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Abstract: The analysis and measurement of Wigner time delays can provide detailed information
about the electronic environment within and around atomic and molecular systems, with one the key
differences being the lack of a long-range potential after a halogen ion undergoes photoionization. In
this work, we use relativistic random-phase approximation to calculate the average Wigner delay
from the highest occupied subshells of the atomic pairings (2p, 2s in Fluorine, Neon), (3p, 3s in
Chlorine, Argon), (4p, 4s, 3d, in Bromine, Krypton), and (5p, 5s, 4d in Iodine, Xenon). The qualitative
behaviors of the Wigner delays between the isoelectronic pairings were found to be similar in nature,
with the only large differences occurring at photoelectron energies less than 20 eV and around Cooper
minima. Interestingly, the relative shift in Wigner time delays between negatively charged halogens
and noble gases decreases as atomic mass increases. All atomic pairings show large differences at
low energies, with noble gas atoms showing large positive Wigner delays, while negatively charged
halogen ions show negative delays. The implications for photoionization studies in halide-containing
molecules is also discussed.

Keywords: attosecond time delay; noble gas; halogen atoms; relativistic random-phase
approximation

1. Introduction

The recent advancement of attosecond extreme ultraviolet infrared (XUV-IR) laser
metrology over the past decade [1–6] has enabled access for observing ultrafast phenom-
ena across a variety of atomic and molecular systems at the natural time scale of their
electronic motion. One common experimental technique utilizes an XUV-IR pump–probe
process [7,8], where an electron is first ionized through the absorption of an XUV photon
and subsequently streaked by the few-cycle IR laser field, which imprints itself on the
photoelectron’s final energy and momentum. By varying the time delay between the XUV
and IR pulses, it is possible to measure the photoionization time delay relative to a refer-
ence. Another common technique is reconstruction of attosecond beating by interference
of two-photon transitions (RABBITT) [9,10], where the target is first ionized by an XUV
attosecond pulse train of high-order harmonics, and the photoelectron can then either
absorb or emit a secondary IR photon in the continuum. By adjusting the delay between
the IR laser field and the high-order harmonics, it is possible to extract the time delay for a
particular transition.

These techniques have been used to measure photoionization delays in atoms [11–15],
molecules [16–20], and solid-state systems [21–23], thereby providing new information
about their electronic structure. The total time delay τ, also known as the streaking
delay, given by a pump-probe experiment is frequently separated into two components,
τ = τw + τCLC. This convention of separating the total delay into two separate terms is
also followed in traditional RABBITT experiments, with the only difference being that
τCLC is replaced by the continuum–continuum delay τCC [10].The first contribution is the
Wigner time delay [24,25] τw, which describes the group delay of the ionized photoelectron

Atoms 2023, 11, 84. https://doi.org/10.3390/atoms11050084 https://www.mdpi.com/journal/atoms

https://doi.org/10.3390/atoms11050084
https://doi.org/10.3390/atoms11050084
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/atoms
https://www.mdpi.com
https://doi.org/10.3390/atoms11050084
https://www.mdpi.com/journal/atoms
https://www.mdpi.com/article/10.3390/atoms11050084?type=check_update&version=1


Atoms 2023, 11, 84 2 of 14

due to the absorption of an XUV photon and depends on the nature of the target. The
second component is the Coulomb-laser coupling time delay [26] τCLC, as it describes the
delay caused by the coupling between the IR field in the continuum and the long-range
potential of the remaining ion. Unlike the Wigner time delay, which requires an accurate
description of the target potential, the Coulomb-laser coupling delay can be computed with
an analytical formula [26–28] and does not rely on the precise nature of the target species.
It does, however, depend on the photoelectron’s kinetic energy, the energy of the photons
from the laser, and the charge of the residual ion. For example, the photoionization of a
neutral atom will create a positively charged ion of +1 and, therefore, τCLC will be finite,
but if a negatively charged halogen undergoes photoionization, the remaining ion will have
a neutral charge and τCLC will vanish. This implies that it is possible to directly measure
the Wigner delay of negatively charged halogen ions.

The process of removing an electron from a neutral atom is called photoionization,
while the removal of an electron from a negatively charged ion is called photodetachment.
Many theoretical and experimental studies have been conducted to accurately describe and
predict various aspects of the photoionization process in noble gas atoms (with some of the
key features being photoemission angle dependence [29–32], autoionization resonances [33],
the 4d giant dipole resonance in Xenon [34], photorecombination [35], and relativistic
effects [36–38]) but only recently has work been conducted on Wigner time delays in
negatively charged species [39–45].

This understanding of the time delays of negatively charged halogens is important
for two key reasons. First, the halides F−, Cl−, Br−, and I− are isoelectronic to the
well-studied systems of Ne, Ar, Kr, and Xe, respectively, and, hence, they allow for
an interesting comparison of two systems where the initial electronic configurations are
identical and yet the binding energies significantly differ. Second, it has been shown that
in the case of iodine-containing molecules, such as methyl iodide [46], the 4d orbitals of
iodide are non-bonding and reasonably agree with the predicted cross-section data of an
isolated iodine atom [47,48]. Therefore, comparisons between the Wigner delays in halogen
ions and noble gases should help to inform future molecular photoionization studies while
also helping to confirm the driving mechanisms behind Wigner time delay phenomena.

In this paper, we utilize the relativistic random-phase approximation (RRPA) formal-
ism of Johnson and Lin [49] to calculate the average phases and average Wigner time delays
of the highest occupied s, p, and d shells of the noble gas series and their halide counter-
parts. The theoretical details of RRPA are given in Section 2, along with a description of the
methodology used to calculate the average Wigner time delays, the results of which are
illustrated in Section 3, with the time delays of each halide–noble gas pairing being plotted
with respect to photoelectron kinetic energy. Section 3 also includes a discussion regarding
the similar qualitative behavior in the known regions of the Cooper minimum, while also
acknowledging the sharp contrast in time delays at photoelectron energies below ∼ 20 eV
for the highest occupied p and s orbitals. The first part of Section 3 briefly describes the
methodology used to calculate the Dirac–Hartree–Fock orbitals and their associated bind-
ing energies, along with specific details regarding the number of photoionization channels
used for the RRPA calculations of each atom. Section 4 provides a summary of the results
and a brief discussion regarding applications for future molecular ionization studies.

2. Theoretical Overview of the Relativistic Random-Phase Approximation (RRPA)

The same theoretical formalism was applied to negative halogen ions and neutral noble
gas atoms in order to calculate the photoionization dipole transition matrix amplitudes
and phases for an initial bound state. This overview follows the same outline as the
previous RRPA photoionization studies of Kheifets and Deshmukh [50] and the original
multi-channel paper of Johnson and Lin [49]. Atomic units (} = e = me = 1) are used
throughout, unless stated otherwise.
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For a time-dependent perturbation of the form v+e−iωt + v−eiωt, the probability am-
plitude for a transition from the ground state ui to an excited state wi±, stimulated by said
perturbation, is given by

T =
N

∑
i=1

∫
d3r
(

w†
i+v+ui + w†

i−v−ui

)
(1)

For an electromagnetic interaction described in the Coulomb gauge, it is possible

to rewrite the transition amplitude T as a function of the vector potential
⇀
A, where the

perturbations v±\ are described by, v+ =
⇀
α ·

⇀
A, v− = v†

+ with
⇀
α =

(
0

⇀
σ

⇀
σ 0

)
.

T =
N

∑
i=1

∫
d3r
(

w†
i+

⇀
α ·

⇀
Aui + u†

i
⇀
α ·

⇀
Awi−

)
(2)

Therefore, a photon of frequency ω (or equivalently of wavevector
⇀
k ) and polarization

ε̂ can be described by the vector potential in the Coulomb gauge as
⇀
A = ε̂e−i

⇀
k ·⇀r , which

can then be expanded in terms of its multipole components,
⇀
a
(λ)

JM . Note that an upper index
of λ = 1, 0 corresponds to the electric and magnetic multipoles, respectively. In the single
active electron approximation, the transition amplitude describe by Equation (2) can be
reduced even further to

T(λ)
JM =

∫
d3rw†

i+
⇀
α ·⇀a

(λ)

JM ui (3)

where J and M are the angular momentum quantum numbers describing the incoming
photon. It is common to label the initial bound state (ui) of the electron by the quantum

numbers l jm and the final continuum state (wi) by the numbers
−
l
−
j
−
m. The spin of the elec-

tron is given by the spinor χν, where ν = ±1/2. Any final state can be uniquely described

by the index
−
κ = ∓

(−
j + 1/2

)
, where

−
j =

−
l ± 1/2 is the total angular momentum of the

outgoing electron in the continuum. The final state can also be written as a partial wave
expansion, which is given explicitly in Equation (40) of [49]. Inserting this expansion into
Equation (3) results in

T(λ)
JM = i

√
2π2

Ep

√
(2J + 1)(J + 1)

J
ω J

(2J + 1)!!∑−
κ
−
m

[
χ†

νΩ−
κ
−
m
( p̂)
]
(−1)

−
j−−m

 −
j J j

−−m M m

D
l j→

−
l
−
j
(−1)

−
j+j+J (4)

The ionized photoelectron’s energy and momentum are represented by E and p, re-
spectively, while Ω−

κ
−
m
( p̂) is described in terms of Clebsch–Gordan coefficients and spherical

harmonics.

Ω−
κ
−
m
( p̂) = ∑

v
C
−
j ,
−
m

−
l ,
−
m−ν,1/2ν

Y−
l ,
−
m−ν

( p̂)χν (5)

The six-term bracket to the right of the Ω−
κ
−
m
( p̂) in Equation (4) corresponds to the

Wigner 3-j symbol, and D
l j→

−
l
−
j

represents the reduced matrix element describing the

transition from the initial state a = nκ to the final state
−
a =

(
E,
−
κ
)

multiplied by the phase
shift of the continuum photoelectron wave δ−

κ
.

D
l j→

−
l
−
j
= i1−

−
l e

iδ−
κ

〈−
a
∣∣∣∣∣∣Q(λ)

J

∣∣∣∣∣∣a〉 (6)
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One should note that the electric (or magnetic) multipole operator Q(λ)
J in the reduced

matrix element is the only component that changes in Equation (4) for different values of λ,
as the entire matrix element can be deconstructed as

〈−a ||Q(λ)
J ||a〉 = (−1)j+1/2[

−
j ][j]

(
j

−
j J

−1/2 1/2 0

)
π

(−
l , l, J− λ + 1

)
R(λ)

J

(−
a , a
)

(7)

where R(λ)
J

(−
a , a
)

is a radial integral listed in [49] and π

(−
l , l, J− λ + 1

)
is simply the

parity factor responsible for imposing the necessary selection rules for a given transition.

π

(−
l , l, J− λ + 1

)
=

1,
−
l + l + J− λ + 1 = even

0,
−
l + l + J− λ + 1 = odd

(8)

Despite its use for describing single-electron transitions, Equation (4) is also valid for
any closed-shell atomic species, as the only change required in Equations (4) and (6) is that
the single-electron reduced matrix element is modified slightly to include multi-electron
RRPA effects in both the initial and final states. An explanation of this modification is given
in Appendix A.

〈−a ||Q(λ)
J ||a〉 → 〈

−
a ||Q(λ)

J ||a〉RRPA
(9)

In this work, we restrict ourselves to electric dipole transitions (λ = 1 and J = 1)
with linearly polarized light oriented along the ẑ axis (M = 0). From these restrictions,
Equation (4) simplifies to

T1±
10 ≡

[
T(1ν)

10

]m

nlj
= ∑
−
κ
−
m

C
−
j
−
m
−
l ,
−
m−ν,1/2ν

Y
l,
−
m−ν

( p̂)(−1)2
−
j+j+1−−m

 −
j 1 j

−−m 0 m

D
l j→

−
l
−
j

(10)

Here, we have followed the convention of ref. [51] by defining separate transition
amplitudes for the spin-up and spin-down cases and by omitting the scaling factor of

2πi√
3Ep

ω. By choosing the linear polarization of the incoming photon to be purely along ẑ,

it is possible to take advantage of the axial symmetry of the system. Therefore, we will
introduce the shorthand Ylm ≡ Ylm( p̂) = Ylm(θ, φ = 0), where θ = 0 corresponds to a
photoelectron emission parallel to the direction of the initial photon.

It useful to observe how Equation (10) directly reduces in the simple case of electric
dipole transitions for the np1/2 and np3/2 states. The expressions for the nd3/2 and nd5/2
transition amplitudes can be found in ref. [50].[

T(1+)
10

]m=1/2

np1/2
=

1√
6

Dnp1/2→εs1/2Y00 +
1√
15

Dnp1/2→εd3/2
Y20 (11a)

[
T(1−)

10

]m=1/2

np1/2
= − 1√

10
Dnp1/2→εd3/2

Y21 (11b)

[
T(1+)

10

]m=1/2

np3/2
=

1√
6

Dnp3/2→εs1/2Y00 −
1
5

(
1√
6

Dnp3/2→εd3/2
+

√
3
2

Dnp3/2→εd5/2

)
Y20 (12a)

[
T(1−)

10

]m=1/2

np3/2
=

1
10

(
Dnp3/2→εd3/2

− 2Dnp3/2→εd5/2

)
Y21 (12b)

[
T(1+)

10

]m=3/2

np3/2
= −

(
3√
10

Dnp3/2→εd3/2
+

2
√

3
15

Dnp3/2→εd5/2

)
Y21 (12c)
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[
T(1−)

10

]m=3/2

np3/2
=

√
3

5

(
Dnp3/2→εd3/2

− 1
3

Dnp3/2→εd5/2

)
Y22 (12d)

The reduced matrix elements D
l j→

−
l
−
j

can be evaluated numerically for both its real

and imaginary components, as doing so allows for the phase η and Wigner time delay to
be calculated using the standard formulation of

τw =
dη

dE
, η = arctan

 Im
{

T1±
10

}
Re
{

T1±
10

}
 (13)

For a given subshell nlj, the angle-dependent time delay can be calculated as a
weighted average over all possible transition amplitudes and spin states.

τnlj(θ) =

∑
m,v

τnlj ,m,ν(θ)

∣∣∣∣[T(1v)
10

]m

nlj

∣∣∣∣2
∑

m,ν

∣∣∣∣[T(1v)
10

]m

nlj

∣∣∣∣2
(14)

For the purposes of this work, we will only consider the case of θ = 0, as it is
commonly the most dominant direction of photoelectron emission. As with Equation (10),
it is informative to see how Equation (14) simplifies into the simple weighted average of
the spin-up and spin-down Wigner delays for the case of an np1/2 state.

τnp1/2 =
τ+

np1/2

∣∣∣T1+
10

∣∣∣2 + τ−np1/2

∣∣∣T1−
10

∣∣∣2∣∣∣T1+
10

∣∣∣2 + ∣∣∣T1−
10

∣∣∣2 (15)

This process of averaging Wigner delays was performed for every subshell listed in
Table 1 below. By taking the average Wigner delays τnp1/2 and τnp3/2 and weighting them
by their respective differential cross-sections, the total average time delay τnp was also
calculated. An analogous process was also used to compute τns and τnd for every halogen
and noble gas.

It should be noted that the accuracy of this averaging process depends not only on the
values of the Wigner delays, but also with regard to the accuracy of the transition amplitudes
themselves. Because the photoionization cross-section can be computed from the transition

amplitudes
[

T(1ν)
10

]m

nlj
, it is possible to estimate the accuracy of the RRPA calculations by

simply comparing the predicted cross-sections with those of experimental measurements.
Reference [38] lists the predicted RRPA cross-sections for all of the noble gases being studied
in this work, and found there to be a good agreement with experimental values. This result
implies that the calculated RRPA transition amplitudes given by Equation (10) should also
be quite accurate.

3. Results and Discussion

In this section, we present the calculated binding energies and average Wigner delays
for each of the highest subshells of the halide ions and noble gas atoms. It should be noted
that RRPA often produces autoionization resonances in the time delay spectra for any
given noble gas. However, they are not the focus of this paper and, therefore, have been
filtered out to prevent the obfuscation of more general time delay features. The locations
of autoionization resonances in noble gases are well documented [38], but they generally
occur at photon energies close to the binding energies of orbital subshells. In Argon, for
example, the autoionization resonances produced by RRPA occur around photon energies
of 35 eV, which corresponds to the ionization threshold of the 3s1/2 subshell.
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3.1. Dirac–Hartree–Fock (DHF) Orbital Subshell Ionization Calculations

RRPA requires the use of Dirac–Hartree–Fock orbitals in order to account for ab ini-
tio relativistic effects and to obtain accurate subshell ionization potential energies. It is
important to note that DHF calculations are typically the most accurate for the highest
occupied shells regardless of the atom being studied; however, they can reasonably predict
the binding energy of lower-lying subshells as atomic mass increases. Table 1 confirms
this trend, as the predicted value of the 4d orbitals in xenon are within ~4 eV of experi-
mental measurements. The binding energies of halide ions are not well known, yet it is
possible to approximate their highest experimental binding energies with electron affinity
measurements. The electron affinity values were found to closely match the calculated
DHF energies, with the approximation being increasingly valid for the higher-mass ions of
bromide and iodide. These trends and absolute energies were also found to agree with the
calculated values of Saha et al. [38,41] and Lindroth and Dahlstrom [39]. The congruence
between our calculated DHF binding energy for F− and the 2p3/2 energy reported in [39],
which utilized a non-relativistic HF theory with exchange, is of particular interest as it
implies that despite not being necessary, relativistic effects do not negatively impact Wigner
time delay calculations for lighter-mass atomic systems.

Table 1. Calculated and experimental binding energies in eV.

DHF Exp. [52,53]

F−

(9 Channels)

2p3/2 = 4.889 3.401 *
2p1/2 = 4.968
2s1/2 = 29.334

Ne
(9 Channels)

2p3/2 = 23.083 21.565
2p1/2 = 23.207 21.627
2s1/2 = 52.677 48.365

Cl−

(14 Channels)

3p3/2 = 4.027 3.613 *
3p1/2 = 4.169
3s1/2 = 20.132

Ar
(14 Channels)

3p3/2 = 15.995 15.760
3p1/2 = 16.201 15.946
3s1/2 = 35.010 29.307

Br−

(20 Channels)

4p3/2 = 3.565 3.364 *
4p1/2 = 4.122
4s1/2 = 19.393
3d5/2 = 76.152
3d3/2 = 77.317

Kr
(20 Channels)

4p3/2 = 13.996 13.999
4p1/2 = 14.735 14.627
4s1/2 = 32.320 27.464
3d5/2 = 101.411 93.788 a

3d3/2 = 102.795 95.038 a

I−

(33 Channels)

5p3/2 = 3.089 3.059 *
5p1/2 = 4.207
5s1/2 = 16.555
4d5/2 = 53.897
4d3/2 = 55.734

Xe
(33 Channels)

5p3/2 = 11.968 12.130
5p1/2 = 13.404 13.436
5s1/2 = 27.487 23.361
4d5/2 = 71.668 67.548 a

4d3/2 = 73.779 69.537 a

* Electron affinity NIST data [54], a Krypton and Xenon d-shell data [55].
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Table 1 also lists the number of coupled photoionization channels used for the subse-
quent calculations of the reduced matrix elements. For Neon and Fluorine, all nine possible
channels (2p, 2s, 1s) were coupled. Argon and Chlorine used 14 channels (3p, 3s, 2p, 2s)
and omitted the 1s channels. Krypton and Bromine used 20 channels (4p, 4s, 3d, 3p, 3s)
and omitted the 2p, 2s, and 1s channels. Finally, Xenon and Iodine used 33 channels
(5p, 5s, 4d, 4p, 4s, 3d, 3s) and omitted the core 2p, 2s, and 1s channels. The omitted channels
could be ignored due to the fact that they are significantly farther away in energy from the
other channels and do not have substantial impact at the photon energies of this study.

3.2. Individual Photoionization Channel Phases and Wigner Time Delays of Neon and F−

While a previous study compared the Wigner delays of individual ionization channels
in Argon and Chlorine [41], to the best of our knowledge, no similar study has been
performed for the lighter pair of Neon and Fluorine. The phase η of each channel was
calculated directly by computing the argument of the reduced matrix element associated
with each channel (i.e., via Equations (6) and (13)). By simply taking the energy derivative of
the phase, the Wigner time delays could also be determined, as seen in Figure 1. Due to their
low atomic mass and relatively small number of electrons, relativistic effects do not play a
crucial role in time delays in Neon and Fluorine. This is reflected in the behavior of both the

phase and Wigner time delays for any given channel, since the j and
−
j values of a particular

l → l + 1 or l → l − 1 transition have a negligible impact (e.g., the 2p1/2 → εs1/2 and
2p3/2 → εs1/2 both produce the same η and Wigner delay). This fact also holds true for the
3p1/2 and 3p3/2 channels in both Chlorine and Argon [41], but begins to break down for
the lower-lying 3s1/2 → εp1/2 and 3s1/2 → εp3/2 channels. While not the primary focus
of this work, the study of time delays in individual channels is often useful for analyzing
the results of the average orbital delays, since it is possible to determine where a given
channel dominates in a particular energy region and instructive to see how the average
delay results from Wigner delays of individual transitions. For the sake of brevity, the
individual channel phases and time delays for Cl−, Ar, Br−, Kr, I−, and Xe are omitted.
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Figure 1. Individual 2s and 2p channel phases (a) and Wigner time delays (b) for Neon and Fluo-
rine. The individual labels are a descriptive shorthand to describe the identical behavior of mul-
tiple ionization channels. For instance, the label 2p→ εs relates to the two ionization channels
(2p1/2 → εs1/2 and 2p3/2 → εs1/2), while the label 2p→ εd corresponds to the following three
channels: (2p1/2 → εd3/2, 2p3/2 → εd3/2, and 2p3/2 → εd5/2). The behavior of 2s→ εp is equiva-
lent to the behavior of the (2s1/2 → εp1/2 and 2s1/2 → εp3/2) channels. In the case of Ne, a small
autoionization resonance was removed near 48 eV for the 2p→ εd and 2p→ εs channels.

By comparing Figures 1b and 2b, it is apparent that the average 2p delay in Ne is domi-
nated by the 2p→ εd channels across all photon energies, whereas the average 2p delay in
F− primarily corresponds to 2p→ εd transitions at higher energies and 2p→ εs channels
below photon energies near 10 eV. This agrees with the fact that for typical photoionization
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in noble gases, the l → l + 1 photoionization channels are known to dominate regardless
of energy, with the only exception being Cooper minima. However, in photodetachment,
the l → l − 1 channels dominate near the threshold and the l → l + 1 channels only begin
to dominate once photon energy increases [41,45]. A cursory comparison of the time delays
between Neon and Fluorine shows a strong agreement for photon energies greater than
50 eV for any given 2p transition. The same can also be said of 2s→ εp transitions at
photon energies above 75 eV. There is, however, a sharp contrast between the time delays
at lower energies.
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Figure 2. All four subfigures plot the average Wigner time delay with respect to the kinetic energy of
the ionized electron. The first row compares the average Wigner time delays of Neon and Fluoride
for the 2s (a) and the 2p (b) orbitals. The bottom row compares the average Wigner delays for Argon
and Chloride with regard to their 3s (c) and 3p (d) orbitals. The resonant peaks in the Argon 3p
delay spectra between 15 and 20 eV correspond to autoionization resonances that were not entirely
removed. The average 3p Wigner delay for Cl− displays a deep minimum of −900 as near 6 eV. This
minimum matches that of [41] although it is not shown due to the scale of the figure. The average 2s
and 3s Wigner delays of F− and Cl−, respectively, originally displayed oscillations at photoelectron
energies below 15 eV. These oscillations were determined to be caused by small variations in the
average phase data and were subsequently removed by taking a best fit of the phase data and then
computing the energy derivative of that best fit.

3.3. Comparison of Average Wigner Delays for Halogen Ions and Noble Gases

We observe in Figure 2a,b that Neon exhibits the familiar time delay behavior of having
a large positive delay near the threshold energies of the 2s and 2p subshells, which slowly
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vanishes as photon energy increases. Fluorine, by contrast, exhibits a strong negative
delay on the order of −100 as near the 2p threshold. This difference can be explained by
comparing the differences in the calculated phases for both Fluorine and Neon illustrated
in Figure 1a, as each of Neon’s ionization channels displays a dramatic increase near their
respective threshold energies, while Fluorine’s 2s→ εp and 2p→ εs channels tend to
decrease more gradually over a longer energy range. For noble gas atoms, the Wigner time
delay of any given orbital will trend towards positive infinity at energies near the threshold
due to the drastic increase in the Coulomb phase, which is known to dominate [40,41],
and the individual channels of Ne confirm this trend. The Coulomb phase for negatively
charged atoms is essentially nonexistent due to the lack of a long-range Coulomb potential
and, therefore, the Wigner delays corresponding to photodetachment do not possess the
same behavior of trending towards infinity at low energies. In the case of photodetachment,
however, it is still possible for a short-range potential to play a role at energies extremely
close to the threshold. For example, in Figure 1a, the phase of the 2p→ εd ionization
channels in Fluorine rapidly decreases in an energy region of ∼ 1 eV near threshold and
then slowly increases with photon energy. This also explains the sharp increase in the
average 2p Wigner delays in Fluorine at low photoelectron energies below ∼ 10 eV and
small positive delay times in the higher photoelectron energy region.

Just as with the individual channel analysis in Fluorine and Neon, we find that
the average 2s and 2p Wigner delays also diverge at lower photoelectron energies and
converge towards zero in the large photoelectron kinetic energy limit. The physical picture
underlying this vanishing time delay is quite clear, as a photoelectron with high kinetic
energy will spend less time near the perturbative effects of the remaining ion and instead
behave more similarly to a free electron wave. Conversely, at low kinetic energies, the
photoelectron will spend more time near the remaining ion and be more susceptible to
collective electron effects. We also observe the same general feature of diverging Wigner
delays between the 3s and 3p states in Chlorine and Argon at low energy (see Figure 2c,d),
with the only difference being the introduction of Cooper minima. A Cooper minimum
occurs when the transition matrix element changes sign and undergoes a phase shift of
π. Typically, this happens when the initial state radial wavefunction contains at least one
node and overlaps with the continuum wavefunctions. This is the process responsible
for the well-known 3p Cooper minima illustrated for Argon and Chlorine in Figure 2d.
However, a different mechanism is responsible for the observed minimum in the average
3s Wigner delay of Argon and Chlorine. Instead of being the result of a radial node in the
initial wavefunction, the behavior of the Cooper minimum in the 3s channel is caused by a
π shift in the phases of the 3s→ εp channels, which occurs due to the result of significant
interchannel coupling with the 3p ionization channels [38,56,57]. Without the effect of
interchannel coupling, this minimum does not appear in the 3s ionization channels, which
is why the 3s minimum can be deemed an “induced Cooper minimum” as it is still the
result of a π shift but its origin differs from that of the 3p Cooper minimum. However,
the location of this induced Cooper minimum in Chlorine appears to be shifted ∼ 10 eV
higher than the induced Cooper minimum in Argon. A similar shift occurs for the Cooper
minimum [58] in the 3p spectra, with Chlorine again displaying a higher shift of ∼ 6 eV.
Because Figure 2 plots both time delays with respect to the kinetic energy of the ionized
electron, any difference in the location of the two Cooper minima must be the result of
properties not related to the threshold energies of the atomic systems. If the shift was solely
caused by a difference in binding energies, the two Wigner delay spectra would overlap.

For the higher-mass systems of Bromine, Krypton, Iodine, and Xenon illustrated in
Figure 3, the average Wigner time delays for each orbital were also found to diverge at
low photoelectron energies, as Br− and I− both display large negative time delays (again
on the order of −100 as) in the low energy region. This appears to indicate a universal
time delay trend between negative charged halogens and noble gas atoms at photoelectron
energies below 20 eV. While it is possible to explain the negative delay times as the result
of a negative energy derivative of the phase, a physical explanation is less obvious. If one
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interprets a positive delay time as the retardation of the photoelectron wave with respect
to a free electron wave of the same kinetic energy, then a negative Wigner delay can be
interpreted as an acceleration in the outgoing electron wave packet. In the case of the
induced Cooper minimum in the average 3s state for Argon at low energy, the “dip” in the
delay time can be thought to be the result of induced oscillations in the outer 3p subshells
that screen the 3s electrons [57]. This only can occur for systems where the ns and np states
are strongly coupled, which explains the absence of a similar feature in the 2s time delay
spectra of Neon due to its 2s and 2p interchannel coupling being much weaker.
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Figure 3. Average Wigner time delays with respect to the kinetic energy of the ionized electron for
Krypton and Bromide (a–c). Average Wigner time delays for the 5s, 5p, and 4d states of Xenon and
Iodide (d–f). The autoionization resonances in Br− and Kr were removed at the approximate photon
energies of 10 eV, 76 eV, 194 eV, and 201 eV. For I− and Xe, autoionization resonances were removed
near 16 eV, 65− 70 eV, 80− 90 eV, 159 eV, 176 eV, and 229 eV.

The Cooper minima in the average 5s Wigner delay for Xenon have also been explained
to be the result of interchannel couplings, with the first Cooper minimum near 35 eV being
the result of couplings with the 5p1/2 and 5p3/2 states and the second minimum at∼ 120 eV
being the result of couplings with the 4d3/2 and 4d5/2 states [59,60]. In the case of I−, we
also find the same 5s Cooper minima at energies approximately equal to those of Xenon.
A similar equivalence was observed between the average 5p Wigner delays of Iodine and
Xenon, as well as for the 4s, 4p, and 3d delays in Br− and Kr. However, the minimum in
the 4d time delay spectra for I− was found to lie ∼ 11 eV higher than for Xenon.

Comparing the relative shifts between Cooper minima for the average Wigner delays
of each halogen and noble gas pairing, we find a qualitative trend where the difference de-
creases as atomic mass increases. The origin of this trend is still not entirely clear, although
it could be related to the relative difference in the electronegativities and polarizabilities of
the halogen and noble gas atoms, as relative shifts have been observed in the photodetach-
ment cross-sections for different isotopes of Chlorine [61]. A previous theoretical study [62]
also reported shifts in the respective 3s and 3p cross-sections for Ar and Cl− and other
high-Z isoelectronic species that were positively charged (i.e., Sc3+, Mn7+) and concluded
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that interchannel coupling and initial-state correlation effects can impact the location of
Cooper minima, although they do not directly account for the difference in binding energies
between Ar and Cl−. Despite not focusing on the relative shift in photoionization cross-
sections, our work regarding the 3s Wigner delays between Ar and Cl− seems to agree with
the conclusions of [62], since the location and appearance of an “induced Cooper minimum”
in Figure 2c was found to be the result of significant coupling to the 3p ionization channels
in Argon. However, more work must be carried out to determine the origin for the relative
shift in the Cooper minima between isoelectronic systems.

4. Conclusions

In this work, we performed RRPA Wigner time delay calculations for the halogen ion
and noble gas pairings of

(
F−, Ne

)
,
(
Cl−, Ar

)
, (Br−, Kr), and

(
I−, Xe

)
. The individual pho-

toionization channels were then averaged to obtain the average delay times for the highest
occupied s, p, and d states. The Wigner delays were plotted with respect to photoelectron
energy in order to account for energy shifts due to differences in binding energies. For
photoelectron energies below 20 eV, negatively charged halogen ions exhibit large negative
Wigner delays that sharply increase. This qualitative difference is due to the absence of a
large Coulomb phase, which is known to dominate the Wigner delay behavior of noble
gases at low energies. Overall, the qualitative time delay behaviors of halogens and noble
gases were found to be similar, with each pairing displaying the same general features
and Cooper minima. The location of the 3p Cooper minimum in Cl− was found to be
shifted∼6 eV higher than Ar. A similar shift of∼10 eV was noticed in the 3s Wigner delays
between Ar and Cl−. As atomic mass increased, this relative shift between Cooper minima
was found to decrease, except in the case of the 4d Cooper minima of I−, which displayed
an ∼11 eV shift above that of Xe. The physical process underlying this relative shift is
still not clear, indicating the need for more detailed analysis of negatively charged ions
and noble gas atoms in the regions of Cooper minima. Molecular photoionization studies
are becoming of greater interest to the attosecond community, with Iodine-containing
molecules having already been favored due to iodine’s 4d orbitals. Our findings indicate
that the average p and s Wigner delays of Br− and I− are the most similar to the average d
orbital Wigner delays of their noble gas counterparts Kr and Xe. This implies that Bromine
and Iodine are the best halogens for studying time delay phenomena in molecular systems.

Author Contributions: A.S.L. and B.G. conceptualized the study. B.G. performed the calculations
and prepared the original draft. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences,
Atomic, Molecular and Optical Sciences Program under Award No. DE-SC0022093.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Simulation data can be provided upon reasonable request.

Acknowledgments: We thank Subhasish Saha for valuable discussions.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A Determining 〈−a||Q(λ)
J ||a〉RRPA

From Equation (3) in Section 2, it was possible to write the transition amplitude in

terms of a single-electron reduced matrix element, 〈−a ||Q(λ)
J ||a〉, describing the transition

between an initial state,a = nκ, and final state,
−
a =

(
E,
−
κ
)

. In order to generalize this
to the multi-electron case, one must start with Equation (2) and essentially repeat the
same process that was carried out with the single-electron case (i.e., perform a multipole
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expansion of
⇀
A for both the positive frequency perturbations and negative frequency

perturbation terms wi±).

T =
N

∑
i=1

∫
d3r
(

w†
i+

⇀
α ·

⇀
Aui + u†

i
⇀
α ·

⇀
Awi−

)
→ T =

N

∑
i=1

∫
d3r
(

w†
i+

⇀
α ·⇀a

(λ)

JM ui + u†
i
⇀
α ·⇀a

(λ)

JM wi−

)
(A1)

It was the partial wave expansion given by Equation (40) in Johnson and Lin’s original
paper [49] that, when substituted into Equation (3), resulted in the single-electron transition
amplitude described by Equation (4). By following the same process of describing the
final continuum state as a partial wave expansion, Equation (A1) leads to a generalized
formula for the multi-electronic transition amplitude, which is identical to Equation (4) in
Section 2, with the only necessary modification occurring to D

l j→
−
l
−
j

so that it now includes

the multi-electron reduced matrix element.

D
l j→

−
l
−
j
= i1−

−
l e

iδ−
κ 〈−a ||Q(λ)

J ||a〉 → D
l j→

−
l
−
j
= i1−

−
l e

iδ−
κ 〈−a ||Q(λ)

J ||a〉RRPA
(A2)

where the reduced matrix element is now described by

〈−a ||Q(λ)
J ||a〉RRPA

= ∑
=
b

(
〈
−
b+||Q(λ)

J ||b〉+ 〈
−
b−||Q(λ)

J ||b〉
)

(A3)

Therefore, instead of considering only the transition between one set of waves a and
−
a

as was the case before with Equations (4) and (6), we are now summing all of the possible

transitions between the remaining waves b and
−
b under the condition that the waves

b→
−
b vanish in the asymptotic limit r → ∞ . The reduced matrix elements are identical

to the single-electron matrix elements in every way except in terms of the radial integral

R(λ)
J

(−
b±, b

)
, which is given as Equation (46) in [49].

〈
−
b±||Q(λ)

J ||b〉 = (−1)j+1/2[
−
j ][j]

(
j

−
j J

−1/2 1/2 0

)
π

(−
l , l, J− λ + 1

)
R(λ)

J

(−
b±, b

)
(A4)
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