vectors that are related to the Runge–Lenz vector.
In celestial mechanics, the eccentricity vector of a Kepler orbit [28,29] is the dimen-

sionless vector with the direction pointing from apoapsis to periapsis (respectively, farthest
and nearest points in the orbit of a planetary body about its primary body to the center
of force) and with a magnitude equal to the orbit’s scalar eccentricity. For Kepler orbits,
the eccentricity vector is a constant of motion. It is of great interest in the analysis of
almost-circular orbits, as perturbing (non-Keplerian) forces on an actual orbit will cause the
osculating eccentricity vector to change continuously as opposed to the eccentricity, and the
argument of periapsis parameters for which eccentricity zero (circular orbit) corresponds
to a singularity. The eccentricity vector is

e =
v ∧ L

α
− r
|r| , (4)

which follows immediately from the vector identity:

v ∧ (r ∧ v) = (v · v)r− (r · v)v. (5)
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One has
e =

A
µκ

=
1
κ
(p ∧ L)− ur, (6)

with p = µv. The Runge–Lenz vector A is directed from the center of force towards the
periapsis, making it easy to visualize (Lenz and Pauli called it the “Achsenvektor”) [30].
However, its physical dimension (SI units kg m3 s−2) does not endow it with any familiar
meaning; the alternative invariant A/m is hardly better. If e is used instead of A in the
derivation of the orbit equation, a simple equation appears, with an immediate physical
meaning. This is why it is often considered that e should be preferred over A for didactic
applications. In the literature, the only “eccentricity-like” vector referred to seems to be the
one defined by Hamilton, L ∧A/L2: it is co-linear to e, but has the dimension of a velocity
or of a momentum according to the alternative definition of [31]. It does not coincide
with a particular value of v or µv and, thus, has no special significance. More importantly,
while the equations of motion have been obtained with all vectors, each one has its own
mathematical simplicity (complexity) and physical meaning. Finally, the eccentricity vector
naturally arises in solving the dynamical equation at an elementary level, without resorting
to the Lagrangian formalism or group theory. The eccentricity vector also only arises in the
case of an inverse-square law of force.

The vector product of L and A is an invariant. It is, thus, possible to deduce the
invariant Hamilton S vector:

S =
1
L2 L ∧A = v− α

L2 L ∧ ur. (7)

The Laplace vector indicates the direction of the periapsis. In the same way, the Hamilton
vector is parallel to the velocity of the system at the periapsis [32–35].

2.2. The Bertrand Theorem

The Bertrand theorem [24,36–46] states that the orbit is closed only if the potential is
in 1/r or harmonic r2. In the Keplerian case, there are two privileged directions: the one
relating the attractive center to the periapsis of the orbit and the perpendicular direction.
The two directions play different roles. This justifies the existence of the vector A. As
mentioned above, the vector A is parallel to the big axis of the ellipse and indicates the
direction of the periapsis. In the case of a harmonic (r2) potential, there are also two
privileged directions. The Binet formulas are, with u = 1/r, as follows:

• First Binet formula:

v2 = C2

[
u2 +

(
du
dθ

)2
]

, (8)

• Second Binet formula:

ar = −C2u2
[

u +
d2u
dθ2

]
, (9)

where ar is the acceleration and C the areal constant (twice the areal velocity, Kepler’s
second law). Let us consider a force proportional to rn [47,48]:

ar = −κrn (10)

and a small perturbation ε to the circular trajectory of radius r0 (corresponding to d2u/dθ2 = 0):

C2/r0 = κrn+2
0 . (11)

One has
1
r
=

1
r0
(1 + ε), (12)
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where ε� 1. Using the second Binet formula, one obtains

d2ε

dθ2 = −(n + 3)(ε + βε2 + γε3) (13)

where we have set 2β = −(n + 2) and 6γ = (n + 2)(n + 1). We have to solve an equation
describing a non-linear oscillation of variable ε. For that purpose, we can resort to a
perturbative expansion of the solution and evaluate the apsidal angle of the orbits in the
neighborhood of the circular one. At first order of approximation, in the vicinity of the
circular trajectory, one has

d2ε1

dθ2 = −(n + 3)ε1 (14)

and, thus,
ε1 = M cos(pθ), (15)

with p2 = n + 3. At the next (second) order, we obtain

d2ε2

dθ2 = −(n + 3)
{

ε2 − β
M2

2
[1 + cos(2pθ)]

}
(16)

yielding
ε2 = M cos(pθ) + M2(G + A cos(2pθ)), (17)

with G = (n + 2)/4 and A = −(n + 2)/12. Finally, at the third order, we look for solutions
of the type

ε3 = M cos(qθ) + M2[G + A cos(2pθ)] + M3B cos(3pθ) (18)

satisfying the equation if and only if (the quantities n and q used in this section must not be
confused with the parabolic quantum numbers (see Appendix A), and integer p must not
be confused with the modulus of momentum vector p):

q2 = (−n + 3)
[

1− M2

12
(n− 1)(n + 2)

]
(19)

where we have set
G = (n + 2)/4 (20)

as well as
B = (n + 2)(n + 3)/96. (21)

The solution at third order, around the circular trajectory, is of the form ε = M cos(qθ) +
O(M2), where

q =
√

n + 3
[

1− M2

24
(n + 2)(n− 1)

]
(22)

and the apsidal angle, equal to π/q, cannot be commensurable with π ∀M � 1, except
if n = 1 or n = −2. Therefore, the orbits of a point subject to a central force proportional
to the inverse of the power n of the distance between the active center and the point are
closed if and only if n = 1 or n = −2.

3. The Runge–Lenz Vector in Quantum Mechanics
3.1. Construction of the SO(4) Rotation Group Quantum Mechanical Analog to the Runge–Lenz
Vector

The resemblance between the Kepler problem of planetary motion and the charged
particle in the Coulombic potential motivated us to understand symmetries possessed by
such systems. The Hamiltonian can be written formally as

H =
p2

2µ
− α

r
, (23)
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where µ is the reduced mass Mm/(M + m), α = GMm = Gµ(M + m) = κµ (for Newton
potential, see above), and α = Ze2 (for the Coulomb potential with 4πε0 set to unity).
With r, p, and L as already established quantum mechanical operators, the classical Lenz
vector A can be translated directly into quantum mechanics (vector M). There is only a bit
of subtlety involved in its construction. We must take care in defining the cross-product
(see Equation (3). We notice that p ∧ L 6= −L ∧ p. The classical Runge–Lenz operator is
not Hermitian. Following the derivation of [49], we redefine M as a symmetric average.
The quantum mechanical operator M, the extension of the classical Runge–Lenz vector, is
defined as follows

M =
1

2µ
(p ∧ L− L ∧ p)− αur. (24)

As expected, this vector commutes with the Hamiltonian, [M, H] = 0, and defines a
conserved quantity in the quantum mechanical analog of the classical Kepler problem. We
find that

L.M = M.L = 0, (25)

and
M2 =

2H
µ

(L2 + h̄2) + α2 = 0. (26)

From here, we look to understand how this new commuting operator relates to the physical
system and all the existing conserved quantities. We examine the system in light of well-
established geometrical symmetries.

3.2. The Algebra of the M, L Generators

The three components of M, like the three components of L, can be treated as gen-
erators of some infinitesimal transformations. With the goal of exploring the algebraic
structure of these new generators, we work out their commutation relations (there are
thirty-six in all). Some are known; indeed,

[
Li, Lj

]
are given by[

Li, Lj
]
= ih̄εijkLk (27)

for i, j, k = 1, 2, 3, where εijk is the Levi-Civita symbol:

εijk =

∣∣∣∣∣∣
δi1 δi2 δi3
δj1 δj2 δj3
δk1 δk2 δk3

∣∣∣∣∣∣ (28)

and δij the Kronecker symbol. The others are

[Mi, Li] = 0[
Mi, Lj

]
= ih̄εijk Mk, (29)

and [
Mi, Mj

]
= −2ih̄

µ
εijk HLk. (30)

The first set of these commutators (29) shows that M is a vector. Mi commutes with Li since
Li generates rotation about the i axis, which has no effect on a vector pointed along that
axis. On the other hand, if j is perpendicular to i, Lj induces a change in the direction of Mi.
This is characterized by the second commutation relation in Equation (29), which implies
that the direction of this change in Mj should be orthogonal to both Mj and Li, in this
case, along −Mk. The relation in Equation (30) breaks the closed algebra of the L and M
operators together, since H is involved. We now make a useful substitution. Considering
a degenerate subspace (manifold) of H with energy eigenvalue E (i.e., corresponding to
a given value of n, due to the accidental degeneracy of level energies with respect to the
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orbital quantum number `), we can replace the Hamiltonian with the resulting energy
eigenvalue and define M′ such that

M′ =
(
− µ

2E

)1/2
M. (31)

The commutation relations remain unchanged with M replaced everywhere by M′, with
the exception of Equation (30), which now becomes[

M′i , M′j
]
= iεijkLk, (32)

the signature of a closed algebraic system.

3.3. Identifying the Closed Algebra of L and M′ with the SO(4) Group

We can relabel Lx, Ly, and Lz into L1, L2, and L3. Substituting 1, 2, and 3 for x, y, and
z allows for a natural extension beyond three dimensions. It is clear from Relations (31)
and (32) that the M′ matrices are merely generalized angular momentum operators in the

fourth dimension. In four dimensions, we have
(

4
2

)
= 6 orthogonal angular momentum

generators, where
(

n
p

)
= n!/p(n− p)! is the usual binomial coefficient. Let us make the

following associations:

M′x = L14, M′y = L24, M′z = L34,

Lx = L23, Ly = L31, Lz = L12, (33)

which can be summarized as

M′i = Li4, and Li = εijkLjk (34)

We add a fictitious coordinate ω, so that the rotation in four-dimensional space is given by
x′

y′

z′

ω′

 = exp

[
∑
i<j

θijLij

]
x
y
z
ω

.

In order to obtain the energy, we can exploit the SO(4) symmetry. It is easy to verify
that the commutation relations in Section 4.3 still hold. In four dimensions, a degree
of decoupling emerges: the maximal commuting set of operators includes two angular
momentum operators at the same time: L12 with L34, etc. Such a decoupling stems from
the property that the two operators generate rotations in orthogonal, non-intersecting
planes, defined by completely disjoint sets of vectors. This fact alludes to the structure of
the group generated by the operators: the rotational group in four dimensions, SO(4), of
rank 2, which contains, as a subgroup, the rank 1 SO(3) rotational group. We, therefore,
generalized the closed algebra of L and M operators. The remarkable insight here is that a
dynamical symmetry (as physically evidenced by eccentricities in closed orbits) is a mere
artifact of rotational symmetry in a higher dimension.

3.4. Energy Levels of Hydrogen Atom

The partial decoupling of angular momentum operators in four dimensions hints
at a decomposition of the SO(4) group generated by the operators L and M [50,51].
Rank 2 SO(4) groups by rule can be broken down into two completely decoupled rank 1
SU(2) groups:

SO(4)→ SU(2)× SU(2), (35)
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with three non-commuting generators each, yielding 3 + 3 = 6 generators. We made then
the following choice of basis:

I =
1
2
(L + M′) (36)

and
K =

1
2
(L−M′) (37)

with [
Ii, Ij

]
= ih̄εijk Ik,[

Ki, Kj
]

= ih̄εijkKk, (38)

[I, K] = 0,

[I, H] = [K, H] = 0. (39)

Since both I and K constitute an SU(2) known algebra, it is isomorphic to the group
generated by angular momentum in three dimensions. We used our findings in Section 4.2
to obtain their possible eigenvalues. We can write states that are simultaneous eigenstates
of H, Iz, and Kz:

|E; i, iz, k, kz〉. (40)

and one has
Iz|E; i, iz, k, kz〉 = iz h̄|E; i, iz, k, kz〉 (41)

for i, k = 0, 1/2, 1, · · · . The corresponding Casimir operators, I2 and K2, are, respectively,

I2 =
1
4
(
L + M′

)2 (42)

and
K2 =

1
4
(
L−M′

)2. (43)

It is important to remember that Casimir operators are distinct from generators. They
are actually functions of generators and, although they commute with all the generators
of a group, are not considered to be in the set of commuting generators itself. A linear
combination of these operators is diagonal in the basis of their common eigenvectors.
The Casimir operators I2 and K2 commute with all the generators (Ix, Iy, Iz, H, Kx, Ky, Kz).
One has

I2|E; i, iz, k, kz〉 = i(i + 1)h̄2|E; i, iz, k, kz〉 (44)

and
K2|E; i, iz, k, kz〉 = k(k + 1)h̄2|E; i, iz, k, kz〉. (45)

From I and K, we can construct operators

C1 = I2 −K2 (46)

and
C2 = I2 + K2, (47)

which commute with all so(4) generators and H. C1 yields a constraint on the eigenvalues
through

C1 = I2 −K2

=
1
4
(L2 + M′2 + L.M′ + M′.L)

= L.M′ = 0. (48)
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The last line used the relation from Equations (25) and (26). Actually, C1 = 0 means that i
and k are the same. This brings additional information (not given by SU(2)). We find the
eigenvalues for operator C2 with ease using Equations (44) and (45), yielding

C2 = 2K2 (49)

and
C2|E; i, iz, k, kz〉 = 2k(k + 1)h̄2|E; i, iz, k, kz〉. (50)

Combining Equations (25), (26), (31), (42), and (43), we derive a constant expression for C2:

C2 = I2 + K2 =
1
2

(
L2 + M′2

)
=

1
2

(
L2 − µ

2E
M′2

)
=

1
2

[
L2 − µ

2E

(
2E
µ
(L2 + h̄2) + α2

)]
= − h̄2

2
− µα2

4E
. (51)

Equating Equations (49) and (50), we obtain our permissible energy levels for a hydrogenic
atom:

Ek = −µ
α2

2h̄2(2k + 1)2
(52)

for k = 0, 1/2, 1, · · · . Recalling that α = Ze2 and setting 2k + 1 = n, for n = 1, 2, 3, · · · , we
recover the well-known expression:

En = −µ
α2

2h̄2n2
(53)

for n = 1, 2, 3, · · · . The elegance of this method stems from the fact that, in addition to the
hydrogen energy spectrum, the relevant constraints on various quantum numbers have
emerged naturally as well. For instance, consider L = I + K from the initial definition of
I and K. Since I = K, we see that, by the triangular rule of vector addition, L can be at
most k + k = n− 1, and its values extend to |k− k| = 0 in integer steps, as expected. In
addition, following the algebra of SU(2) groups, Iz and Kz, analogous to Lz, would each
have 2k + 1 = n independent eigenvalues and eigenstates. The total degeneracy of an
energy level, n× n = n2, is, therefore, also recovered [52].

4. Analogy with the Harmonic Potential: Invariant Tensor

Let us summarize the analogies between the Kepler and the harmonic oscillator
problems [53]:

• The orbit is closed (Bertrand’s theorem).
• The motion is periodic (degeneracy).
• There is a Laplace invariant.
• The motion has a dynamical symmetry higher than the rotation geometrical symmetry.
• For each value of the energy, one can find an infinity of classical orbits of differ-

ent shapes.
• The separation of variables applies to several systems of coordinates.
• The quantum states are degenerate.

4.1. The Laplace Tensor

We have seen that the Runge–Lenz vector is an invariant of the Kepler motion. Accord-
ing to the reciprocal of the Noether theorem [1], a continuous symmetry can be associated
with it. Such a symmetry was discovered by Fock and Bargmann in 1935: the Coulomb
potential has an internal symmetry (or dynamical symmetry), isomorphic (for the bound
states) to the one of the continuous group SO(5) of the rotations in the four-dimensional
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space. Such a group has six parameters, and there are indeed six constants of motion: the
three components of the angular momentum and the three components of the Runge–Lenz
vector. Actually, only five of these constants are independent, since the vectors L and A
are orthogonal. The energy is not a constant of motion independent of the previous ones,
since it can be calculated as a function of the invariants of A2 and L2, which are Casimir
invariants of the SO(4) group.

The harmonic potential also has a dynamical symmetry, isomorphic to the one of the
continuous group SU(3) of 3× 3 matrices with determinant equal to one. This group has
eight parameters. The eight corresponding constants of motion are the three components
of the angular momentum and the five components of the symmetric Laplace tensor. Five
of them are independent since L is an eigenvector of the Laplace tensor. Let us consider a
mass µ in an isotropic harmonic potential:

U (r) = 1
2

kr2. (54)

The equation of motion is

µ
dv
dt

= −kr. (55)

It is possible to define an invariant of the motion [54] as

A =
k
2

r†.r +
µ

2
v†.v, (56)

r† and r being, respectively, the line and column representations of the vector. Let us set
ω2 = k/µ. The Laplace tensor reads [55–57]:

A =

(
ω2x2 + v2

x ω2xy + vxvy
ω2xy + vxvy ω2y2 + v2

y

)
, (57)

where x and y are the coordinates of position operator r and vx and vy the coordinates of
velocity v. One has

Tr
(

A
)
= λ1 + λ2 = E (58)

as well as
Det

(
A
)
= λ1λ2 =

1
4

ω2L2 (59)

yielding

λ1 =
1
2

(
E +

√
E2 −ω2L2

)
(60)

and
λ2 =

1
2

(
E−

√
E2 −ω2L2

)
(61)

and, finally,

E2 = |A|2 + k
2m

L2. (62)

We have

rAr =
(

r cos θ r sin θ
)( λ1 0

0 λ2

)(
r cos θ
r sin θ

)
= λ1r2 cos2 θ + λ2r2 sin2 θ (63)
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and

rAr =
k
2

r4 +
µ

2
(r.v)2

=
k
2

r4 +
µ

2

(
r2v2 − C2

)
. (64)

Eliminating v using the energy conservation gives

1
r2 =

2λ2

µC2 cos2 θ +
2λ1

µC2 sin2 θ. (65)

If both eigenvalues are positive, the orbit is an ellipse with the semi-minor and semi-major
axis given by

a2 =
µC2

2λ2
, b2 =

µC2

2λ1
. (66)

It is worth mentioning that the transformations of the group SO(4) or SU(3) enable one to
change from an orbit of energy E to degenerated orbits of the same energy [58,59].

Analogies between the Kepler and harmonic motions were already known by New-
ton [60]. A mathematical transform from the one to the other was introduced in 1965 by
Kustaanheimo and Stiefel [61].

4.2. The Kustaanheimo–Stiefel Transformation

The Kustaanheimo–Stiefel transformation is a particular case of the surjective application:

R4 → R3 : (u0, u1, u2, u3) 7−→ (x0, x2, x3), (67)

defined by
x0 = u2

0 − pu2
1 + tu2

2 − ptu2
3,

x2 = 2(u0u2 + pu1u3),
x3 = 2(u0u3 + u1u2),

(68)

subject to the constraint ω = 0 with

ω = 2(u1du0 − u0du1 + tu3du2 − tu2du3), (69)

where the parameters p and t can take the values ±1. The transformation introduced by
Kustaanheimo and Stiefel [62] corresponds to p = t = −1, while the cases p = −t = −1
and p = −t = 1 (or p = t = 1) correspond to two other (inequivalent) transformations.

The applications of the transformations (68) and (69) range from number theory to
physics (classical and quantum mechanics, gauge theories, etc.). The Hurwitz matrix corre-
sponding to (68) and (69) is connected to the problem of factoring the sum of four squared
numbers. In classical mechanics, the Kustaanheimo–Stiefel transformation is used for the
regularization of the Kepler problem [62]. In quantum mechanics, the latter transformation
enables one to transform the Schrödinger equation for the three-dimensional hydrogen
atom (in an electromagnetic field) into a Schrödinger equation for a four-dimensional
isotropic harmonic oscillator (with quartic and sextic anharmonic terms) subject to a con-
straint [63–67]. Conversely, the mappings (68) and (69) may be used in some dimensional-
reduction process for converting a dynamical system in R4 or R2 ×R2 into a dynamical
system in R3.

When the Kustaanheimo–Stiefel transform is applied to the hydrogen atom in three
dimensions, the constraint (69) manifests as a restriction on the oscillator quantum numbers
in four dimensions. The usual procedure for determining this restriction is to compare
the expressions for the energy eigenvalues for the oscillator and for the hydrogen atom
and by demanding the consistency of the two [68], but Cahill demonstrated that it can be
obtain in a direct and natural manner. His idea is not to treat the constraint as an operator
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identity, but instead, to interpret it as a restriction on allowed energy states, acceptable
wavefunctions being in the kernel of a specific operator [69].

In addition to the mathematical–physics interest, the transform has proven very useful
in N-body simulations, where it helps to handle close encounters. At first sight, the formal-
ism may seem rather cumbersome, with the role of the extra dimension being especially
mysterious, but Saha showed how the Kustaanheimo–Stiefel transform can be interpreted
as a rotation in three dimensions. For example, rotating a telescope from zenith to a chosen
star in one rotation, the rotation axis and angle can be viewed as the Kustaanheimo–Stiefel
transform of the star, and the non-uniqueness of the rotation axis encodes the extra di-
mension. This geometrical interpretation becomes obvious while writing the transform
in quaternion form, which also enables one to derive concise expressions for regularized
equations of motion [70].

It is worth mentioning that Yoshida proposed a derivation of the Kustaanheimo–Stiefel
in parabolic coordinates (Appendix A). Through the latter derivation, it becomes clearer
where and how the additional dimension is introduced and what the bilinear relation
means [71].

4.3. Integrability and Similarity

A system with N degrees of freedom has at maximum 2N − 1 independent constants
of motion. If there are N constants, the system is integrable. If there are N + n ones, it is
superintegrable and n-times degenerated. If n = N − 1, the system is totally degenerated;
this is the case of the Keplerian and harmonic motions [72].

Prince and Eliezer showed that the Laplace invariants are linked to the fact that the
Kepler and harmonic motions are invariant by similarity, which explains, respectively, the
third Kepler law and the isochronism of harmonic oscillations [73].

5. Invariant in the Presence of an Electric Field: The Redmond Invariant

Let us introduce, in the presence of an electric field F = Fuz, the so-called Redmond
vector [16]:

R = A +
1
2
(r ∧ F) ∧ r (70)

and its projection on the z axis:

Rz = Az −
1
2

(
x2 + y2

)
F. (71)

The Redmond vector is not an invariant [74]. However, the quantity:

R.F = A.F +
1
2
[(r ∧ F) ∧ r].F (72)

which, using the relation:

a · (b ∧ c) = b · (c ∧ a)− c · (a ∧ b) (73)

is equal to

R.F = A.F− 1
2
(r ∧ F)2, (74)

is an invariant. Indeed, for an electron, we have (since, in atomic units, the force f is related
to the field F by f = −F):

dL
dt

= r ∧ f = −r ∧ F (75)

and, thus,
dA
dt

= −[F ∧ (r ∧ v) + v ∧ (r ∧ F)], (76)
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i.e.,
dA
dt

.F = −
[
(F.r)(F.v)− r.v F2

]
. (77)

We have also
1
2

d
dt
(r ∧ F)2 = (r ∧ F).(v ∧ F) (78)

and using the formula (Binet–Cauchy identity):

(a ∧ b).(c ∧ d) = (a.c).(b.d)− (a.d).(bc), (79)

we obtain zero [16]. The surface of the orbit precesses around the direction of the field, and
its angle with the field oscillates around a given average value.

This invariant is interesting or the study of the classical Stark effect, i.e., the motion of
an electron in an electric field [75].

6. Oks’ Supergeneralized Runge–Lenz Vector for the Two-Center Problem

Let us consider the problem of two Coulomb centers of charges Z and Z′ separated by
a distance R. This is an example of the so-called “two-center problem”. In the limit of large
R, the problem of two Coulomb centers reduces to the problem of a hydrogenic ion in the
nuclear charge Z in the uniform electric field F = Z′/R2, which is another fundamental
problem of quantum mechanics (its analog in celestial physics is the one-center Kepler
problem in a uniform gravitational field).

This simpler problem has also a dynamical symmetry (which is linked to the fact
that this problem allows the separation of variables in the parabolic coordinates). The
corresponding integral of the motion in that case is the projection of a generalized Runge–
Lenz vector on the internuclear axis. This generalized Runge–Lenz vector is the Redmond
vector [16] (see Equation (70). After Redmond introduced it for this asymptotic case of the
two-center problem, the challenge was to find a supergeneralization of the Runge–Lenz
vector in the general (i.e., not necessarily asymptotic) case.

Throughout this section, we use atomic units m = h̄ = e = 1 to conform with the
convention of the authors. Gurarie, assuming a charge Z1 at z = a and a charge Z2 at
z = −a [76], considered the following Hamiltonian:

H =
p2

2
− Z1

r1
− Z2

r2
, (80)

r1 and r2 being the distances from each nucleus, and found the invariant vector:

A(G) = p ∧ L− Z1
r− auα

|r− auα|
− Z2

r + auα

|r + auα|
, (81)

where uα is the unit vector from Z1 to Z2. It can be checked that, at large R, the Redmond
vector is recovered.

Krivchenko and Liberman considered the Hamiltonian [77]:

H =
p2

2
− Z1

r1
− Z2

r2
+

Z2

R
(82)

with Z1 at the origin and Z2 at z = R. They obtained (using parabolic coordinates) the
following vector:

A(KL) = p ∧ L− Z1
r1

|r1|
+ Z2

r2

|r2|
+ Z2uα (83)
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but its projection on the axis is not preserved. This led Kryukov and Oks to introduce the
supergeneralized Runge–Lenz vector for the two-center Coulomb problem [20]:

A(KO) = p ∧ L− L2

R
uα − Z

r
|r| − Z′

R− r
|R− r| + Z′uα, (84)

the z axis going from Z to Z′.
As an application, Sanders and Oks used the robust perturbation theory [21,78] for

calculating quadrupole corrections to the wave functions. This is important for the Stark
effect and the asymmetry of hydrogenic spectral lines in plasmas. If, for the perturbed
quantum system, there is an operator A that commutes with the Hamiltonian H and the
parts of these operators A0 and H0, characterizing the unperturbed quantum system, also
commute, then the perturbation theory can be constructed in terms of the perturbation
(A − A0) to the operator A0, rather than in terms of the perturbation (H − H0) to the
operator H0. For calculating corrections to the wave functions (which are common for
both A0 and H0), the advantage is that the eigenvalues of the operator A0 are typically
non-degenerate (which is not the case for the eigenvalues of the operator H0). Therefore,
for calculating the first-order corrections to the wave functions, it is sufficient to use the
first order of the non-degenerate perturbation theory with respect to the perturbation
(A−A0), and it would not involve infinite summations. In distinction, for calculating the
same corrections in terms of the perturbation (H − H0), one would have to proceed to the
second order of the degenerate perturbation theory, involving infinite summations. Sanders
and Oks chose the projection Az of the super-generalized Runge–Lenz vector, derived by
Kryukov and Oks [20], on the axis connecting the nucleus of the hydrogenic atom/ion with
the perturbing ion. The operator of the unperturbed projection A(0)

z has the well-known
eigenvalues q/n. According to Equation (12) from [21], the first non-vanishing term of
the expansion of the operator (Az − A(0)

z ) in terms of the small parameter n2/R (here and
below, we use atomic units) is −L2/R. Then, the corrections to the wave functions are
given by

− 1
R

(L2)
nq′pm
nqpm

A(0)
z,α − A(0)

z,α′

= − n
R

(L2)
nq′pm
nqpm

(qp − q′p)
(85)

where qp − q′p = ±2 with qp = n1 − n2 and q′p = n′1 − n′2 (not to be confused with the
charge in Section 7.1). Sholin et al. showed that [79]:

〈n1 + 1, n2 − 1, m|L2|n1n2m〉 = −h̄[n2(n− n2)(n1 + 1)(n− n1 − 1)]1/2 (86)

and
〈n1 − 1, n2 + 1, m|L2|n1n2m〉 = −h̄[n1(n− n1)(n2 + 1)(n− n2 − 1)]1/2. (87)

The state |n1n2m〉 can be expressed in terms of the normalized O(4) state |j1 j2m1m2〉 (both
representations are spherical wave functions in four dimensions) through the following
relation (the parabolic quantum numbers are defined in Appendix A) [75]:

|n1n2m〉 = (−1)
2n2+|m|−m

2 |j1 j2m1m2〉, (88)

where j1 and j2 are the angular momenta associated with the operators:

J1 =
1
2
(L + M) (89)

and
J2 =

1
2
(L−M) (90)
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and one has

j1 = j2 = j =
n− 1

2
, m1 =

m + n2 − n1

2
and m2 =

m + n1 − n2

2
. (91)

One defines then
J1± = J1x ± i J1y, and, J2± = J2x ± i J2y, (92)

as well as
M+ = 2J1+ − L+ = L+ − 2J2+ (93)

with L± = Lx ± iLy and
M− = 2J1− − L− = L− − 2J2−, (94)

yielding

M.M =
1
2
(

M+M− + M−M+
)
+ Mz Mz. (95)

Sholin et al. obtained

〈n1 − 1, n2, m + 1|M+|n1n2m〉 = h̄
√

n1(n− n1), (96)

〈n1, n2 − 1, m + 1|M+|n1n2m〉 = h̄
√

n2(n− n2), (97)

〈n1 + 1, n2, m− 1|M−|n1n2m〉 = h̄
√
(n1 + 1)(n− n1 − 1), (98)

and

〈n1, n2 + 1, m− 1|M−|n1n2m〉 = h̄
√
(n2 + 1)(n− n2 − 1). (99)

We have also
〈n1 − 1, n2, m + 1|L+|n1n2m〉 = h̄

√
n1(n− n1), (100)

〈n1, n2 − 1, m + 1|L+|n1n2m〉 = −h̄
√

n2(n− n2), (101)

〈n1 + 1, n2, m− 1|L−|n1n2m〉 = h̄
√
(n1 + 1)(n− n1 − 1), (102)

〈n1, n2 + 1, m− 1|L−|n1n2m〉 = −h̄
√
(n2 + 1)(n− n2 − 1), (103)

〈n1, n2, m|L.L|n1n2m〉 = h̄2

2

[
n2 − (n1 − n2)

2 + |m|2 − 1
]
, (104)

〈n1 + 1, n2 − 1, m|L.L|n1n2m〉 = −h̄2
√

n2(n− n2)(n1 + 1)(n− n1 − 1), (105)

〈n1 − 1, n2 + 1, m|L.L|n1n2m〉 = −h̄2
√

n1(n− n1)(n2 + 1)(n− n2 − 1), (106)

and
〈n1, n2, m|L.L + M.M|n1n2m〉 = h̄2

(
n2 − 1

)
. (107)

As mentioned by Sanders and Oks, the non-diagonal matrix elements of the operator
Lx in parabolic coordinates were reproduced in Gavrilenko’s article [80]. In addition,
the non-diagonal matrix elements of the operators L± can also be deduced from their
proportionality (with the n-manifold) to the non-diagonal matrix elements of the operators
(x+ iy). As a consequence, the non-diagonal matrix elements of the operator L2 in parabolic
coordinates can be obtained using their similar proportionality to the non-diagonal matrix
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elements of the operator (x2 + y2). The latter matrix elements were calculated, for instance,
by Clark [81]. It is important to mention that Sanders and Oks [78] provided corrections to
the Sholin tables from [82], which were used by many authors to calculate the asymmetry
of hydrogenic spectral lines in plasmas.

7. Invariants in the Presence of a Magnetic Field
7.1. The Landau–Avron–Sivardière Approach

In the case of an external magnetic field, much less is known. Liberman did not provide
any invariant in that case, but obtained series expansions, revealing some underlying
symmetry [83]. The equation of motion of a charge q in the uniform field B is

µ
dv
dt

= qv ∧ B. (108)

Integrating with respect to time, we obtain

µv = qr ∧ B + k, (109)

where k = µv0−B∧ r0 is the time-invariant Landau vector (r0 = r(t = 0) and v0 = v(t = 0)).
Combining Equations (108) and (109), one obtains

d2r
dt2 +

q2B2

µ2 r =
q

µ2 k ∧ B, (110)

which means that the motion of q is harmonic: the center C of the elliptic orbit is given by
OC = (k ∧ B)/(qB2), and the orbit is in fact a circle, since, according to Equation (108), the
tangential acceleration is zero and the normal acceleration is constant. However [84], it is
not necessary to know how to solve Equation (110). Multiplying Equation (109) by B,

v is known from Equation (108). The nature of the motion is then found easily. Let us
choose a new origin C with OC = a such that the new Landau vector K is zero. We have,
setting r = a + R and v = V = dR/dt:

µV = qR ∧V. (111)

and combining Equations (109) and (111):

a =
1

qB2 (k ∧ B) = r0 +
µ

qB2 v0 ∧ B (112)

and

a ∧ k =
µv2

qB2 B + L, (113)

where L = µr∧ v+ qr2B/2 is the angular momentum r∧p, p = µv+A and A = (B∧ r)/2
is the vector potential in the symmetric gauge. The invariance of L is a consequence of the
rotational symmetry around B [85,86], and it is easy to show that

L =
qB
2
(a2 − R2). (114)

In the case of the motion of a charge in the field of a magnetic dipole, the motion may
occur in the plane of symmetry of the dipole. If the motion is bound, the orbit fills a circular
crown, the axis of which carries the dipole: no privileged direction exists in the plane, and
no dynamical invariant can be found.

In the case of the motion of a charge in a magnetic monopole, there is a privileged di-
rection in space different from the one of the cone axis: the direction of the periapsis. Such a
direction is the one of a dynamical invariant, which could be determined by Kerner [87–89].
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The corresponding dynamical symmetry is the one of the SO(4, 2) group of matrices acting
in the four-dimensional space and conserving the pseudo-norm x2 + y2 − z2 − t2.

7.2. The Zeeman Effect

The symmetry of the quadratic Zeeman effect was investigated by different au-
thors [81,90–92]. In [93], on the motion of a charge in a magnetic field, Sivardière considered
the Zeeman effect for the harmonic oscillator and showed that the motion is epicyclic.

In a very interesting work, Yuzbashyan et al., motivated by the renewed interest in
non-trivial degeneracies of a simple spin Hamiltonian, proposed a general approach to
extract all non-trivial symmetries from the energy spectrum [94].

7.3. The Spectrum of the Hydrogen Atom in Electric and Magnetic Fields

The effect of a magnetic field on spectral line shapes, with or without an additional
electric field, is an important topic of atomic physics (see, for example, the non-exhaustive
list of references: [95–104]), for astrophysical or magnetic-fusion applications, both from
the theoretical side and for the interpretation of Z-pinch experiments, for instance.

A consistent treatment of the splitting of the hydrogen atom in crossed weak electric
and magnetic fields was given by Demkov et al. [105]. In that work, only the first-order
perturbation theory was considered. The resulting formula for the energy corrections valid
for arbitrary mutual orientation of the fields F and B was [106]:

E(1) = n′e1 + n′′e2, (115)

where n′ and n′′ belong to the set {−j,−j + 1, · · · , j}, with j = (n− 1)/2, and e1 and e2 are
absolute values (in atomic units) of the operator:

e1 =
B
2c
− 3

2
nF (116)

where c is the speed of light in vacuum, and

e2 =
B
2c

+
3
2

nF. (117)

The zero-order wave functions are eigenvectors of I1α and I2α:

I1αψnn′n′′ = n′ψnn′n′′ (118)

and
I2αψnn′n′′ = n′′ψnn′n′′ (119)

where
Iiα =

Ii.ei

ei
, (120)

where the operators I1, I2 are connected to L and M via

I1 =
L + M

2
(121)

and
I1 =

L−M
2

, (122)

exactly as Equations (36) and (37). In general, first-order Formula (115) completely removes
the degeneracy. Second-order corrections lead only to small energy shifts. The latter
was calculated by Solov’ev [107] using the dynamical symmetry group O(4, 2) of atomic
hydrogen. The problem becomes much more involved if the two fields are perpendicular
(F ⊥ B, when e1 = e2 = e. The first-order correction E(1) depends then only on the set
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of quantum numbers n′ + n = q, implying a residual n-fold (n − q) degeneracy. The
second-order perturbation theory removes the degeneracy:

E = − 1
2n2 + E(1) +

F2n4

16

[
3q2 − 17n2 − 19− 6

1 + γ2 (n
2 − 3q2 − 1)

]
+

H2n2

16c2 (3n2 + 1− q2 + ε), (123)

where γ = 3ncF/H and ε is the eigenvalue of the operator:

b(I1α − I2α)
2 − 16I1β I2β. (124)

In the above formula, I1β is the projection of operator Ii on a direction belonging to the
plane (e1, e2) and orthogonal to ei. The parameter b is given by the formula:

b = γ2 − 1− 2
1 + γ2 . (125)

In fact, b grows monotonously when the ration F/H is increased. The extreme values
b = −3 and b = ∞ correspond to purely magnetic and electric perturbations (quadratic
Zeeman and Stark effects). In these limits, the quantum number q turns into the magnetic
quantum number m (in the case where F = 0) or into n1− n2, where n1 and n2 are parabolic
quantum numbers (in the case where H = 0).

7.4. Magnetic Monopole

The existence of isolated magnetic monopoles was first suggested by Dirac in 1931 [23]
and could explain the quantization of the charge. Since there is still no known experimental
or observational evidence that magnetic monopoles exist, they remain an active field of
research. The magnetic field of a particle of charge q in r = rur is spherical and reads [89]

B = g
r
r3 (126)

and the equation of motion is

µ
dv
dt

= δ
L

µr3 , (127)

where δ = −qg, L = µr ∧ v is not an invariant, but the Poincaré vector J = L + αur is
one [108].

8. The Charge-Dyon System

A dyon is a hypothetical particle in four-dimensional theories with both electric and
magnetic charges. A dyon with a zero electric charge is usually referred to as a magnetic
monopole. Many grand unified theories predict the existence of both magnetic monopoles
and dyons. Dyons were introduced by Schwinger in 1969 as a phenomenological alternative
to quarks [22]. He extended the Dirac quantization condition [23] to the dyon and used the
model to predict the existence of a particle with the properties of the J/ψ meson prior to
its discovery in 1974. There is much interest in the problem of bound states of a fermion
in the field of a fixed Dirac monopole or in a ’t Hooft–Polyakov monopole [109,110]. In
theoretical physics, the ’t Hooft–Polyakov monopole is a topological soliton, similar to the
Dirac monopole, but without the Dirac string. The allowed charges of dyons are restricted
by the Dirac quantization condition. This states, in particular, that their magnetic charge
must be integral and that their electric charges must all be equal modulo one. It was
shown that a constant homogeneous electric field completely removes the degeneracy of
the energy levels on the orbital quantum number [111]. An important property is that the
charge-dyon system possesses hidden symmetry, the corresponding group being SO(4)
for the discrete spectrum and SO(3, 1) for the continuous spectrum. It was shown that the
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problem of the charge-dyon system due to hidden symmetry can be factorized not only in
spherical, but also in parabolic coordinates [111].

8.1. Classical Approach of the Charged Monopole Problem

In the case of the so-called “augmented charged monopole problem”, the monopole
creates the potential:

δ2

2µr2 . (128)

Such an additive modification of the Coulomb potential by a repulsive inverse-square
potential was introduced a long time ago [112,113] in order to enhance the dynamical
symmetry. Thus, in addition to the Lorentz force, the monopole creates a central force f
deriving from the potential U(r), and the equation of motion reads

f = µ
dv
dt

= δ
L

µr3 −
dU
dr

ur. (129)

Taking the vector product of the latter equation with J = L + δur and using

dur

dt
=

1
µr2 L ∧ ur, (130)

we obtain
dv
dt
∧ J−

(
r2 dU

dr
+

δ2

mr

)
dur

dt
= 0. (131)

If the coefficient of dur/dt is equal to a constant γ, that is, if

U(r) = −γ

r
+

δ2

2µr2 , (132)

then a direct integration of Equation (131) provides the following invariant Laplace-like
vector:

A = v ∧ J− γur = v ∧ L− δ
L
µr
− γur. (133)

8.2. Quantum Mechanical MIC–Kepler Problem

The integrable MIC–Kepler system was constructed by Zwanziger [112] and redis-
covered by McIntosh and Cisneros [113]. This system is described by the Hamiltonian:

H0 =
h̄2

2µ
(i∇+ sA)2 +

h̄2s2

2µr2 −
γ

r
, (134)

where
∇∧A =

r
r3 . (135)

Its distinctive peculiarity is the hidden symmetry given by the following constants of
motion:

I =
h̄

2µ
[(i∇+ sA) ∧ J− J ∧ (i∇+ sA)] + γ

r
r

, (136)

with
J = −h̄(i∇+ sA) ∧ r +

h̄sr
r

. (137)

These constants of motion, together with the Hamiltonian, form the quadratic symmetry
algebra of the Coulomb problem. The operator J defines the angular momentum of the
system, while the operator I is the analog of the Runge–Lenz vector. For the negative
values of energy, the constants of motion form the so(4) algebra, whereas for positive
values of energy, they build the so(3, 1) one. Due to the hidden symmetry, the MIC–Kepler
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problem could be factorized in a few coordinate systems, e.g., in the spherical and parabolic
ones. Hence, the MIC–Kepler system is a generalization of the Coulomb problem in
the presence of a Dirac monopole. It can be considered as a one-parameter deformation
family of the standard Kepler problem with the property that it retains its dynamical
symmetries. Physically, the deformation parameter δ can be interpreted as the magnetic
charge of the particle at rest and measures the pitch of the cone on which the trajectory
lies. Actually, its genuine mathematical interpretation is as a cohomology class [114] of the
symplectic structure [115]. The global symmetry group of the problem is either SO(4), E(3),
or SO(3, 1), depending on whether the energy is negative, zero, or positive. The motion
obeys the three Kepler laws. The monopole number s satisfies Dirac’s charge quantization
rule, s = 0,±1/2,±1, · · · . The MIC–Kepler system could be constructed by the reduction
of the four-dimensional isotropic oscillator by the use of the so-called Kustaanheimo–Stiefel
transformation (see Section 4.2), both on classical and quantum mechanical levels [116–119]. In
a similar way, reducing the two- and eight- dimensional isotropic oscillator, one can obtain
the two- [120,121] and five-dimensional [122–124] analogs of the MIC–Kepler system. An
infinitely thin solenoid providing the system the spin 1/2 plays the role of the monopole
in the two-dimensional case, whereas, in the five-dimensional case, this role is performed
by the SU(2) Yang monopole [125], endowing the system with the isospin. All the above-
mentioned systems have Coulomb symmetries and can be solved in spherical and parabolic
coordinates, both in the discrete and continuous parts of the energy spectra [126–128].
Finally, it is worth mentioning that there are generalizations of MIC–Kepler systems on a
three-dimensional sphere [129].

9. Conclusions

In this review, we discussed the importance of invariant vectors in atomic physics,
such as the Runge–Lenz vector, the Redmond vector in the presence of an electric field, and
the Landau–Avron–Sivardière vector when the system is subject to a magnetic field. The
supergeneralized vector for the two-center problem is probably the most-important recent
result on the subject. The existence of constants of motion in the charge-dyon system was
also briefly introduced. It is worth mentioning that Yoshida [130] discussed the main known
ways of generalizing the Runge–Lenz vector [131,132]. De Castro Moreira generalized the
Landau vector in some physical situations where it is possible to define a “potential” linear
momentum [133]. From a more-general viewpoint, the author discussed the conditions
for the introduction of the concept of a “generalized” linear (angular) momentum in
analogy with the concept of mechanical energy. Oks reviewed classical studies of the
oscillatory–precessional motion of an electron in the field of an electric dipole (the latter
representing the polar molecule) with or without external magnetic or electric fields [134].
In future work, we plan to discuss the case of the anisotropic harmonic oscillator and,
especially, its connections with the effect of an external electric field on the energy levels of
a hydrogen atom [135,136].
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The following abbreviations are used in this manuscript:

MIC McIntosh and Cisneros

Appendix A. Parabolic Quantum Numbers

Here, the parabolic quantum numbers are defined [137]. The Schrödinger equation for
the unperturbed one-electron system can also be separated into parabolic coordinates, a fact
related to the accidental degeneracy of level energies with respect to the orbital quantum
number ` (atomic units are used in the following equation):

H0|nqm〉 = − Z2

2n2 |nqm〉, (A1)

where n is the principal quantum number, m is the orbital magnetic quantum number
(−n + 1 ≤ m ≤ n− 1), and q = n1 − n2 with −n + 1 ≤ m ≤ n− 1 is the parabolic (or
electric) quantum number depending on two positive integers n1 and n2, which obey the
equation n = n1 + n2 + |m| + 1. Each parabolic state |nqm〉 has a residual degeneracy
of two due to the invariance of the Hamiltonian with respect to the sign of the orbital
magnetic quantum number. A parabolic state can be represented equivalently as |nn1n2m >
or |nqm >, but the latter form presents the advantage of significantly simplifying the
summation over the quantum numbers. Solving for n1 and n2, we obtain

2n1 = n− 1− |m|+ q ≥ 0 and 2n2 = n− 1− |m| − q ≥ 0. (A2)

For fixed quantum numbers n and m, the above relations imply that the allowed values
of q vary linearly between −n + 1 + |m| and n− 1− |m| with an incremental step of two.
Alternatively, for fixed quantum numbers n and q, the allowed values of m vary between
−n + 1 + |q| and n− 1− |q| with a step of two. For instance, the total degeneracy of the
shell n may be evaluated in parabolic coordinates using the sums:

2n2 = 2
n−1

∑
m=−n+1

n−1−|m|

∑
q=−n+1+|m|

ζ(q, m) = 2
n−1

∑
q=−n+1

n−1−|q|

∑
m=−n+1+|q|

ζ(q, m) (A3)

where the factor of two is due to the degeneracy with respect to the electron spin. The
quantity ζ(q, m), defined as

ζ(q, m) =
1
2
[
1− (−1)q+m−n] (A4)

is used to account for the double-increment over q or m.
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74. Campuzano-Cardonata, O.J.; Nuñez-Yepez, H.N.; Salas-Brito, A.L.; Sanchez-Ortiz, G.I. Constant of motion for the hydrogen atom

in an external field: A classical view. Eur. J. Phys. 1995, 16, 220–222. [CrossRef]
75. Hughes, J.W.B. Stark states and O(4) symmetry of hydrogenic atoms. Proc. Phys. Soc. 1967, 91, 810–818. [CrossRef]
76. Gurarie, D. Symmetries and Laplacians: Introduction to Harmonic Analysis, Group Representations and Applications; North Holland

Mathematics Studies; North Holland: Amsterdam, The Netherlands, 1992; Volume 174, p. 390.
77. Krivchenkov, V.D.; Liberman, M.A. Quantum numbers for the problem of two coulomb centers. Sov. Phys. J. 1968, 11, 14–17.

[CrossRef]
78. Sanders, P.; Oks, E. Correcting the input data for calculating the asymmetry of hydrogenic spectral lines in plasmas. Atoms 2018,

6, 9. [CrossRef]
79. Sholin, G.V.; Demura, A.V.; Lisitsa, V.S. Electron Impact Broadening of Stark Sublevels of a Hydrogen Atom in a Plasma; Preprint

IAE-2232; Moscow Institute of Atomic Energy: Moscow, Russia, 1972. (In Russian)
80. Gavrilenko, V.P. Resonant modification of quasistatic profiles of spectral lines of hydrogen in a plasma under the influence of

noncollinear harmonic electric fields. Sov. Phys. JETP 1991, 92, 624–630.
81. Clark, C.W. Case of broken symmetry in the quadratic Zeeman effect. Phys. Rev. A 1981, 24, 605–607. [CrossRef]
82. Sholin, G.V. On the nature of the asymmetry of the spectra line profiles of hydrogen in a dense plasma. Opt. Spectrosc. 1969, 26,

275–282.
83. Liberman, M.A. Hydrogen atom in a magnetic field as an exactly solvable system without dynamical symmetries. Phys. Lett. A

2022, 445, 128250. [CrossRef]
84. Avron, Y. Harmonic motions. Am. J. Phys. 1986, 54, 659–660. [CrossRef]
85. Davey, K.R.; Karras, M. On the constants of motion governing an electron in a magnetic field constrained by an electrostatic

central force. Eur. J. Phys. 1983, 4, 165–169. [CrossRef]
86. Ritter, O.M. Symmetries and invariants for some cases involving charged particles and general electromagnetic fields: A brief

review. Braz. J. Phys. 2000, 30, 438–445. [CrossRef]

http://dx.doi.org/10.1119/1.1972517
http://dx.doi.org/10.1119/1.1971373
http://dx.doi.org/10.1119/1.15988
http://dx.doi.org/10.1119/1.10036
http://dx.doi.org/10.1007/s11859-017-1215-8
http://dx.doi.org/10.1038/scientificamerican0964-128
http://dx.doi.org/10.1088/0143-0807/4/3/006
http://dx.doi.org/10.1119/1.17572
http://dx.doi.org/10.1119/1.17065
http://dx.doi.org/10.1515/crll.1965.218.204
http://dx.doi.org/10.1007/BF02813632
http://dx.doi.org/10.1103/PhysRevA.31.3960
http://dx.doi.org/10.1088/0305-4470/21/2/012
http://dx.doi.org/10.1063/1.526544
http://dx.doi.org/10.1063/1.525515
http://dx.doi.org/10.1063/1.525360
http://dx.doi.org/10.1088/0305-4470/23/9/016
http://dx.doi.org/10.1111/j.1365-2966.2009.15437.x
http://dx.doi.org/10.1007/BF01230677
http://dx.doi.org/10.1119/1.17304
http://dx.doi.org/10.1088/0305-4470/14/3/009
http://dx.doi.org/10.1088/0143-0807/16/5/005
http://dx.doi.org/10.1088/0370-1328/91/4/306
http://dx.doi.org/10.1007/BF01106029
http://dx.doi.org/10.3390/atoms6010009
http://dx.doi.org/10.1103/PhysRevA.24.605
http://dx.doi.org/10.1016/j.physleta.2022.128250
http://dx.doi.org/10.1119/1.14531
http://dx.doi.org/10.1088/0143-0807/4/3/008
http://dx.doi.org/10.1590/S0103-97332000000200029


Atoms 2023, 11, 105 24 of 25

87. Kerner, R. Generalization of the Kaluza-Klein theory for an arbitrary non-abelian gauge group. Ann. Inst. Henri Poincaré Sect. A
1968, 9, 143–152.

88. Jackiw, R. Dynamical symmetry of the magnetic monopole. Ann. Phys. 1980, 129, 183–200. [CrossRef]
89. Sivardière, J. On the classical motion of a charge in the field of a magnetic monopole. Eur. J. Phys. 2000, 21, 183–190. [CrossRef]
90. Solov’ev, E.A. Approximate motion integral for a hydrogen atom in a magnetic field. JETP Lett. 1981, 54, 265–268.
91. Solov’ev, E.A. The hydrogen atom in a weak magnetic field. Sov. Phys. JETP 1982, 55, 1017–1022.
92. Herrick, D.R. Symmetry of the quadratic Zeeman effect for hydrogen. Phys. Rev. A 1982, 26, 323–329. [CrossRef]
93. Sivardière, J. On the motion of a charge in a magnetic field. Eur. J. Phys. 1988, 9, 61–63. [CrossRef]
94. Yuzbashyan, E.A.; Happer, W.; Altshuler, B.L.; Shastry, S.B. Extracting hidden symmetry from the energy spectrum. J. Phys. A

Math. Gen. 2003, 2577–2588. [CrossRef]
95. Demura, A.; Oks, E. New method for polarization measurements of magnetic fields in dense plasmas. Trans. Plasma Sci. 1998, 26,

1251–1258. [CrossRef]
96. Doron, R.; Arad, R.; Tsigutkin, K.; Osin, D.; Weingarten, A.; Starobinets, A.; Bernshtam, V.A.; Stambulchik, E.; Ralchenko, Y.V.;

Maron, Y.; et al. Plasma dynamics in pulsed strong magnetic fields. Phys. Plasmas 2004, 11, 2411–2418. [CrossRef]
97. Stambulchik, E.; Tsigutkin, K.; Maron, Y. Spectroscopic method for measuring plasma magnetic fields having arbitrary distribu-

tions of direction and amplitude. Phys. Rev. Lett. 2007, 98, 225001. [CrossRef] [PubMed]
98. Tessarin, S.; Mikitchuk, D.; Doron, R.; Stambulchik, E.; Kroupp, E.; Maron, Y.; Hammer, D.A.; Jacobs, V.L.; Seely, J.F.;

Oliver, B.V.; et al. Beyond Zeeman spectroscopy: Magnetic-field diagnostics with Stark-dominated line shapes. Phys. Plas-
mas 2011, 18, 093301. [CrossRef]
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