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Abstract: Over the last decade, it has become clear that for heavy ion projectiles, the projectile’s trans-
verse coherence length must be considered in theoretical models. While traditional scattering theory
often assumes that the projectile has an infinite coherence length, many studies have demonstrated
that the effect of projectile coherence cannot be ignored, even when the projectile-target interaction
is within the perturbative regime. This has led to a surge in studies that examine the effects of the
projectile’s coherence length. Heavy-ion collisions are particularly well-suited to this because the
projectile’s momentum can be large, leading to a small deBroglie wavelength. In contrast, electron
projectiles that have larger deBroglie wavelengths and coherence effects can usually be safely ignored.
However, the recent demonstration of sculpted electron wave packets opens the door to studying
projectile coherence effects in electron-impact collisions. We report here theoretical triple differential
cross-sections (TDCSs) for the electron-impact ionization of helium using Bessel and Laguerre-Gauss
projectiles. We show that the projectile’s transverse coherence length affects the shape and magnitude
of the TDCSs and that the atomic target’s position within the projectile beam plays a significant role
in the probability of ionization. We also demonstrate that projectiles with large coherence lengths
result in cross-sections that more closely resemble their fully coherent counterparts.

Keywords: ionization; coherence; twisted electrons; Laguerre-Gauss beam

1. Introduction

In traditional charged particle scattering theory, the incident projectile is typically
considered to be delocalized with an infinitely large coherence. However, in the last decade,
it has been shown for heavy ion projectiles that a finite projectile coherence length can
significantly alter the collision cross-sections and must be considered when comparing
theoretical results with experimental data [1–10]. In these cases, the width of the impinging
particle wave packet can be similar in size or smaller than the target width.

For heavy-ion collisions, the effect of the projectile’s finite coherence length went
unnoticed for many decades. During this time, experimental measurements were only
possible for total or single differential cross-sections, and theoretical models were limited to
collisions with small perturbation parameters (ratio of projectile charge to speed). In many
cases, the agreement between experiment and theory for less differential cross-sections
under small perturbation parameters was quite satisfactory (e.g., [11,12]).

In more recent years, it became possible to perform fully differential cross-section
measurements, which opened the door to more rigorous theory tests [11,13–19]. In
some of the initial studies of fully differential cross-sections for the ionization of he-
lium by heavy-ion impact, significant discrepancies were observed between experiment
and theory, even at small perturbation parameters where theory was expected to per-
form well [13,14,20–23]. Many possible explanations were suggested [16,20,23–31], but it
was not until the projectile’s coherence properties were considered that a satisfactory expla-
nation was found [1,2,6,7,10]. These experiments demonstrated that projectile coherence
cannot be ignored in heavy-ion collisions. Since that time, numerous theoretical and experi-
mental studies have demonstrated the effects of coherence length on collision cross-sections,
as well as the ability to control the projectile coherence length [1–7,10,32–39].
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A projectile’s transverse coherence length is proportional to its deBroglie wavelength,
which is inversely proportional to projectile momentum [40,41]. Thus, one technique for
controlling projectile coherence is through the alteration of the projectile’s momentum. This
control can be readily achieved with heavy ion projectiles by changing either the projectile’s
energy or ion type (i.e., mass) [1–4,32].

For electron projectiles, the control of coherence length through momentum is more
challenging due to their small mass. Even at high energies, the electron’s wavelength
is large, leading to a coherence length that is generally larger than the target width. It
is, however, still possible to control an electron projectile’s coherence length through
wave packet sculpting. In particular, electron vortex projectiles have been experimentally
demonstrated [42–45], and these sculpted wave packets offer a method to control projectile
coherence in electrons. To date, electron vortex projectiles have been demonstrated in
the form of Bessel and Airy electrons. These sculpted (or twisted) electron wave packets
differ from their traditional plane wave counterparts in several ways. They can have
quantized non-zero orbital angular momentum, which, during a collision, can be trans-
ferred to the target or ionized electrons [46–49]. This leads to possible applications for the
orientation and rotation control of individual atoms and molecules through electron vor-
tex collisions [50–53]. Twisted electrons also have non-zero transverse linear momentum,
which has been shown to alter the distribution of electrons in ionization collisions [54,55].

Several studies on electron-atom and electron-molecule collision cross-sections have
been performed for Bessel projectiles, and they have shown that the use of an electron
vortex projectile alters the collision cross-section [9,46–48,54–64]. For elastic scattering [58],
it was shown that the projectile maintains its vortex properties throughout the collision
process. For excitation collisions [47], orbital angular momentum was transferred from the
projectile to the target atom, resulting in the alteration of the selection rules. For ionization
collisions [46,54,64], it was shown that the orbital angular momentum of the projectile can
be transferred to the ionized electron and that the projectile’s momentum uncertainty alters
the angular distribution of ejected electrons. For the ionization of helium by electron vortex
projectile, it was also shown that the projectile’s transverse momentum could result in the
out-of-plane emission of the ejected electron, an outcome that is not possible with plane
wave electrons [55]. For the ionization of H2, the angular distribution of ionized electrons
was shown to depend on the orbital angular momentum of the projectile [56].

Here, we present theoretical triple differential cross-sections (TDCSs) for the electron-
impact ionization of helium using Laguerre-Gauss and Bessel projectiles. We show that
the localized nature of the LG projectile causes the binary peak to shift to larger ejected
electron angles and enhances the recoil peak. As the projectile becomes less localized, the
cross-sections more closely resemble their delocalized counterparts. We also show that the
atomic target’s transverse position within the projectile beam can significantly alter the
magnitude of the cross-section. Our results demonstrate that LG projectiles can be used to
control the coherence length for electron projectiles and that changing the coherence length
has observable effects on the collision cross-section.

The remainder of the paper is organized as follows. Section 2 contains details of
the theoretical treatment. Section 3 presents the results for the LG and Bessel projectiles.
Section 4 contains a summary of the work.

2. Theory

To calculate the TDCSs, we used the perturbative first Born approximation (FBA) [46,54].
For the projectile energies and scattering geometries used here, this level of approximation
contains the relevant physics and captures the qualitative features of the TDCS. Within the
FBA, the TDCS is proportional to the square of the transition matrix TV

f i

d3σ

dΩ1dΩ2dE2
= µ2

paµie
k f ke

ki

∣∣∣TV
f i

∣∣∣2 (1)
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with
TV

f i = −(2π)3/2< Ψ f |Vi|ΨV
i > (2)

Here, µie is the reduced mass of the He+ ion and the ionized electron, µpa is the reduced

mass of the projectile and target atom,
→
k i is the momentum of the incident projectile,

→
k f is

the momentum of the scattered projectile, and
→
k e is the momentum of the ionized electron.

Equation (2) can be written as an integral over all of position space for each of the particles in
the collision by inserting complete sets of position states. Cylindrical coordinates (ρ1, ϕ1, z1)
are used to represent the projectile wave functions, and spherical coordinates (r2, θ2, ϕ2)
are used for the atomic electron. With this geometry, the projectile momenta can be written

in terms of their respective longitudinal and transverse components as
→
k i = ki⊥ρ̂1i + kiz ẑ1

and
→
k f = k f⊥ρ̂1 f + k f z ẑ1. We consider here the coplanar scattering geometry, in which the

incident projectile, final projectile, and ionized electron momentum lie in the same plane.
The incident projectile propagates along the Z-axis, and the scattered projectile lies in the
x–z plane with its transverse momentum along the positive X-axis.

The initial state wave function is expressed as a product of the incident vortex wave
function χV

→
k i

(→
r 1

)
and the target atom wave function Φ

(→
r 2

)
ΨV

i = χV
→
k i

(→
r 1

)
Φ
(→

r 2

)
(3)

The incident projectile vortex beam may be either a delocalized Bessel beam or a
localized Laguerre-Gauss beam. One unique feature of both Bessel and LG vortex beams is
that they are non-uniform in the transverse direction with a well-defined center of symmetry.
Therefore, their transverse alignment relative to the atomic target must be considered. To

account for this alignment, an offset vector
→
b (i.e., impact parameter) is introduced such

that
→
b points transversely from the atomic scattering center to the symmetry center of the

impinging vortex projectile (Figure 1).
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Figure 1. Schematic of incident Bessel projectile impinging on a target atom. Because the Bessel wave
function is not uniform in the transverse direction and has a well-defined center of symmetry, an

offset vector (or impact parameter)
→
b must be defined. Projectiles with two possible values of

→
b 1,
→
b 2

are shown (
→
b 1,
→
b 2). The shaded blue region is the transverse profile of an incident Bessel projectile.

The red arrows indicate the propagation direction of the incident projectile.

The wave function for the Bessel projectile with
→
b = 0 is given by

χV
→
k i

(
→
r 1,
→
b = 0

)
= χB

→
k i ,l

(
→
r 1,
→
b = 0

)
=

eilϕ1

2π
Jl(ki⊥ρ1)eikizz1 (4)



Atoms 2023, 11, 79 4 of 18

where Jl(ki⊥ρ1) is the Bessel function with orbital angular momentum l. This expression
can conveniently be rewritten as a superposition of tilted plane waves [58], such that

χB
→
k i ,l

(
→
r 1,
→
b = 0

)
=

(−i)l

(2π)2

2π∫
0

dφkieilφki ei
→
k i ·
→
r 1 (5)

For an off-center projectile with
→
b 6= 0, the Bessel addition theorem [65] can be used

to express the Bessel wave function as

χB
→
k i ,l

(
→
r 1,
→
b
)
=

∞

∑
−∞

e−imϕb Jm(ki⊥b)
eikizz
√

2π
Jl+m(ki⊥r1)

eilϕ1
√

2π
(6)

This can, in turn, be expressed in terms of a superposition of plane waves using
Equation (5):

χB
→
k i ,l

(
→
r 1,
→
b
)
=

∞

∑
−∞

e−imϕb Jm(ki⊥b)
(−i)l+m

(2π)2

2π∫
0

dφkiei(l+m)φki ei
→
k i ·
→
r 1 (7)

The LG beam for
→
b = 0 is given by [58]:

χV
→
k i

(
→
r 1,
→
b = 0

)
= χLG

→
k i ,l

(
→
r 1,
→
b = 0

)
=

N
w0

eilϕ1

(
ρ1
√

2
w0

)|l|
L|l|n

(
2ρ2

1
w2

0

)
e−2ρ2

1/w2
0

eikizz1

√
2π

(8)

where N is a normalization constant1, w0 is the beam waist, and L|l|n

(
2ρ2

1
w2

0

)
is an associated

Laguerre polynomial with orbital angular momentum l and index n that are related to the
number of nodes for a given l. The LG wave function can be written as a convolution of
Bessel functions over transverse momentum [58]:

χLG
→
k i ,l

(
→
r 1,
→
b = 0

)
=

N√
2

eilϕ1

n!

∞∫
0

dki⊥ e−w2
0k2

i⊥/8
(

w0ki⊥√
8

)2n+l+1
Jl(ki⊥ρ1)

eikizz1
√

2π
(9)

Using Equation (4), the LG wave function can now be expressed as a convolution of
Bessel projectile wave functions over transverse momentum:

χLG
→
k i ,l

(
→
r 1,
→
b = 0

)
=

N
√

π

n!

∞∫
0

dki⊥e−
k2
i⊥w2

0
8

(
ki⊥w0√

8

)2n+l+1
χB
→
k i ,l

(
→
r 1,
→
b = 0

)
(10)

For an off-center LG projectile, Equation (10) becomes

χLG
→
k i ,l

(
→
r 1,
→
b
)
=

N
√

π

n!

∞∫
0

dki⊥e−
k2
i⊥w2

0
8

(
ki⊥w0√

8

)2n+l+1
χB
→
k i ,l

(
→
r 1,
→
b
)

(11)

The transverse coherence ∆ρ of the incident projectile can be defined using quantum
mechanical uncertainty:

∆ρ =
[〈

ρ2
〉
−
〈

ρ2
〉]1/2

(12)

For Bessel projectiles and plane waves, the transverse uncertainty is infinite, but for
LG projectiles, when using Equation (8), it can be shown that the uncertainty is linear with
respect to the beam waist:

∆ ρ ∼ w0 (13)
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Some example values of the uncertainty for LG projectiles used here are listed in
Table 1. For comparison, the transverse coherence length for atomic helium is ∆ρ = 0.84 a.u.

Table 1. Transverse coherence length of LG projectiles in atomic units with n = 0. Values were
calculated using Equation (12).

l = 0 l = 1 l = 2

w0 = 0.5 a.u. 0.093 0.13 0.16

w0 = 2 a.u. 0.37 0.52 0.64

w0 = 4 a.u. 0.75 1.05 1.28

w0 = 8 a.u. 1.49 2.09 2.55

As is standard for single ionization collisions with fast projectiles [66–74], the initial
state target helium atom is represented with a single active electron wave function:

Φ
(→

r 2

)
=

Z3/2
e f f√
π

e−Ze f f r2 (14)

where Ze f f = 1.3443 [75,76] is the effective nuclear charge of the 1-electron helium atom
and is chosen to give the correct ionization potential of helium.

The final state wave function is a product of the scattered projectile wave function
χ→

k f

(→
r 1

)
, the ionized electron wave function χ→

k e

(→
r 2

)
, and the post-collision Coulomb

interaction (PCI) Mee:
Ψ f = χ→

k f

(→
r 1

)
χ→

k e

(→
r 2

)
Mee (15)

We assume that the scattered projectile leaves the collision as a plane wave given by

χ→
k f

(→
r 1

)
=

ei
→
k f ·
→
r 1

(2π)3/2 (16)

The perturbation Vi is the Coulomb interaction between the projectile and target atom,
which is given by

Vi =
−Ze f f

r1
+

1
r12

(17)

The ionized electron is modeled as a Coulomb wave:

χ→
k e

(→
r 2

)
= Γ(1− iη)e−

πη
2

ei
→
k e ·
→
r 2

(2π)
3
2

1F1

(
iη, 1,−iker2 − i

→
k e·
→
r 2

)
(18)

where Γ(1− iη) is the gamma function and η = Ze f f Ze/ke is the Sommerfeld parameter.

We note that the use of Ze f f = 1.3443 in Vi and χ→
k e

(→
r 2

)
maintains consistency with

the treatment of the initial state wave function but does not satisfy asymptotic boundary
conditions. This treatment has been used successfully previously for neutral atoms, such
as carbon. To be sure that the choice of Ze f f does not significantly alter the TDCSs, we
performed a few calculations with Ze f f = 1 for the perturbation and the Coulomb wave
and found nearly identical TDCSs to those with Ze f f = 1.3443.

The post-collision Coulomb repulsion between the two outgoing final state electrons
is included through the use of the Ward-Macek factor [77]:

Mee = Nee

∣∣∣∣∣1F1

(
i

2k f e
, 1,−2ik f erave

)∣∣∣∣∣ (19)
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where

Nee =

√√√√√ π

k f e

(
e

π
k f e − 1

) (20)

The relative momentum is k f e = 1
2

∣∣∣∣→k f −
→
k e

∣∣∣∣ and the average coordinate rave =

π2

16ε

(
1 + 0.627

π

√
ε ln ε

)2
, where ε =

(
k2

f + k2
e

)
/2 is the total energy of the two outgoing electrons.

We present the TDCSs for both a fixed impact parameter and an integration of the
TDCSs over the impact parameter. The use of a fixed impact parameter allows for the
study of projectile-target alignment effects but is not currently experimentally feasible. In a
realistic experiment, the projectile’s impact parameter cannot be determined or controlled,
and theory must integrate over the impact parameter for an accurate comparison with the
experiment. For a Bessel projectile, the TDCS integrated over the impact parameter is given
by [46,59]:

d3σB
dΩ1dΩ2dE2

∣∣∣∣∣
int b

= µ2
paµie

k f ke

kiz(2π)

∫ ∣∣∣TPW
f i

∣∣∣2dφki
(21)

where TPW
f i is the transition matrix for an incident plane wave.

For an LG projectile, the TDCS integrated over the impact parameter is given by

d3σLG
dΩ1dΩ2dE2

∣∣∣∣∣
int b

= µ2
paµie

k f ke

ki

∫ e−
k2
i⊥w2

0
4

k2
i⊥

(
k2

i⊥w2
0

8

)2n+l+1 ∣∣∣TPW
f i

∣∣∣2ki⊥dki⊥dφki
(22)

3. Results

For plane wave projectiles, the shape of the TDCS can largely be explained by classical
momentum conservation. There is a large, dominant forward binary peak that results from
a single collision between the projectile and the atomic electron. This binary peak is located

along the direction of the momentum transfer vector
→
q =

→
k i −

→
k f . Directly opposite the

binary peak is a smaller recoil peak that results from the atomic electron first undergoing a
binary collision with the projectile and then a second deflection by the nucleus that results
in backward emission. The top plot in Figure 2 shows the coplanar TDCS as a function of
ejected electron angle for a 1 keV plane wave electron colliding with helium. The ionized
electron energy was 100 eV, and the scattering angle was 100 mrad (5.7◦). These energies
and scattering angles ensure that the kinematics are within the applicable range of the
FBA. The binary and recoil peaks are clearly visible along and opposite to the momentum
transfer vector direction (θq = 54◦).

The transverse profiles of the projectile beam and target atomic electron density are
shown in Figure 3 for different projectile orbital angular momenta l and beam waists w0.
Note that the l = 1 projectile profiles are similar to the l = 2 profiles and, therefore, are

not shown in Figure 3. As the impact parameter
→
b increases, the relative distance between

the center of the projectile beam and the atomic center increases. An increasing impact
parameter is depicted in Figure 3 as the projectile beam shifting to the right relative to the
atomic center (blue arrow in Figure 3a). Figure 3 shows that the helium target electron
density (red) decays exponentially with a maximum density at the nucleus (origin). Figure 3
also shows the normalized overlap between the transverse beam profile and the atomic
electron density as a function of impact parameter calculated using∫

|χV
→
k i
|2|Φ|2dρ (23)

with ϕb = 180◦.
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parameters and orbital angular momenta (labeled in figure). Row 2 shows the TDCSs integrated over
the impact parameter, and rows 3–7 show the TDCSs for fixed values of the impact parameter with
ϕb = 180◦. The TDCS is shown in color, with the warmer colors representing larger TDCSs.

Atoms 2023, 11, x FOR PEER REVIEW 8 of 19 
 

Figure 2. TDCSs for plane wave projectiles (top row) and LG projectiles (rows 2–7). For LG projec-

tiles, the TDCSs are plotted as a function of beam waist 𝑤0 and ejected electron angle 𝜃𝑒 for dif-

ferent impact parameters and orbital angular momenta (labeled in figure). Row 2 shows the TDCSs 

integrated over the impact parameter, and rows 3–7 show the TDCSs for fixed values of the impact 

parameter with 𝜑𝑏 = 180°. The TDCS is shown in color, with the warmer colors representing larger 

TDCSs. 

For 𝑙 = 0, the beam profile is Gaussian, and at small values of the beam waist, the 

overlap between the target electron density and projectile beam is sharply peaked in b. As 

the beam waist increases, the overlap broadens in b (Figures 3b,f,j). In the case of large 𝑤0, 

it is expected that the TDCSs will change more slowly with b. It is also expected that for 

large 𝑤0, the TDCS for an LG projectile will be similar to that of a plane wave since the 

projectile has become delocalized enough to completely overlap the target out to large 

radial distances. As the impact parameter increases, the beam profile shifts to the side, and 

the amount of overlap changes. For a small beam waist, the maximum overlap occurs for 

an impact parameter of approximately 𝑏 = 0.5 a.u. (Figure 3b). For larger beam waists, 

the maximum overlap occurs at increasing values of b (Figures 3f,j). Note that for 𝑙 = 0, 

the maxima of the projectile and target electron densities align for 𝑏 = 0; however, the 

overlap is maximum at 𝑏 ≠ 0. This is due to the contribution to the overlap of the tail of 

the projectile density (only visible on logscale), causing a maximum in the overlap for a 

finite value of b. 

For 𝑙 = 2, the beam profile has a node at the origin, and the width of this node in-

creases with increasing beam waist. Additionally, the width of the beam peak increases 

with increasing beam waist (Figures 3c,g,k). For on-center collisions, the largest overlap 

of the beam and the atomic electron density occurs for a small beam waist (Figure 3c). As 

the beam waist increases, the central node becomes wider, and the overlap with the target 

electron density decreases. For off-center collisions, as the impact parameter increases, the 

overlap increases to a maximum value before decreasing at large b (Figures 3h,l). The 

value of b for which the overlap is maximum depends on the specific value of the beam 

waist but occurs near the radial distance where the LG beam density is maximum. 

 

Figure 3. (a,e,i,c,g,k) Transverse profiles of the He(1s) electron density (red) and the LG beam (blue) 

with 𝑛 = 0, orbital angular momentum l, and beam waist 𝑤0 (in a.u.) as a function of transverse 

distance 𝜌 (in a.u.). All profiles are normalized to 1 to provide a qualitative comparison. The target 

atomic electron density is the same for all cases. As the impact parameter �⃗�  changes, the projectile 

beam shifts right, as denoted by the blue arrow in (a). (b,f,j,d,h,l) Normalized overlap between the 

transverse LG beam profile and the target atom electron density as a function of the impact param-

eter b (in a.u.) calculated using Equation (23). 

  

Figure 3. (a,e,i,c,g,k) Transverse profiles of the He(1s) electron density (red) and the LG beam (blue)
with n = 0 , orbital angular momentum l, and beam waist w0 (in a.u.) as a function of transverse
distance ρ (in a.u.). All profiles are normalized to 1 to provide a qualitative comparison. The target

atomic electron density is the same for all cases. As the impact parameter
→
b changes, the projectile

beam shifts right, as denoted by the blue arrow in (a). (b,f,j,d,h,l) Normalized overlap between the
transverse LG beam profile and the target atom electron density as a function of the impact parameter
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For l = 0, the beam profile is Gaussian, and at small values of the beam waist, the
overlap between the target electron density and projectile beam is sharply peaked in b.
As the beam waist increases, the overlap broadens in b (Figure 3b,f,j). In the case of large
w0, it is expected that the TDCSs will change more slowly with b. It is also expected that
for large w0, the TDCS for an LG projectile will be similar to that of a plane wave since
the projectile has become delocalized enough to completely overlap the target out to large
radial distances. As the impact parameter increases, the beam profile shifts to the side, and
the amount of overlap changes. For a small beam waist, the maximum overlap occurs for
an impact parameter of approximately b = 0.5 a.u. (Figure 3b). For larger beam waists,
the maximum overlap occurs at increasing values of b (Figure 3f,j). Note that for l = 0,
the maxima of the projectile and target electron densities align for b = 0; however, the
overlap is maximum at b 6= 0. This is due to the contribution to the overlap of the tail of
the projectile density (only visible on logscale), causing a maximum in the overlap for a
finite value of b.

For l = 2, the beam profile has a node at the origin, and the width of this node
increases with increasing beam waist. Additionally, the width of the beam peak increases
with increasing beam waist (Figure 3c,g,k). For on-center collisions, the largest overlap of
the beam and the atomic electron density occurs for a small beam waist (Figure 3c). As
the beam waist increases, the central node becomes wider, and the overlap with the target
electron density decreases. For off-center collisions, as the impact parameter increases, the
overlap increases to a maximum value before decreasing at large b (Figure 3h,l). The value
of b for which the overlap is maximum depends on the specific value of the beam waist but
occurs near the radial distance where the LG beam density is maximum.
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3.1. LG Projectiles with Zero Orbital Angular Momentum

In rows two through seven in Figure 2, we present the TDCSs for n = 0 LG projectiles
with different beam waists, impact parameters, and orbital angular momenta. We note that
the results for n 6= 0 are qualitatively similar to those with n = 0 and are not shown here.
In Figure 2, the TDCS magnitude is presented in color, with the warmer colors representing
larger TDCS values. The vertical axis in each panel shows the beam waist, while the
horizontal axis depicts the ejected electron angle. The second row shows TDCSs integrated
over the impact parameter, while rows three–seven show the TDCSs for a fixed impact
parameter (labeled in the left column). For the TDCSs with a fixed impact parameter, we
assume that the projectile center is shifted by a distance of b along the negative x-axis (i.e.,
ϕb = 180◦), and note that the TDCSs calculated for ϕb = 0◦ were identical to those for

ϕb = 180◦. For the TDCSs integrated over
→
b , all radial values and azimuthal angles were

included in the integration. Each column shows the TDCSs for a different orbital angular
momentum (labeled above row two).

Consider first the on-center b = 0 and zero orbital angular momentum l = 0 TDCSs
(third row, first column in Figure 2). In this case, the beam has a Gaussian transverse profile
with no nodes. The largest cross-section occurs with a beam waist of w0 = 1, with the
binary peak located at an ejected electron angle of 85◦. As the beam waist increases, the
binary peak location shifts to smaller angles until it is located at the plane wave momentum
transfer direction of 54◦. This indicates that for a large beam waist, the TDCS more closely
resembles that of the plane wave TDCS, as predicted from the complete overlap between
the beam and target electron density. The shift of the binary peak from the momentum
transfer direction for small beam waists could be caused by two factors—the PCI between
the outgoing electrons or the projectile’s non-zero transverse momentum. Given the large
relative momentum between the two outgoing electrons, it is unlikely that the shift in binary
peak location is due to the PCI, and a calculation that does not include PCI (not shown)
confirmed this expectation. Therefore, we conclude that the shift in binary peak location
is due to the transverse momentum of the projectile. Additional details are provided in
Section 3.5.

For off-center collisions and zero angular momentum (rows four–seven, column one in
Figure 2), the maximum TDCS occurs with increasing beam waist as the impact parameter
increases. For b ≥ 1, the TDCS only becomes observable in the colormap plots for w0 ≥ b
when the overlap between the beam profile and target electron density is non-negligible.
Because the TDCS with a large impact parameter is observable only when the beam waist
is large, the coherence length of the projectile is also necessarily large. This leads to a
more plane wave-like TDCS shape, with the binary peak located at the momentum transfer
direction. As the impact parameter increases, the overall magnitude of the TDCS decreases
(see changing color scale for different rows), indicating that ionization becomes less likely
for larger impact parameters. This correlates with the amount of overlap between the
projectile and target electron density. Regardless of beam waist, the overlap decreases with
increasing impact parameters (see Figure 3b,f,j).

For most values of w0 and b, there is almost no recoil peak observable, indicating that
rescattering by the nucleus is unlikely. This is primarily due to the energy of the ejected
electron, which is fast enough to not experience much Coulomb pull from the nucleus. The
notable exception is for b = 1 and small beam waists, in which case the recoil peak is larger
than the binary peak. This corresponds to a narrow projectile beam impinging on the target.
For a small beam waist, there is a maximum in the overlap near b = 1 to 1.5 a.u., which
corresponds with the kinematical conditions that yield an enhanced recoil peak.

For the TDCSs integrated over
→
b , a strong binary peak is observed for nearly all

w0. At the smallest beam waist values (w0 . 0.5 a.u.), the binary peak is very small and
virtually invisible on the scale used in Figure 2. As the beam waist increases, a narrow
binary peak is visible near θe = 90◦. This binary peak broadens and shifts to approximately
the plane wave binary peak location for w0 ≥ 4 a.u. For a beam waist greater than 4 a.u.,
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the transverse coherence length of the projectile is equal to or larger than that of the target
atom. Therefore, the incident projectile wave packet fully overlaps the target, and coherent
emission of the ionized electron occurs, as in the case of a plane wave or Bessel wave. This
leads to the TDCSs for LG projectiles with large transverse coherence resembling the TDCSs
of the plane wave and Bessel projectiles.

3.2. LG Projectiles with Non-Zero Orbital Angular Momentum

For on-center collisions with non-zero orbital angular momentum (row three, columns
two and three in Figure 2), the binary and recoil peaks are more similar in magnitude, and
both peaks are more localized to small beam waists. This is consistent with conditions for
maximum overlap between the projectile density and the atomic electron density. For a
large beam waist, the node in the center of the projectile density results in very little overlap
between the projectile and the target electron density, resulting in very small TDCSs.

For small beam waists, the binary and recoil peaks are located at approximately
90◦ and 270◦, which is shifted from the classical momentum transfer directions. We
have previously shown that for delocalized Bessel beam projectiles, the influence of the
transverse momentum of the projectile alters the angular distribution of the TDCS [46,54].
Because the TDCS for a Bessel beam was represented as a superposition over tilted plane
waves, the TDCS resulting from the smallest momentum transfer dominated the sum. This
determined the location of the binary and recoil peaks, which were shifted to approximately
90◦ and 270◦. For LG beams, the transition matrix is a convolution over Bessel transition
matrices, and therefore the same effect is present here, but with some averaging of location,
as discussed in Section 3.5.

As the beam waist increases, the recoil peak decreases in magnitude more rapidly than
the binary peak. This is due to the projectile probing the outer part of the target electron
wave function, where the influence of the nucleus is reduced. For l = 2, the binary and
recoil peak magnitudes are more similar than for l = 1, indicating that larger projectile
orbital angular momentum results in more secondary scattering from the nucleus and, thus,
a larger recoil peak. As was the case for collisions with zero orbital angular momentum,
for off-center collisions with non-zero orbital angular momentum, the magnitude of the
cross-sections decreases with increasing impact parameter.

The TDCSs averaged over the impact parameter for non-zero orbital angular mo-
mentum show similar qualitative features to those with zero orbital angular momentum.
The width of the binary peak remains narrow for larger beam waists as orbital angular
momentum increases, despite the fact that the transverse coherence length is larger for
larger values of orbital angular momentum. This indicates that while transverse coherence
length alters the magnitude and binary peak locations of TDCSs, it is not the only factor.
Orbital angular momentum also plays a role in the ejected electron distribution.

3.3. Bessel Projectiles with Zero Orbital Angular Momentum

LG projectiles differ from their plane wave counterparts not just in their localization
but in their ability to carry quantized orbital angular momentum. For l 6= 0, a comparison
of TDCSs for LG projectiles with Bessel projectiles can more reasonably isolate localization
effects because the LG and Bessel projectiles can carry the same orbital angular momentum.
Unlike the localized LG projectiles, Bessel projectiles have infinite transverse extent, and
the beam waist parameter does not exist. Comparison of TDCSs for LG and Bessel pro-
jectiles allows for the study of coherence effects between projectiles with the same orbital
angular momentum.

Bessel projectiles are characterized by their orbital angular momentum l and their
opening angle α, which is related to the incident transverse momentum by

k⊥i = ki sin α. (24)
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As the opening angle increases, the transverse momentum increases and the peaks
in the density become narrower. For α = 0 and l = 0, the Bessel projectile is identical to a
plane wave.

In Figure 4, we plot the normalized transverse projectile density for Bessel projectiles
(blue) and the target electron (red). Also shown is the normalized overlap between the
projectile and target electron density as a function of impact parameter. As with LG
projectiles, the overlap between the Bessel projectile and the target atom varies significantly
as orbital angular momentum and opening angle change. In general, the transverse profile
of the Bessel projectile has a series of decreasing peaks as the transverse distance increases.
For l = 0, there is a single peak at the center of the beam, but for l 6= 0, there is a node.
Unlike the localized LG projectile, the overlap between the Bessel projectile and the target
electron density can be significantly non-zero for large values of the impact parameter. This
is most notable for small opening angles, where the overlap is appreciable beyond b = 100
(Figure 4b,d).
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beam shifts right, as denoted by the blue arrow in (a). (b,f,j,d,h,l) Normalized overlap between the
transverse Bessel beam profile and the target atom electron density as a function of impact parameter
b (in a.u.) calculated using Equation (23).

For zero orbital angular momentum, Figure 4 shows that for small opening angles, the
central peak is quite broad and the overlap between the beam and the target is large. In this
case, the TDCSs are expected to resemble those of the plane wave and the LG projectile with
large beam waist. As the impact parameter increases, the overlap between the target and
the beam decreases until one of the nodes of the Bessel beam overlaps significantly with
the target electron density, creating a minimum in the overlap. The overlap then increases
again as the next lobe in the Bessel wave function overlaps the target density, creating a
peak in the overlap. For each side lobe of the Bessel wave function that overlaps the target
density, an additional peak structure is present in the overlap (Figure 4b).

As the opening angle increases, the central peak of the Bessel beam narrows and the
overlap with the target electron density decreases. For larger values of α, as the impact
parameter increases, the peak structures observed in the overlap are less pronounced
(Figure 4j). The overlap function for α = 0.4 most closely resembles that of the LG projectile
with w0 = 1, and thus the TDCSs for these parameters are expected to be similar.

For non-zero orbital angular momentum, the node at the center of the projectile
density is largest for small opening angles (Figure 4c). This results in nearly zero overlap
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between the target electron density and the projectile for on-center collisions with small
opening angles. As the impact parameter increases for small α, a series of peak structures
are observed in the overlap, each corresponding to a side lobe of the Bessel projectile
overlapping the target (Figure 4d).

As opening angle increases, the width of the central node decreases and the overlap
between projectile and target electron density increases for on-center collisions. At the
largest opening angle shown in Figure 4k,l, the largest overlap is observed for collisions
with a small impact parameter, contrary to what is present for small opening angles.
For large opening angles, as the impact parameter increases, the overlap decreases more
rapidly than for small opening angles (Figure 4l). In general, for l 6= 0, the overlap for
Bessel projectiles with large opening angles most closely resembles that of LG projectiles
with small beam waists and the TDCSs for these parameters are expected to be similar.
As was the case with LG projectiles, the overlap is crucial to interpreting the structures
observed in the TDCSs for Bessel projectiles.

Figure 5 shows the TDCSs for the ionization of helium by Bessel projectiles as a
function of the opening angle and ejected electron angle. Similar to Figure 2, row one
shows the TDCS integrated over impact parameter. For Bessel projectiles, the integration
over impact parameter washes out any dependence on orbital angular momentum, and
the TDCS is independent of l. Rows two–six show the TDCSs for a fixed impact parameter
(labeled in the left column), and each column shows results for a different orbital angular
momentum (labeled above row two).

Consider first the on-center b = 0 and zero orbital angular momentum l = 0 TDCSs
(first row, first column in Figure 5). In this case, there is a central lobe in the projectile
density (Figure 4a,e,i). The TDCSs are largest for small opening angles and closely resemble
those of the plane wave (Figure 2). There is a dominant peak located at the momentum
transfer direction and no noticeable recoil peak. As the opening angle increases, the cross-
sections drop in magnitude due to the reduced overlap between the projectile and target
electron density. For off-center collisions (rows three–six, column one in Figure 5), as the
impact parameter increases, there is not much change in the TDCS shape or magnitude.
For α = 0 and l = 0, the Bessel wave function is identical to a plane wave, and, therefore,
the TDCSs at a small opening angle with l = 0 closely mirror the TDCSs for a plane wave
projectile, regardless of impact parameter. This results in the binary peak at the momentum
transfer direction that is observed in the TDCSs at small α for fixed impact parameters
in Figure 5. As the impact parameter increases, the TDCS drops off more quickly with
increasing opening angle, which is again consistent with the decreased overlap between
the projectile and target atom densities.

3.4. Bessel Projectiles with Non-Zero Orbital Angular Momentum

For the on-center projectiles with non-zero orbital angular momentum (row two,
columns two and three in Figure 5), the peaks in the TDCS occur at larger values of α, and,
in some cases, a small recoil peak is present. This is directly related to the overlap between
the projectile and target electron density. For the Bessel projectiles with l 6= 0, there is a
node at the center of the projectile density. For small α values, this node is quite large, and
there is almost no overlap between the projectile and target electron density. It is only for
α > 0.1 rad that some overlap occurs. For even larger values of α, the TDCS again decreases
in magnitude as the nodes become narrower and the overlap decreases. For both l = 1 and
l = 2, there is a small binary peak present for α > 0.1 rad. This binary peak shifts to larger
ejected electron angles and increases in magnitude as the opening angle increases. This
effect was observed in some of our previous calculations for the ionization of hydrogen by
Bessel projectile and was traced to the transverse momentum component of the incident
projectile [54]. At a large opening angle, a recoil peak is present, and its location moves
to smaller ejected electron angles as the opening angle increases. The shift in recoil peak
location with increasing opening angle can also be traced to the transverse momentum of
the incident projectile. In fact, as we showed in [54], at very large values of α, the dominant
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momentum transfer direction occurs at θe > 180◦, and what appears to be the recoil peak
is, in reality, the binary peak. Thus, the observed TDCS peak at θe ≈ 270◦ for a large α is, in
fact, the binary peak.
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Figure 5. TDCSs for Bessel projectiles plotted as a function of opening angle α and ejected electron
angle θe for different impact parameters and orbital angular momenta (labeled in figure). The first
row contains the TDCSs integrated over the impact parameter. Rows two–six show the TDCSs for
fixed impact parameter (ϕb = 180◦) as labeled in the figure. The TDCS is shown in color, with the
warmer colors representing larger TDCSs.
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As the impact parameter increases, the magnitude of the TDCS decreases, and very
few features are observable in the color plots for b = 0.5 or 1 a.u. As the impact parameter
increases beyond 1 a.u., the side lobes of the Bessel projectile, again, overlap with the
target electron density, resulting in clearly observable binary peak structures. At the largest
impact parameter of b = 4 a.u., oscillations are observed in the binary peak magnitude
as the opening angle increases. These are a direct result of the side lobes of the Bessel
projectile overlapping the target electron. Each peak in the TDCS corresponds to one
of the Bessel lobes overlapping the target. As the opening angle increases, the location
of the binary peak shifts to larger ejected electron angles. This can, again, be traced
to the projectile’s transverse momentum, which increases with the opening angle. As
the projectile’s transverse momentum increases, the location of the classically predicted
momentum transfer direction changes, which shifts the location of the binary peak. Recoil
peak structures are observed again at large opening angles for non-zero impact parameters,
and at b = 4 a.u., oscillations are observed in the recoil peak magnitude as the opening
angle increases. As was the case with the binary peak magnitude oscillations, the recoil
peak oscillations are due to the Bessel wave function side lobes. Additionally, as was the
case for b = 0, the recoil peak observed for b = 4 a.u. is, in reality, the binary peak.

The TDCSs integrated over the impact parameter show a forward binary peak at the
plane wave momentum transfer direction, which then shifts to larger ejected electron angles
as the opening angle increases. Because the TDCSs integrated over the impact parameter
include contributions from all impact parameters and orbital angular momentum values,
some of the features can be traced to TDCS contributions from specific impact parameters
or orbital angular momentum values. For example, the binary peak at small α at the plane
wave momentum transfer direction is predominantly caused by the l = 0 TDCSs, while the
binary peak at larger α values is a result of the TDCSs for projectiles with non-zero l. The
enhanced recoil peak at the largest opening angles also results from TDCSs of projectiles
with non-zero orbital angular momentum.

3.5. Relation of LG to Bessel Projectiles

As Equation (11) shows, the LG projectile can be written as a convolution over the
transverse momentum, with each Bessel wave function weighted by the factor

e−
k2
i⊥w2

0
8

(
ki⊥w0√

8

)2n+l+1
(25)

For large values of the beam waist, this weighting factor becomes more localized in
ki⊥ at smaller values of the transverse momentum. This results in the convolution favoring
a few Bessel wave functions with small transverse momenta (i.e., small α). Because these
are the Bessel wave functions that most resemble the plane wave function, the resulting
LG projectile is delocalized in space with a large coherence length. In other words, the
highly localized weighting factor of Equation (25) in transverse momentum space results
in a delocalized wave function in position space. This weighting results in the TDCSs for
LG projectiles with large beam waists being a sort of average over the Bessel TDCSs for
small α. Therefore, the LG TDCSs at large w0 resemble those of the Bessel projectile at small
opening angles with a strong binary peak and negligible recoil peak.

For small values of the beam waist, the weighting factor in Equation (25) is a broader
function of ki⊥ and centered at larger values of transverse momentum. This results in many
Bessel wave functions with large transverse momenta contributing to the convolution. In
this case, the broad weighting factor of Equation (25) in transverse momentum space results
in a localized wave function in position space. Thus, the LG TDCSs at small w0 are similar
to an average over the Bessel TDCSs at large α with approximately equal magnitude binary
and recoil peaks.
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4. Summary

We have presented TDCSs for the ionization of helium by LG and Bessel electron
projectiles. A comparison of the localized LG TDCSs and the fully coherent, delocalized
Bessel TDCSs provides insight into the role of projectile coherence. This allowed for the
direct study of coherence effects independent of orbital angular momentum, which is not
possible if plane wave projectiles are used. For LG projectiles, we examined the effects of
transverse coherence length, orbital angular momentum, and the impact parameter on the
TDCSs. The transverse coherence length was altered by changing the projectile beam waist.
For localized projectiles with a small coherence length, the location of the binary peak was
shifted to larger ejected electron angles from the classical momentum transfer direction.
Additionally, a small recoil peak was observed. As the coherence length increased, the
recoil peak magnitude decreased, and the location of the binary peak shifted to the classical
momentum transfer direction. At a large coherence length, the TDCSs resembled that of the
plane wave and Bessel TDCSs for a completely delocalized projectile. A comparison of the
TDCSs for the LG and Bessel projectiles with non-zero orbital angular momentum showed
that a localized projectile resulted in an enhanced recoil peak, which was most pronounced
for larger orbital angular momentum values. These features were traced to the projectile’s
transverse momentum and the different contributions of the Bessel wave functions that
result from writing the LG wave function as a convolution over transverse momentum.

The overlap between the projectile’s transverse density and the target electron’s density
correlated with the magnitude of the TDCSs. For a large overlap, a large TDCS was
observed. The impact parameter, beam waist, and orbital angular momentum all affected
the overlap and, correspondingly, the conditions that resulted in large cross-sections. In
general, a large cross-section was observed when the projectile’s maximum density aligned
with the target electron’s maximum density.

For Bessel projectiles, the location and magnitude of the binary and recoil peaks were
dependent upon the opening angle of the incident projectile momentum. As the opening
angle increased, the binary peak shifted to larger ejected electron angles, while the recoil
peak shifted to smaller angles. This was expected from previous studies on ionization by
Bessel projectiles and had been shown to result from the projectile’s transverse momentum.
By writing the LG wave function as a convolution of the Bessel wave functions over the
transverse momentum, we showed that the features of the Bessel TDCSs contributed to
the shape of the LG TDCSs. In particular, at a small coherence length, many Bessel wave
functions with large transverse momentum contribute, resulting in an enhanced recoil
peak for LG projectiles. In contrast, for a large coherence length, only a few Bessel wave
functions with small transverse momentum contribute, and the LG TDCSs resembled the
plane wave TDCS.

Overall, our results demonstrate that coherence length can be controlled for electron
projectiles through the use of sculpted wave packets and that the shape and magnitude of
the TDCSs depend on the projectile coherence length. A comparison of TDCSs for Bessel
and LG projectiles isolated the effects of coherence from orbital angular momentum and
demonstrated that coherence effects persist regardless of l. We anticipate that these results
may open the door to future studies on projectile coherence effects using sculpted electrons,
in particular for molecular targets where the interference effects are strongly dependent
upon projectile coherence.
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