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Abstract: Quantum theory provides us with the best account of microscopic components of matter
as well as of radiation. It was introduced in the twentieth century and has experienced a wide range
of success. Although the theory’s probabilistic predictions of final experimental outcomes is found
to be correct with high precision, there is no general consensus regarding what is actually going on
with a quantum system “en route”, or rather the perceivable intermediate behavior of a quantum
system, e.g., the particle’s behavior in the double-slit experiment. Neutron interferometry using single
silicon perfect crystals is established as a versatile tool to test fundamental phenomena in quantum
mechanics, where an incident neutron beam is coherently split in two or three beam paths with
macroscopic separation of several centimeters. Here, we present quantum optical experiments with
these matter-wave interferometers, studying the effect of the quantum Cheshire Cat in some variants,
the neutron’s presence in the paths of the interferometer as well as the direct test of a commutation
relation. To reduce disturbances induced by the measurement, the interaction strength is lessened and
so-called weak interactions are exploited by employing pre- and post-selection procedures. All results
of the experiments confirm the predictions of quantum theory; the observed behaviors of the neutron
between the pre- and post-selection in space and time emphasize striking and counter-intuitive
aspects of quantum theory.

Keywords: neutron interferometry; double slit; which-way; weak value; quantum Cheshire Cat;
delayed-choice; uncertainty relations

1. Introduction

Quantum theory describes the fundamental and basic behaviors of systems at atomic
and smaller scales [1–3]. The theory was developed intensively in the twentieth century
and became the basis for modern technologies such as quantum electronics, solid-state
engineering as well as the advent of laser and nuclear engineering. In contrast with these
tremendous successes of great significance and value, the comprehensive view of the world
provided by quantum theory is to some extent puzzling [4]. For instance, the classical
theories can provide deterministic predictions, which we become used to in our everyday
lives; the principles, which guide reasoning within a given circumstance à la quantum
theory, are governed by a probability law. In order to accept what is claimed by quantum
theory, one has to abandon classically employed ideas such as realism, causality and
locality [5].

As stated by Feynman [6], the double-slit experiment serves as “a phenomenon which
is impossible [. . . ] to explain in any classical way, and which has in it the heart of quantum
mechanics. In reality, it contains the only mystery [of quantum mechanics]”. Currently, the
double-slit experiment is demonstrated by using electrons [7–9], photons [10], ions [11,12],
atoms [13–15], large molecules [16] and positrons [17]; the wave-particle duality in these
experiments is viewed as quanta behaving both as waves and particles.
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The neutron interferometer, made out of a silicon perfect-crystal of monolithic struc-
ture, was invented in 1974 [18]; it is an apparatus where particles, i.e., neutrons, exhibit
wave properties in certain circumstances. The length of the interferometer is about 10 cm.
The thermal neutrons used for all presented neutron optical experiments are characterized
by energies of about 20 meV, velocities of about 2 km/s and wavelengths of about 2 Å. The
maximum neutron flux exiting the interferometer is of the order of 100/s. Due to the given
parameters of flux, velocity and diameter of the neutron interferometer, the vast majority
of neutrons pass through the neutron interferometer alone, while in many cases the next
detected neutron is still bound in the fuel of the reactor. Therefore, these experiments are
in the domain of self-interference. The reactor is an incoherent neutron source, since the
detected neutrons emerge from fissions that cannot be correlated to each other. The note-
worthy character of the single-crystal neutron interferometer is the macroscopic dimension
of both the beam separation and the area enclosed by the interfering beams, which are
given by several centimeters and square centimeters, respectively. In addition, owing to
this macroscopic separation of the beams, a variety of spin-manipulation equipment of
macroscopic dimensions can be inserted in each beam path, allowing us to manipulate the
neutron’s degrees of freedom, i.e., spin as well as energy with high accuracy.

Neutron interferometry is established as one of the most fruitful approaches to study
fundamental phenomena in quantum mechanics [19]. Just to mention a few, demonstra-
tions of the 4π-symmetry of a spinor wavefunction [20] and of a gravitationally induced
phase shift [21] were achieved; by implementing the manipulation of spin in the interfer-
ometer, spinor superposition of a 1/2-spinor is clearly demonstrated [22]. More recently,
entanglement between different degrees of freedom in a single particle, i.e., a neutron,
is exploited to demonstrate peculiarities due to quantum contextuality; the violation of
a Bell-like inequality is confirmed by the use of entanglement between two degrees of
freedom [23], followed by further performances with multi-partite entangled states imple-
mented in a single neutron [24]. Experiments investigating striking and counter-intuitive
quantum mechanical phenomena on the fundamental level have been carried out [25,26].

While quantum theory gives the (probabilistic) prediction of the final result of a
measurement performed on a quantum system, it is not clear whether one can say anything
or what one can say on the value of a physical parameter of the system between the pre-
selected initial state and the post-selected final state. A possible answer to this question is
provided by the so-called weak value, which is proposed by Aharonov, Albert and Vaidman
as a “new kind of value for a quantum variable” [27,28]. The weak value can be obtained
operationally through the weak measurement, i.e., the weak interaction applied on the
initial state and followed by the post-selection; the weak interaction is tuned so that the
probed system evolves with minimal disturbance from the initial toward the final state.
As a result of the weakness of the interaction, the shift of the meter (in the system in a
measurement) is so small that the results of lots of trials should be accumulated to explicitly
distinguish the results of the measurement. The obtained weak value in this procedure
may have different features than the expectation values of the relevant observable and
the states; weak values may have imaginary contributions and lie outside the eigenvalue
range of the associated operator. Nevertheless, due to the weakness of the interaction,
disturbances by the measurement, which are inevitably induced by a majority of quantum
measurement, can be reduced considerably; weak values can be obtained to estimate the
value of a physical parameter in an intermediate circumstance between the initial and
the final state. The use of weak values developed from a theoretical peculiarity to their
powerful experimental implementation [29–32].

In this review, recent accomplishments with the neutron interferometer are presented,
which take advantage of the weak interactions and weak measurements to evaluate and
study intermediate circumstances, i.e., quantum dynamics, of neutrons in the interferometer.
Among many, three main issues are selected: first, the phenomenon of the quantum
Cheshire Cat is presented in Section 2, including the initial experimental observation [33],
the delayed-choice implementation [34], the extension to a three-path interferometer [35]



Atoms 2023, 11, 98 3 of 21

and the exchange of properties in a photonic system. Second, a new approach to the path
presence measurement is presented [36] in Section 3. Third, a direct test of the commutation
relation [37] is presented in Section 4. Section 5 discusses the meaning of weak values
before the conclusion of Section 6.

2. Quantum Cheshire Cats

“Well! I’ve often seen a cat without a grin,” thought Alice “but a grin without a cat! It’s the
most curious thing I ever saw in my life!” Lewis Carroll’s Alice has many a strange encounter
in Wonderland [38]; however, it still boggles her mind when she meets the Cheshire Cat,
whose body can disappear while its grin remains. A similar effect can be produced in
quantum mechanical experiments [39]: the particle and spin property of neutrons can
“appear to be separated in different paths” of a Mach–Zehnder interferometer. The spin
is identified with the grin of the cat, while the particle is identified with the cat’s body
such that the perception given in Figure 1 is possible. This effect was demonstrated by
Denkmayr et al. [33]. Here, we describe four experimental realizations of the quantum
Cheshire Cat: the initial experiment and two extensions of it, one regarding a delayed
choice of the separation, another separating a third property, and the exchange of grins
in a photonic system. The description will use a particle picture to underline the counter-
intuitive aspect of the observed phenomena. This interpretation uses weak values to “infer
the locations of properties”. In an alternative interpretation, weak values only quantify
the reactions of the intensity to weak interactions. Then, the reactions occur because
of the coherent superposition of multiple sub-states, which are recombined at the post-
selection. This interpretation accentuates the wave property in the interferometer such that
all involved properties are present in all paths. The weak values then characterize a specific
post-selection as discussed in Section 5.

Figure 1. Schematic of a quantum Cheshire Cat where the properties of the neutrons are identified
with parts of the cat. The cat’s body represents the particle and its grin represents the spin. Manipula-
tions, each “identifying the location of a different property”, only yield effects in a different path of the
interferometer such that one may perceive “the properties to be separated” inside the interferometer.

2.1. Initial Quantum Cheshire Cat

The experiment was carried out at the S18 interferometer beam line at the high-flux
research reactor of the Institut Laue-Langevin (ILL) in Grenoble, France. The applied
neutron interferometric setup is depicted in Figure 2. The monochromatic neutrons are
polarized by a magnetic birefringent prism, which deflects the spin-down (blue arrow in
Figure 2) neutrons out of the Bragg acceptance angle of the interferometer crystal (typically
a few seconds of arc). The direct-current (DC) spin turner DC1 in front of the interferometer
rotates the neutron spin by π/2 into the +x direction. Then, the incident beam is coherently
split into two beams at the first plate of the interferometer. Two spin rotators (SRs) prepare
the initial state |i〉 = 1/

√
2 (|I,→〉+ |II,←〉), where↔ denotes the eigenstates of the Pauli
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spin matrix σ̂x. The absorber can be inserted in path I or II as a weak probe of the neutrons’
presence in the respective path. The spin of the interfering beam in the forward direction
is analyzed by the use of the coil DC2 together with a magnetic supermirror (analyzer),
post-selecting on the final state |f〉 = 1/

√
2 | ←〉(|I〉+ |II〉).

AbsorberDC1

DC 2Polarizer Analyzer

Detector

Phase Shifter (χ)

x

y

z

SRs

I

II

Figure 2. Illustration of the experimental setup of the initial quantum Cheshire Cat experiment.
Purple arrows give the direction of local magnetic fields, gray arrows indicate the spatial motion—
translation and rotation—of the absorber and phase shifter, respectively. Red and blue arrows are the
initial up and down spin polarization vectors. The fraction that is initially up polarized is rotated by
the field in the coil DC1 into the x direction.

To determine the neutrons’ population in the interferometer’s paths, the weak values
of the projection operator onto path j, denoted as 〈Π̂j〉w = 〈f|Π̂j|i〉/〈f|i〉, are measured.
First, a reference measurement is performed, where the orthogonal spin states of path I and
II result in a constant intensity when rotating the phase shifter. Next, the weak absorber
with transmissivity T = 0.8 is inserted into path I and the phase shifter scan is repeated,
resulting in the same constant intensity. However, if the very same absorber is put in path
II, the intensity decreases, suggesting that the neutrons’ population in the interferometer is
obviously higher in path II than in path I. The observed intensities for measurements with
an absorber in path I and II as well as the reference measurement are depicted in Figure 3.

Phase Shift χ [rad]  Phase Shift χ [rad]  Phase Shift χ [rad]  
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(a)                     (b)                (c)

Figure 3. Setup and results of the neutrons’ population in the initial quantum Cheshire Cat exper-
iment. Purple arrows are the direction of local magnetic fields, gray arrows indicate the physical
rotation of the phase shifter. An absorber is inserted (a) in path I or (c) in path II, while (b) the
reference measurement is done without the absorber.

The weak measurements of the neutrons’ spin component in each path are achieved
by applying an additional weak magnetic field in path I or path II, causing small spin
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rotation angles. This procedure allows us “to probe the presence of the neutrons’ spin”
in the respective path. The condition of a weak measurement is fulfilled by tuning the
magnetic field to be sufficiently small; in this experiment, spin rotations of 20◦ were used.
Such an additional magnetic field in path I leads to the emergence of interference fringes
with a contrast of ≈0.3, indicating “the presence of the neutron’s spin”. On the other hand,
the same field applied in path II causes no significant change in the intensity modulation.
The measured intensities are seen in Figure 4.

Phase Shift χ [rad]  Phase Shift χ [rad]  Phase Shift χ [rad]  
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(a)                     (b)               (c)

Figure 4. Setup and results of the neutrons’ spin component in the initial quantum Cheshire Cat
experiment. Purple arrows are the direction of local magnetic fields, gray arrows indicate the physical
rotation of the phase shifter. A weak magnetic field is applied (a) in path I or (c) in path II, while (b)
the reference measurement is done without the magnetic field.

From the obtained results, one can therefore conclude that the neutrons go through
path II, while “the spin travels along path I”, demonstrating the quantum Cheshire
Cat effect.

2.2. Delayed-Choice Quantum Cheshire Cat

The essential feature of the quantum Cheshire Cat in the neutron interferometer is that
“the cat itself and its grin are separated from each other and located in different paths”. In
such a setup, the following questions arise: what happens if the choice of the post-selection
is postponed until the quantum particle already entered the interferometer? Will “the
particle and its property still be separated spatially”? Or to pose an even more provoking
question: can “the location of the separated particle and its property” be influenced by the
choice of the post-selection, that has been decided upon afterwards? It allows us to study
quantum causality, where the causal order of events may be undefined [40,41]. This follows
a gedanken experiment already put forward by Wheeler [4,42]. In his proposed setup,
the choice, whether to observe the wave property (interference) or the particle property
(path), is delayed until photons have already traveled beyond the first beam splitter of an
interferometer. The realization of several such experiments has been reported. An overview
is given in [43]. A schematic view of the experimental setup is shown in Figure 5. The
coil labeled DC2 is switched quickly and at random between the two possible states of
post-selection, either |f+〉 = 1/

√
2 | ←〉(|I〉+ |II〉) or |f−〉 = 1/

√
2 | →〉(|I〉+ |II〉). The

switching is done at a rate so high that neutrons in the split beams of the interferometer do
not know which post-selection will be applied, i.e., where “the particles and its properties
should be located”. The choice is so to speak delayed until the neutrons already coherently
split into the two paths and started propagating through the interferometer.
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AbsorbersDC1

DC 2
Polarizer

Analyzer

Detector

Phase Shifter (χ)

Random Signal

x
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Figure 5. Experimental setup of the delayed-choice quantum Cheshire Cat experiment. Purple arrows
give the direction of local magnetic fields, gray arrows indicate the spatial rotation of the phase
shifter. Red and blue arrows are the initial up and down spin polarization vectors. The fraction that is
initially up polarized is rotated by the field in the coil DC1 into the x direction. The rotation angle of
the spin turner DC2 switches randomly between the two values ±π/2, realizing the post-selections
of |f±〉.

The final results of the experiment are depicted in Figure 6. It is seen that for the
post-selection of |f+〉, the interferogram is unchanged with the absorber in path I and
only an absorber put in path II has an influence on the intensity such that the neutron is
located in path II. Nonetheless, for the post-selection of |f−〉, the intensity drop is swapped
from path II to path I. By changing the post-selection to |f−〉, the obtained results confirm
that the position of the neutrons are now found in path I, while no effect is seen when
putting the absorber in path II. It is concluded from the above results that the position of
the neutrons’ location depends solely on the choice of the post-selection, which is either
|f+〉 or |f−〉. For the spin, it is the other way around: when “locating the spin” with weak
spin rotations in path I, a significant increase in contrast is observed for the post-selection
of |f+〉. For the post-selection of |f−〉, “the spin is found in path II”. In the experiment it is
hence confirmed that, although the cat (neutron) is not aware of these selections as it enters
the interferometer, “the locations of the cat and the grin are interchanged” according to the
delayed and random choice of the post-selection.

(a)                                                                                                                                        (b)
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Figure 6. Graphical depiction of the emergence of the quantum Cheshire Cat with the delayed-choice
implementation of the post-selected states (a) |f+〉 and (b) |f−〉. For both (a,b), the top schematic
gives a possible impression of the below measurement results of intensities. The upper intensities
are the result of weak absorber measurements and the bottom intensities the results of weak spin
rotation measurements, while tuning the relative phase χ with the phase shifter.
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2.3. Three-Path Quantum Cheshire Cat

In the initial description of the quantum Cheshire Cat effect [39], the authors asked
whether two properties could simultaneously be “separated” from a particle. Pan [44]
picked this up and developed the general case with arbitrarily many properties and paths.
The three-path quantum Cheshire Cat with the three properties of spin, particle and energy
realized with neutrons [35] follows this proposal. The properties “appear to be separated
into the three paths” of an interferometer such that each property is located in a different
sub-beam. Three parts of the neutron are “apparently separated”, which are represented by
three parts of a cat, such that the perception depicted in Figure 7 is possible. In Figure 7,
the schematic of Figure 1 of the Cheshire Cat is extended by representing the additional
manipulated energy system of the neutrons with the stripes of the cat. By using the energy
as a third degree of freedom, the geometrical relations in Hilbert space between the state
vectors of the sub-beams are investigated when weak interactions are applied.

Figure 7. Schematic of a three-path quantum Cheshire Cat where the properties of the neutrons are
represented with parts of the cat. The cat’s body represents the particle, its grin represents the spin
and its stripes the energy. Three different manipulations, each “identifying the location of a different
property” of the neutron, only yield effects in a different path of the interferometer such that one may
“perceive the three properties to be separated” inside the interferometer.

The paths of the interferometer are indexed as j ∈ {I, II, III}, the two different energy
levels are referred to as E0 and E′ and the z spin eigenstates as ↑ and ↓. The pre-selected
state |i3path〉 is written as

|i3path〉 =
1√
3

(
|I, ↓, E0〉+ |II, ↑, E0〉+ |III, ↓, E′〉

)
(1)

where all states of different Hilbert spaces corresponding to a path are written together in a
single ket. All sub-states of the single paths are mutually orthogonal in the spin or energy
system. At the pre-selection, a value of spin and energy can be attributed to each sub-beam,
although later on the properties may be “perceived to be separated”. The post-selection is
represented by the projector to the state |f3path〉 given by

|f3path〉 =
1√
3
|↑〉
(

ei(χ2−χ1) |I〉+ ei(χ1+χ2) |II〉+ ei(χ1−χ2) |III〉
)

(2)

which does not contain any terms of the energy, meaning no energy selection is employed in
the post-selection. Therefore, all neutrons of up spins and specific phase relations between
the paths with arbitrary energy are selected to propagate towards the detector. The phases
χ1 and χ2 are determined by the orientation of the phase shifters depicted in Figure 8. The
overlap 〈f3path|i3path〉 has its sole contribution through the reference beam of path II.

Three different weak interactions are applied. Each weak interaction is supposed
to affect a different property: an Indium foil with absorption coefficient A can absorb
the particle; a direct-current (DC) spin rotation with rotation angle α changes the spin
orientation; and a radio-frequency (RF) spin rotation with the same rotation angle α changes
the energy of the neutron through its time-dependent magnetic field. The interactions are
weak, meaning A, α� 1.
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I

II
III

Preparation Initial State

(pre-selection)
Measurement

(weak interaction)

Final State

(post-selection)

Phase Shifter 1

Analyzer

Detctor

DC     Abs     RF

O-Beam

H-Beam

x

y

z

Phase Shifter 2

Figure 8. Setup of the experiment for the three-path quantum Cheshire Cat. Gray arrows indicate the
spatial rotation of the two phase shifters. Red and blue arrows indicate the local polarization vectors
before and after the preparation stage. The local polarization vectors are symbolized by red arrows
for the up spin orientation and blue arrows for the down spin orientation. The setup contains a pre-
and post-selection. In between, weak interactions can be applied while the reactions in the O-beam
are monitored.

The experiment was carried out at the neutron interferometry instrument S18 at the
Institut Laue-Langevin (ILL) in Grenoble, France. The setup downstream of the monochro-
mator and polarizer is depicted in Figure 8. Since all sub-states of the pre-selection are
mutually orthogonal either in the spin or energy system, no interference is expected to
appear at the detector. Contrasts C ≈ 0 are observed in the respective preparational inter-
ferograms, cf. the original paper [35]. When applying the weak interactions and recording
the weak interaction interferograms, conspicuous differences to the preparational interfero-
grams are observed in a different path for each interaction, as can be seen in Figure 9: an
absorber only reduces the intensity in path II, a weak spin rotation produces interference
fringes only when applied in path I, and a weak energy manipulation produces interference
fringes only when applied in path III. These three statements are quantified by the respec-
tive path weak values 〈Π̂j〉w, the spin weak values 〈σ̂DC

x Π̂j〉w and the energy weak values
〈σ̂RF

x Π̂j〉w, where the latter two depend on the phase shifter orientation [35]. The absolute
value of the weak values corresponding to the interferograms with yellow background are
approximately 1, while the others are close to zero.

When “identifying the locations of the properties” through the conspicuous reactions
given in Figure 9, a three-path quantum Cheshire Cat is generated. The “spin is located in
path I”, the particle in path II and “the energy in path III”. It is undisputed that the path
weak values 〈Π̂j〉w quantify through which path the pre- and post-selected neutrons went.
This is connected with the behavior of the intensity I, which is exclusively linear to the
absorption coefficient A of an absorber put in path j such that

IAbs
j =

∣∣∣〈f3path|i3path〉
∣∣∣2[1−A 〈Π̂j〉w

]
. (3)

However, do the weak values of the spin and energy observables even describe the
behavior of the intensity for small interaction strengths α? We will discuss one particular
criticism on the basis of a weak DC spin rotation in the reference beam of path II, which is
supposed to determine the value of

∣∣〈σ̂DC
x Π̂II〉w

∣∣. The according intensity is given by

IDC
II (χ1) =

∣∣∣〈f3path|i3path〉
∣∣∣2[1 + αIm

{
〈σ̂DC

x Π̂II〉w
}
+

α2

4

(∣∣∣〈σ̂DC
x Π̂II〉w

∣∣∣2 − 〈Π̂II〉w
)
+O(α3)

]
. (4)
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Figure 9. Interferograms with applied weak interactions. Intensities in O-beam given over the phase
shifts induced in the path indicated at the bottom. The weak interaction is specified to the left.
Conspicuous differences to the interferograms with only the preparation applied are highlighted
with yellow background. As this is the case for a different path for each interaction, the perception of
a three-path quantum Cheshire Cat may be given.

The first order term in α is connected to a sinusoidal intensity oscillation in dependence
of the phase shifter orientation χ1. The intensity oscillation determines the contrast, which
is linear in α to the lowest order. The second order terms in α give a constant intensity
change for all χ1. In the preceding experiment [33], the authors extracted the weak values
solely through the intensity at χ1 = 0 where Im

{
〈σ̂DC

x Π̂II〉w
}
= 0. Thus, the linear term in

α vanishes and only the quadratic ones remain. Since 〈Π̂II〉w = 1 (see [35]), the latter of
the quadratic terms implies that there is some change in the mean intensity as a reaction to
the unitary spin rotation in this path, as pointed out by Stuckey et al.[45]. They argue that
this indicates that the properties are not separated inside the interferometer because the
value

∣∣〈σ̂DC
x Π̂II〉w

∣∣ becomes only zero by accounting for the effect on the intensity ∝ 〈Π̂II〉w.
Thereby, a measurable intensity change through a weak magnetic field is connected to a
spin weak value of zero in this case. In other words, the extracted value of the spin weak
value depends on the path weak value.

In answer to this dilemma, Stuckey et al. propose an additional condition for a quan-
tum Cheshire Cat, namely that the extraction of the weak values must be solely through
the interaction terms linear in α. This is achieved with a different data analysis compared
to the initial experiment of Denkmayr et al.[33]. In the present experiment as well as in
above delayed-choice experiment [34], the weak value in question is not extracted from the
intensity at a relative phase χ1 = 0 between the paths but from the linear effect on contrast
in the cases of the spin and energy manipulations. Hence, the quadratic terms that change
the mean intensity can in principle be omitted for small α, while an extraction of the spin
weak value is still possible through the linear dependence in α in Equation (4). This gives a
similar behavior as for the path weak values in Equation (3). In this manner, the extraction
of the weak values of the spin (and energy) observables is independent of the extraction
of the path weak values. Therefore, the criticism by Stuckey et al. should be dispelled by
means of this different method of data analysis such that the weak values describe the
system for small interaction strengths.

2.4. Exchange of Grins in Photonic System

An example for an implementation of a quantum Cheshire Cat with photons is found
in Ref. [46]. A vertically polarized 406.7 nm laser pumps a type-I cut β-barium borate (BBO)
crystal. The emerging pair of photons with a wavelength of 813.4 nm is entangled in their
path and spin degrees of freedom. The Franson interferometer [47] downstream of the
entanglement is depicted in Figure 10. The right red beams are identified with one Cheshire
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Cat, called Anna (A), and the left green beams with a second Cheshire Cat, called Belle
(B). This is the authors’ choice and one could just as much associate Anna with the upper
and Belle with the lower beams. The upper beams are denoted by u and the lower beams
by d. Each pair of upper and lower beams are recombined at the beam splitter (BS). The
pre-selected state of the superposition of two entangled photon pairs is given as

|ξ〉 = 1√
2

(
− |φ−〉 ⊗ |uAdB〉+ |φ+〉 ⊗ |dAuB〉

)
(5)

and the post-selected state as

|ζ〉 = 1
2

(
|↑A〉+ |↓A〉

)(
|↑B〉+ |↓B〉

)
⊗ |ψ−〉 (6)

with the Bell states
|φ±〉 = 1√

2

(
|↑A↑B〉 ± |↓A↓B〉

)
(7)

and
|ψ±〉 = 1√

2

(
|uAdB〉 ± |dAuB〉

)
. (8)

Weak interactions are implemented before recombination at the beam splitter (BS) with
absorbing neutral (ND) and polarizing density filters (PD). The reactions of the detected
intensity are used to infer the “locations of the photons or their spins”. The neutral density
filters cause reactions of the detected intensity when implemented in beams uA and dB.
Therefore, one may conclude that the body of Cheshire Cat Anna went through the upper
path while Belle went through the lower beam. The weak polarizing density filters result
in spin weak values of 1 when implemented in beams uB and dA. Therefore, one may
conclude, that “the spins of Anna and Belle went through a different path then their bodies”.
The authors of Ref. [46] never state their subsequent reasoning explicitly. However, the
related theoretical proposal by Das et al. [48] argues that at the beam splitter “recombination
of the photons and their polarizations do occur, but in the case of the above mentioned
postselected states, [Anna’s] photon recombined with [Belle’s] polarization while [Belle’s]
photon recombined with [Anna’s] polarization. Thus we have exchanged the grins of two
quantum Cheshire cats.” A sketch of the corresponding impression is given in Figure 11.
With a different choice of which beams to identify with each Cheshire Cat, the “spins
recombine with the same photon” as they were associated with initially.

Figure 10. Schematic of the setup for “the exchange of grins” in a photonic system. The
subfigure 2c of “Design of experiments” by Liu et al. [46], is licenced under CC BY 4.0, see
http://creativecommons.org/licenses/by/4.0/ (accessed on 13 May 2023). Two entangled pho-
tons and their spins are interfered in a Franson interferometer. A and B represent the two Cheshire
Cats Anna and Belle. The two heights of the paths are indicated as up (u) and down (d). The setup
contains neutral density filters (ND), polarization-sensitive density filters (PD), glass plates (GP), a
beam splitter (BS), quarter-wave plates (QWP), have-wave plates (HWP), polarizing beam splitters
(PBS) and interference filters (IF). The intensity is recorded at four output ports.

http://creativecommons.org/licenses/by/4.0/


Atoms 2023, 11, 98 11 of 21

The entanglement clearly places the observed phenomenon in the realm of quantum
mechanics. In a realistically inspired interpretation of the obtained weak values and with
the authors’ choice for the beams of Anna and Belle, this quantum Cheshire Cat not only
exhibits “the separation of particle and spin property” but potentially even the “permanent
exchange of this property between two photons”.

Figure 11. Schematic of the exchange of grins between two quantum Cheshire Cats. The figure
“Schematic illustration” by Liu et al. [46] is licenced under CC BY 4.0, see http://creativecommons.
org/licenses/by/4.0/ (accessed on 13 May 2023). No changes were made. Two quantum Cheshire
Cats, Anna (A) and Belle (B), exchange their grin and frown. This is a possible interpretation of
observations in the presented photonic experiment. Two entangled photons and their spin “appear
to exchange their spins”. The two heights of paths in the interferometer are indicated as up (u) and
down (d).

3. Path Presence

Weak values can be used to investigate which path a particle takes in a double slit
configuration. The particles are faintly marked in each path of an interferometer by applying
a weak coupling to a pointer state, which is different in each path. The analysis of the
pointer states in the output ports of the interferometer then yields information about which
paths the particles have passed through. Photons for example have been marked by a
reflection on a mirror that is vibrating with a distinct frequency [49], which is schematically
illustrated in Figure 12a. In response to this experiment, neutrons have been marked by
a small energy change induced by radio-frequency (RF) coils using different frequencies
in each path of a three-path interferometer [50] (see Figure 12b), or—even simpler—by
applying slightly different spin rotations in each path of a two-path interferometer [51].
The presence of the particles in a particular path is then given by the real part of the path
projection operator’s weak value, obtained by a weak measurement. The coupling to the
pointer state is so weak that the disturbance on the system is negligible. In particular, the
visibility of the interference fringes is maintained. Since the visibility is complementary to
the obtainable which-path information [52], only little information can be gained per event.
However, by collecting the information over many measurements, the weak value can be
eventually determined.

Being measured on a large ensemble, the weak value represents an average over the
ensemble. Can we tell anything about the presence of an individual particle? The weak
measurement gives the average value as well as the variance of this value, and this variance
is usually large. Imagine a spin prepared in +x direction that is slightly rotated by an angle
α towards +y in one path of the interferometer for path marking. To be the most sensitive
to the y component, we analyze the spin in the ±y direction in the interferometer output
ports. In fact, the path presence ω, i.e., the real part of the weak value of the path projection
operator, is in the simplest case given by the spin expectation value in y direction divided by
the rotation angle, ω ≈ 〈σy〉/α. However, since the spin direction is still close to the initial
+x direction, the analysis in the y direction will give nearly equal probability for the +y and

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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−y outcomes, and the variance of 〈σy〉will be close to its maximum. Therefore, the obtained
presence of the particles is only an average and cannot be attributed to individual particles.

(a)

Phase 

Shifter 

vibrating

mirrors

Source

Position-sensitive

Detector

ensitiveosition-se

(b)

Spin-sensitive

Detector

Phase Shifters 

RF Coils
from Source

Figure 12. Schematic sketch for which-way measurements using faint traces induced by (a) vibrating
mirrors for photons from 2013 [49] and (b) small energy kicks via RF coils for neutrons from 2018 [50].
Gray arrows indicate the spatial rotation of the two phase shifters.

To circumvent this problem, Hofmann [53] proposed the method of feedback compen-
sation. Instead of analyzing the spin in the y direction, we apply a back rotation by an angle
β (the “compensation”), which restores the initial spin state. Importantly, under certain
conditions, there is an optimal compensation angle β0, which allows us to restore all spins
to the +x state. Therefore, when analyzing the spin in the x direction, the variance vanishes
and this means that the average value is valid for each individual neutron. The ratio β0/α
of the rotation angles directly gives the real part of the weak value. If, for example, a
compensation angle of β0 = 2/3 α is necessary to reverse the original α rotation applied in
path I, we can conclude that the neutron had a presence of ω = 2/3 in path I. Being a weak
value, the path presence depends on the final state, which is given in our case by one or
the other exit beam of the interferometer. For optimal compensation, information about
the final state is required (the “feedback”) which means that we have to apply different
compensation angles in the two exit beams, cf. Figure 13.

1p

2p

®
+¯

{¯







 +p

¡p

path II

path I + exit

exit¡

Figure 13. Feedback compensation scheme applied to a path measurement in a neutron interferometer.
The black arrow on the left is the incident beam direction. The circular black arrows give the
orientation of spin rotations in the quadratic spin manipulators. Red arrows indicate the local
polarization vectors during the procedure. Neutrons are initially polarized in +x direction, denoted
by the up arrow. The spin is rotated in path I by a small angle α. The “compensation” rotations by β±
in the exit beams can fully restore the original spin orientation.

The experiment [36] was performed at the neutron interferometry station S18 at the
ILL, Grenoble. The optimal compensation values β0± were determined by trial and error.
This corresponds to a conventional weak measurement and provides the weak value as
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an average value. However, once this value is known, it can be verified on subsequent
neutrons. Again, an ensemble of neutrons is needed to test the effect of a particular
compensation value. If it turns out that all spins end up in the +x state, the variance
vanishes, meaning that the average value equals the individual values. One can therefore
conclude that the obtained path presence was indeed valid for each individual neutron. The
theoretical framework of verifying an estimate has been elaborated by Hall [54], described
further below in more detail. Based on Ozawa’s universal uncertainty relation [55], he
showed that the verification of an estimate can in principle be error-free, even without
disturbing the system.

In the experiment, the focus was on the simplest case where the interferometer phase
is adjusted to zero. Then, the forward exit labeled |+〉 represents constructive interference,
|+〉 = |I〉+ |II〉, and the side exit labeled |−〉 represents destructive interference, |−〉 =
|I〉 − |II〉, and all weak values are real values. In addition, the first beam splitter of the
interferometer was prepared with an asymmetry of 4:1 to avoid vanishing intensities due
to totally destructive interference. The calculated path presences of the prepared state
|ψ〉 = a1|I〉+ a2|II〉 are summarized in Table 1. Neutrons reach the |+〉 exit with probability
p+ = 90% and the |−〉 exit with probability p− = 10%. Neutrons that end up in the
|+〉 exit had a path presence of ω1+ = 2/3 in path I and of ω2+ = 1/3 in path II, which
corresponds to the amplitude ratio of the preparation. However, neutrons ending up in
the |−〉 exit had a presence of ω1− = 2 in path I and ω2− = −1 in path II. These are
anomalous weak values lying outside of the eigenvalue spectrum. Note that they still
sum up to unity, ω1− + ω2− = 1. In addition, the initial probabilities pj in either path j
are reproduced by the weighted average ω̄j of the weak values. This is evident, since the
probabilities pj are actually the expectation values 〈Π̂j〉 of the path projection operators and
can be equally expressed by summing over the eigenstates |I〉 and |II〉 using the eigenvalues
λ1 = 1 and λ2 = 0 or by summing over the final states |+〉 and |−〉, which also represent a
complete basis.

Table 1. Path presences for a 4:1 beam splitter. (a) Preparation, and (b) path presences depending on
the final state.

(a) Path I Path II

initial amplitudes a1 = 2√
5

a2 = 1√
5

initial probabilities p1 = 4
5 p2 = 1

5

(b) Probability Presence in Path I Presence in Path II

+ exit p+ = 9
10 ω1+ = 2

3 ω2+ = 1
3

− exit p− = 1
10 ω1− = 2 ω2− = −1

average ω̄1 = 4
5 ω̄2 = 1

5

〈ψ|Π̂1|ψ〉 = |〈ψ|I〉|2 λ1 + |〈ψ|II〉|2 λ2 = p1 λ1 + p2 λ2 = p1 (9)

= |〈ψ|+〉|2 ω1++|〈ψ|−〉|2 ω1− =p+ ω1++p− ω1− = ω̄1 (10)

One can see that the weak values ω1± play the role of the eigenvalues λ1,2 in case
the state is not measured in the operator’s eigenbasis but in another (complete) set of
states. The preparation alone, i.e., the asymmetric beam splitter, determines the presence
of the neutrons in path I only in a statistical sense by the probability p1. Only if the final
state is known, a more detailed statement about individual neutrons can be made. If we
tried to detect the neutrons directly in path I, we would divide the neutrons into the two
sub-ensembles “path I” and “path II” and would obtain a path-I presence of λ1 = 1 for
the former and λ2 = 0 for the latter sub-ensemble. The experiment divides the neutrons
into the sub-ensembles “+exit” and “−exit” and the obtained path-I presences are ω1+ and
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ω1−, respectively. In any case, the path presence can only be attributed in retrospect once
the neutron has been detected.

The complete experimental setup is depicted in Figure 14. All path presences listed in
Table 1 were confirmed. While large rotation angles α allowed for precise measurements of
the ratio β0/α, the theoretical weak values were only approached in the limit of small α, cf.
Figure 15. In a previous experiment [56], the path presence was measured by applying an
α/2 rotation in both paths but in opposite directions, which is an equivalent way to mark
the path. The novelty of the current experiment is the extension of the weak measurement
to the feedback compensation scheme.

AbsorberDC1 DC 2

Polarizer Analyzer

Detector

Phase Shifter (χ)

I

II

x

y

z

80:20 Beam Splitter

Figure 14. Experimental setup of the feedback compensation scheme shown in Figure 13. Purple
arrows give the direction of local magnetic fields, and gray arrows indicate the spatial rotation of
the phase shifter. Red and blue arrows are the initial up and down spin polarization vectors. The
fraction that is initially up polarized is rotated by the field in the coil DC1 into the x direction. The
spin analysis is implemented only in one of the exit beams. This exit represents the |+〉 exit if χ = 0
and the |−〉 exit if χ = π.

Figure 15. Experimental results of the path presence in path I, given by ω1± ≡ limα→0 β0±/α, versus
interaction strength α for α = π/4, π/8 and α = π/16.

Furthermore, the experiment allows for an efficient determination of the so-called
Ozawa–Hall error ε, which describes the accuracy of a quantum measurement. The Ozawa–
Hall error ε is a central element in the universally valid reformulation of Heisenberg’s
uncertainty principle, a so-called measurement uncertainty relation. Unlike preparation
uncertainty relations, which set limits on how sharp the values of two observables can be
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determined if measured separately, measurement uncertainty relations provide information
of the error when measuring one observable and the thereby induced disturbance on
another subsequently (or simultaneously) measured observable—in other words, they
characterize the joint measurement. The universally valid uncertainty relation is a certain
type of these measurement uncertainty relations, which reads

εAηB + εA∆B + ηB∆A =
1
2
|〈ψ|[A, B]|ψ〉|, (11)

where εA, ηB, ∆A and ∆B denote the error of the first measurement, the thereby induced
disturbance on the second measurement and the variances of A and B [55]. In our case, the
observable A = Π̂1 is represented by the path presence inside the interferometer and B = σ̂x
depends on whether the interfering components leave the interferometer in a forward or
reflected direction. Due to the particular experimental configuration, the measurement
of the path presence does not disturb the interference. This is reflected in a vanishing
disturbance ηB = 0, resulting in a reduced form of the universally valid uncertainty relation
denoted as εA∆B = 1/2|〈ψ|[A, B]|ψ〉|, with standard deviation ∆B = ∆(σ̂x, |ψ〉) = 3/5.

The error εA is given by the statistical deviation between the operator of interest,
namely Π̂1, and the estimated value of that operator, which corresponds to a feedback of
β± that can compensate a weak interaction of α, given by β±/α. In our case, it reads

ε2(Π̂1) = ∑±〈ψ|
(

Π̂†
1 −

β±
α

)
|±〉〈±|

(
Π̂1 − β±

α

)
|ψ〉

= ∑± p±
∣∣∣w1± − β±

α

∣∣∣2 (12)

where p± = |〈±|ψ〉|2 = 1
2 ± a1a2 denotes the statistical probability of finding the neutron

in the final state |±〉, with initial amplitudes a1 and a2 of the beams in each path. This
means, the uncertainty vanishes completely if the compensations β±/α applied in the
output ports |+〉 and |−〉, respectively, equal the corresponding weak values ω1±. Then,
the compensations are no longer just estimates but precise measurements of the weak
values with an experimentally determined error of ε2(Π̂1) = 0.0012(29), which is in good
agreement with the theoretical predicted value of zero from Equation (12).

To conclude, the experiment shows that every individual neutron is distributed over
both paths in an exactly quantifiable ratio. This result questions interpretations of quantum
mechanics such as the de Broglie–Bohm interpretation, which claims that every particle goes
one or the other way and that particles are only statistically distributed over both paths.

4. Direct Test of Commutation Relation

The canonical commutation relation is a corner stone of quantum theory. It was origi-
nally formulated by Heisenberg in 1925 [57] as p̂q̂− q̂ p̂ = ih̄ 11, where p̂ and q̂ are the matrix
forms of position and momentum variables. Only two years later, Heisenberg proposed his
famous uncertainty relation δpδq ∼ h, which he regarded as a direct mathematical conse-
quence of the canonical commutation relation. Here, δp and δq represent uncertainties in
momentum and position measurements, respectively. Later, building upon Kennard’s [58]
idea of interpreting the uncertainties as standard deviations, Robertson [59] generalized
Heisenberg’s preparation uncertainty relation for any two arbitrary observables A and B so
that ∆A∆B ≥ 1/2|〈ψ|[A, B]|ψ〉|. In recent times, the distinction between preparation and
measurement uncertainty relations has been made and many interesting new formulations
have also been proposed [60–66], including Ozawa’s universally valid uncertainty relation,
given by Equation (11).

The first experimental test of the non-commutativity of Pauli spin matrices utilized
different sequences of rotations (on the same initial state), which is schematically illustrated
for neutrons and photons in Figure 16. The neutron interferometric experiment reported
in [67] was performed at the Reactor of the University of Missouri (MURR), USA, by the
former BARC-Vienna-MURR collaboration.
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Figure 16. Schematic sketch for the experimental test of the non-commutativity of Pauli spin matrices
using different sequences of rotations (a) for neutrons from 1997 [67] and (b) for photons from
2010 [68]. The gray arrow indicates the spatial rotation of the phase shifter. The red arrow indicates
the neutron’s initial up spin state. Purple arrows indicate the orientation of local magnetic fields.

However, a direct test of the commutation relation is an experimentally challeng-
ing task for the following reason: while in quantum mechanics observables are usually
represented by Hermitian operators, the product of two non-commuting observables (as
occurring in the commutator relation) is in general non-Hermitian. Consequently, a direct
test of the canonical commutation relation should unambiguously determine the expecta-
tion value of the non-Hermitian product of two non-commuting observables as it occurs
in the commutation relation. The experimental realization for a direct test of the commu-
tation relation is therefore conceptionally different compared to prior experiments. The
experiment was carried out at the neutron interferometry station S18 at the ILL, Grenoble,
and is reported in [37]. In the neutron interferometric experiment, a measurement of a
single anomalous weak value of a relevant path-qubit observable is performed, where the
coupled spin-energy degree of freedom serves as ancilla.

Non-Hermitian observables can be expressed in terms of weak values as seen from

〈ψ|[Â, B̂]|ψ〉 = 4〈ψ|Π̂+
AΠ̂+

B |ψ〉 − 4〈ψ|Π̂+
B Π̂+

A |ψ〉 = −8i|〈+B|ψ〉|2Im
{
〈Π̂+

A〉
ψ,+B
w

}
(13)

where 〈Π̂+
A〉

ψ,+B
w is the weak value of the projector Π̂+

A for a post-selected state |+B〉 and
pre-selected state |ψ〉, while |〈+B|ψ〉|2 is the probability of successful post-selection. For
Pauli spin matrices Â = σ̂z and B̂ = σ̂x, the commutation relation is given in the form of

〈ψ|(σ̂zσ̂x − σ̂xσ̂z)|ψ〉 = 2i〈ψ|σ̂y|ψ〉. (14)

Using σ̂x = 2Π̂+
x − 11, σ̂y = 2Π̂+

y − 11 and σ̂z = 2Π̂+
z − 11, where we have Π̂+

x = |+x〉〈+x|,
Π̂+

y = |+y〉〈+y| and Π̂+
z = |+z〉〈+z|, the Pauli spin matrices σ̂x, σ̂y and σ̂z are expressed

in terms of projectors. Combining this with Equation (13) and using the definition of the
weak value, we obtain

4|〈+x|ψ〉|2 Im
{
〈Π̂+

z 〉
ψ,+x
w

}
= −2|〈+y|ψ〉|2 + 1, (15)

where 〈Π̂+
z 〉

ψ,+x
w = 〈+x|Π̂+

z |ψ〉/〈+x|ψ〉 is the weak value of Π̂+
z , that is the projection oper-

ator onto the state |+ z〉, given the pre- and post-selected states |ψ〉 and |+x〉, respectively.
Thus, the imaginary part of a single weak value 〈Π̂+

z 〉
ψ,+x
w allows to evaluate the left-hand

side (LHS) of the commutation relation given by Equation (14). For determining the quan-
tity on the right-hand side (RHS), it is necessary to separately measure the post-selected
probability |〈+y|ψ〉|2.

To experimentally test Equation (15), the setup depicted in Figure 17 is applied. The
system is pre-selected in the path state |ψi(χ)〉 = 1√

2
(|I〉+ e−iχ |II〉) and post-selected in the

state |ψf〉 ≡ |+x〉, with |+x〉 = (|I〉+ |II〉)/
√

2, where |I〉 and |II〉 denote the eigenstates of
the Pauli (path) observable given by σ̂z = |I〉〈I| − |II〉〈II|.
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Figure 17. Setup of the experiment for the commutation relation. The purple arrows give the
directions of local magnetic fields and the gray arrow indicates the spatial rotation of the phase shifter.
Red and blue arrows are the initial up and down spin polarization vectors. In path I, the neutron
beam passes through a radio-frequency (RF) spin flipper, where the combined spin/energy degree of
freedom is used as a marker.

In the actual weak measurement of Π̂1, the weak interaction is implemented by use of
the RF spin manipulator in path I inducing a (small) spin-rotation of an angle α = π/9 at a
frequency of ω/2π = 60 kHz (α is directly dependent on the magnetic field strength of the
oscillating magnetic field). The sufficiently small value of α warrants the required weak
measurement criteria. As explained in detail in [37], the weak value 〈Π1〉

ψi,+x
w is extracted

from the time-dependent intensity oscillation observed at the detector that is given by

I(t, χ) =
1
2
|〈+x|ψi(χ)〉|2

(
1 + αIm

{
eiωt〈Π̂1〉

ψi,+x
w

})
. (16)

The resulting combination of all three measurements, namely |〈+x|ψi(χ)〉|2, |〈+y|ψi(χ)〉|2

and Im
{
〈Π1〉

ψi,+x
w

}
, is given in Figure 18. The measurement results accounting for the LHS

and RHS of the commutation relation in Equation (15) are represented by orange and green
data points, respectively. The result is in good agreement with the relevant theoretical
prediction (dotted blue), experimentally verifying the canonical commutation relation for
Pauli spin matrices, as expressed in Equation (14).
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Figure 18. Experimental results of left-hand side (orange) and right-hand side (green) of the commu-
tation relation in Equation (15) are plotted as a function of the phase shift χ.
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5. Discussion

From the mathematical side, it is evident that weak values depend on both the pre-
selection of the initial quantum state and the post-selection of a certain final state. What this
means for our understanding of physics is still the subject of discussions. It is suggested that
weak values provide elements of reality between pre- and post-selection, which are inferred
with certainty as measurement results of a physical quantity and can have unusual and
counterintuitive properties [69]. This might be surprising since the value of an observable
is in principle undetermined until a projective measurement is performed. However, there
is no contradiction because weak values depend on the post-selection, which represents
the actual measurement here. Aharonov et al. proposed a time-symmetric interpretation
of quantum mechanics, called two-state vector formalism, where the system receives in-
formation from both the past (the pre-selection) and the future (the post-selection) [70].
Our experiments cannot decide on this question, but they clearly support the following
more conventional point of view. The post-selection divides the initial ensemble into
sub-ensembles. In some experiments, only one particular sub-ensemble is investigated,
but in principle one can always regard all of them to obtain the complete picture. Each
sub-ensemble has its own weak values. As already argued in the path presence experiment
(Section 3), averaging the weak values over all sub-ensembles gives again the expectation
value of the observable, which depends on the initial state alone. In the Cheshire Cat experi-
ment (Section 2.1), the neutron beam is initially evenly distributed over both interferometer
paths. If we regard a certain post-selected ensemble, we notice that the neutrons of this
sub-ensemble were sensitive to absorption only in one path and sensitive to spin manipu-
lation only in the other path. However, if we regard another post-selected ensemble, the
situation might be completely different, e.g., the roles of the interferometer paths might be
swapped. This is exactly what we observe in the delayed-choice Cheshire Cat experiment
(Section 2.2). The weak values describe the reactions of each individual sub-ensemble to
weak interactions. At the time of interaction, the particles are still in a state of superposition
of belonging to one or the other sub-ensemble. Once the post-selection is performed, the
sub-ensemble is determined and one can in retrospect tell for each particle what happened
between pre- and post-selection. The method of feedback compensation even shows that
weak values represent not only averages over all particles of a sub-ensemble but can in
certain cases indeed be attributed to individual particles.

6. Conclusions

We have shown recent achievements of neutron interferometer experiments, which
investigate variants of the quantum Cheshire Cat phenomenon, the measurement of the
neutron’s presence in the paths of the interferometer as well as a commutation relation.
Note that all experiments take advantage of weak measurements; they make reactions
to minimal disturbances of the quantum states under investigation accessible, which
could not be achieved with conventional measurements. Using weak interactions allows
us to look into details of quantum dynamics. The theoretical framework of the weak
measurement and the weak value, a kind of quantum variable representing the intermediate
response of a quantum system, was introduced by Aharonov and his co-workers [27],
followed by successive experimental performances [51]. In the quantum Cheshire Cat
experiments, these responses are used to “assign the locations of the neutrons and their
properties”. The first experiment concerning the effect of the quantum Cheshire Cat clearly
demonstrates that the system behaves as if the neutrons go through one beam path, while
their magnetic moment “travels along the other path” [33]. The following delayed-choice
experiment allows us to resolve the fact that the behavior of the neutron and its spin
are fully determined by the choice of the selection at a later time; quantum-mechanical
causality is implemented [34]. The last experiment studying the effect of the quantum
Cheshire Cat with the three-path neutron interferometer gives a more detailed proposition
of the origin of the apparent behavior of the quantum system [35]; distinct responses to the
weak interactions are due to the filtration procedure of the post-selection applied on the
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states with and without weak interaction. Furthermore, it is confirmed in the path presence
experiment that a fraction of the neutron is present in the paths of the interferometer; the
obtained path presence is attributed to (the real part of) the weak value of the path projector
and is not given by a statistical average but applies to every individual neutron. This shows
that every individual neutron is distributed over both paths in an exactly quantifiable
ratio. The obtained result questions interpretations of quantum mechanics such as the
de Broglie–Bohm interpretation, which claims that every particle goes one or the other
way and that particles are only statistically distributed over both paths. The experiment
concerning the commutation relation gives direct experimental evidence for a relation
primarily used in calculus.
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