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Abstract: In this work, a group-11 metal nanoparticle-embedded, graphitic carbon nitride-based,
resistive-type sensor was developed for room temperature acetone sensing. We synthesized pure
and group-11 transition metal (Cu, Ag and Au) nanoparticles embedded in graphitic carbon nitride
(gCN) by thermal polycondensation and chemical reduction methods. The synthesized material
was characterized using UV/visspectroscopy, FTIRspectroscopy, XRD, HRTEM, FESEM, and EDS
techniques. Sensing properties such as response, response/recovery time, selectivity, and stability
were calculated. This study confirms that Ag/gCN is the best material for room temperature sensing
of acetone compared to Cu/gCN, Au/gCN, and pure gCN. The response of Ag/gCN for 20 ppm
acetone at room temperature is 28%. The response/recovery time is 42.05/37.09 s. Moreover, the
response of Ag/gCN is stable for 10 days.
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1. Introduction

Acetone is a flammable and hazardous gas used as a solvent in producing rubber, fibers,
and explosives [1,2]. In industries, when the acetone concentration reaches 300–500 ppm,
it causes health hazards such as respiratory disorders and ocular irritation [3,4]. It also
causes cardiovascular, urinary and digestive diseases [5]. Moreover, acetone is classified as
a carcinogen by the US Environmental Protection Agency [6], and it also causes infertility
in male as well as female animals [7]. Acetone can also act as a breath marker for the
noninvasive and rapid detection of diabetes [8,9]. Thus, the detection of acetone is vital
from a health and safety point of view. Several methods to detect gas include mass
spectrometry, gas chromatography, differential mobility spectrometry and ion mobility
spectrometry [10–14], but these techniques require sophisticated equipment, have high
operational cost, and are time-consuming [15]. These limitations can be overcome by
replacing these delicate techniques with nanomaterial-based sensing systems that are fast,
portable, and low-cost [16].

Research on 2D nanomaterial has been gaining interest since the invention of graphene.
Their extraordinary properties, such as excellent flexibility, greater mechanical strength, and
high transparency, make 2D materials an appropriate candidate for sensing applications.
Moreover, 2D materials with a single layer or a few layers exhibit quantum confinement,
making them superior to bulk material. Graphitic carbon nitride (gCN) is one such 2D
material that has attracted researchers for the last two decades due to its excellent nano-
electronics and optoelectronic properties [17–22]. gCN is the most stable phase of carbon
nitride, having tetrahedrally arranged carbon and nitrogen with several hybridizations (sp,
sp2 and sp3) [23]. gCN contains polymeric defects that act as active sites for the adsorption
of gas molecules. Cao et al. reported an ethanol sensor based on ZnO-decorated gCN
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with a response of 15.8 towards 100 ppm of ethanol [24]. Zhang et al. also showed that
a graphene–gCN nanocomposite possessed better sensing properties towards NO2 gas
than pure components [25]. Similarly, Meng et al. reported a ternary nanocomposite based
on ZnO/GO/gCN for ethanol sensing, which showeda response of 178 for 100 ppm at
300 ◦C [26]. However, gCN has the drawback of electrical conductivity [22] and low ad-
sorption performance [27]. Hence, some improvement in gCN toward sensing is required,
which can be achieved by surface modification and doping. Various research has been
going on to develop an efficient gCN-based sensing system through the decoration and
doping of pristine gCN with metal or nonmetal atoms [28–32]. Incorporating transition
metals such as Ag [33], Au [34] into gCN can overcome the drawbacks. The incorporation
of transition metals into gCN can trap the electrons, thus prolonging the electron-hole
recombination rate, making electrons available on the surface to interact more efficiently
with the analyte [35]. Moreover, the localized surface plasmon resonance due to these noble
metals can further support the interaction process between the sensor material and the
analyte [8]. The electrical conductivity can also be enhanced by incorporating the transition
metals in gCN, making it an efficient sensing material near room temperature [9].

Therefore, in the present study, weaimed to enhance the acetone-sensing properties of
pure gCN by incorporating group-11 transition metal (Cu, Ag and Au) nanoparticles. This
study shows that Ag/gCN is the best material for room temperature sensing of acetone
compared to Cu/gCN, Au/gCN and pure gCN. The response of Ag/gCN for 20 ppm
acetone at room temperature is 28%. The response/recovery time is 42.05/37.09 s.

2. Experimental Details
2.1. Synthesis of Bulk gCN and gCN Nanosheets

The bulk graphitic carbon nitride was synthesized by thermal polycondensation of
urea. In a typical synthesis, 10 g of urea wasplaced in an alumina crucible and covered with
a lid. The crucible wasthen placed in a furnace and heated at 5 ◦C/min till the temperature
reached 550 ◦C and keptat this temperature for 4 h. The obtained powder wasthen ground
into powder using a mortar pestle. The nanosheets of gCN were obtained from bulk gCN
by a chemical exfoliation route. In this process, 1 g of bulk gCN was mixed with 10 mL of
H2SO4 acid and stirred for 24 h. After that, 100 mL of DI water wasslowly poured into the
above mixture. While mixing the DI water, the temperature increases rapidly, changing the
color from brownish to light yellow. To remove the unexfoliated gCN from exfoliated gCN,
the obtained pale-yellow suspension of gCN is centrifuged at 5000 rpm for 10 min. Finally,
the suspension is washed with DI water and methanol several times, followed by overnight
drying at 60 ◦C. Aschematic of the synthesis process of gCN bulk and nanosheets is shown
in Figure 1.
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Figure 1. Schematic of synthesis process of gCN bulk and nanosheets.

2.2. Synthesis of Group-11 TM Nanoparticles Embedded gCN

Group-11 metal-embedded gCN was synthesized by chemical reduction of metal
nanoparticles on gCN nanosheets. The metal salts used for Cu/gCN, Ag/gCN and
Au/gCN synthesis were copper (II) chloride (CuCl2.2H2O), silver nitrate (AgNO3) and
chloroauric acid (HAuCl4), respectively. Metal salt (5%) is mixed with pure gCN nanosheet
aqueous solution (100 mg gCN in 100 mL DI water). The mixture solution is then sonicated
using a probe sonicator for 10 min and then stirred for 30 min. After that, a fresh mixture
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of 0.09 M NaOH and 0.04 M NaBH4 is prepared. This solution is then poured into the
metal salt mixture dropwise till the complete reduction of metal nanoparticles on gCN
nanosheets is achieved. The obtained suspension is centrifuged and washed several times
with DI water and ethanol. Finally, the suspension is dried at 60 ◦C for 6 h. A schematic of
the synthesis process of group-11 metal-embedded gCN is shown in Figure 2.

Atoms 2023, 11, x FOR PEER REVIEW 3 of 13 
 

2.2. Synthesis of Group-11 TM Nanoparticles Embedded gCN 
Group-11 metal-embedded gCN was synthesized by chemical reduction of metal 

nanoparticles on gCN nanosheets. The metal salts used for Cu/gCN, Ag/gCN and 
Au/gCN synthesis were copper (II) chloride (CuCl2.2H2O), silver nitrate (AgNO3) and 
chloroauric acid (HAuCl4), respectively. Metal salt (5%) is mixed with pure gCN 
nanosheet aqueous solution (100 mg gCN in 100 mL DI water). The mixture solution is 
then sonicated using a probe sonicator for 10 min and then stirred for 30 min. After that, 
a fresh mixture of 0.09 M NaOH and 0.04 M NaBH4 is prepared. This solution is then 
poured into the metal salt mixture dropwise till the complete reduction of metal 
nanoparticles on gCN nanosheets is achieved. The obtained suspension is centrifuged and 
washed several times with DI water and ethanol. Finally, the suspension is dried at 60°C 
for 6 h. A schematic of the synthesis process of group-11 metal-embedded gCN is shown 
in Figure 2. 

 
Figure 2. Schematic of synthesis process of group-11 metal-embedded gCN. 

3. Material Characterizations 
The prepared samples were characterized by UV/vis spectroscopy, FTIR, XRD, 

FESEM, EDS and HRTEM. UV/vis and FTIR characterization was performed using 
aShimadzuUV-2600 spectrometer and Shimadzu IRAffinity-1s, respectively. XRD 
characterization was performed using anX’Pert Pro diffractometer setup. FESEM and EDS 
analysis was performedusing aHitachi SU 8010. HRTEM was performedusing aJEOL 2100 
Plus setup. 

VOC sensing was performed using a stainless steel chamber of volume 1 L connected 
to asource meter (Agilent B2902A. The static volumetric method was adopted for the 
sensing study. A detailed schematic of the sensing setup is shown in Figure 3. 

 
Figure 3. Schematic of sensing setup. 

4. Results and Discussion  
4.1. XRD 

The XRD spectra of all the samples are shown in Figure 4. The XRD spectra of pure 
gCN and group-11 TM-embedded gCN were studied at diffraction angles in the range of 
20–80°C. For pure gCN, the presence of a distinct peak at 27.40° corresponds to the (002) 

Figure 2. Schematic of synthesis process of group-11 metal-embedded gCN.

3. Material Characterizations

The prepared samples were characterized by UV/vis spectroscopy, FTIR, XRD, FESEM,
EDS and HRTEM. UV/vis and FTIR characterization was performed using aShimadzuUV-
2600 spectrometer and Shimadzu IRAffinity-1s, respectively. XRD characterization was
performed using anX’Pert Pro diffractometer setup. FESEM and EDS analysis was per-
formedusing aHitachi SU 8010. HRTEM was performedusing aJEOL 2100 Plus setup.

VOC sensing was performed using a stainless steel chamber of volume 1 L connected
to asource meter (Agilent B2902A. The static volumetric method was adopted for the
sensing study. A detailed schematic of the sensing setup is shown in Figure 3.
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Figure 3. Schematic of sensing setup.

4. Results and Discussion
4.1. XRD

The XRD spectra of all the samples are shown in Figure 4. The XRD spectra of pure
gCN and group-11 TM-embedded gCN were studied at diffraction angles in the range of
20–80 ◦C. For pure gCN, the presence of a distinct peak at 27.40◦ corresponds to the (002)
plane, which is due to the interlayer and in-plan stacking of the triazine ring of gCN (JCPDS
87-1526) [36]. For Cu/gCN, two small peaks at 43.80◦ and 56.78◦ confirm the addition
of Cu in gCN (Figures 3 and S2) [37]. These two peaks correspond to the (111) and (200)
planes. For Ag/gCN, there are four extra peaks at 38.13◦, 44.45◦, 64.58◦ and 77.56◦, which
correspond to (111), (200), (220) and (311) planes of metallic Ag nanoparticles with cubic
structure (JCPDS 65-2871) [36], whereas for Au/gCN, there exist extra peaks at 39.21◦,
54.72◦ and 67.21◦ corresponding to (111), (200) and (220) planes. It can also be seen from the
XRD spectra that the intensity of the peak at 27.40◦ corresponding to the gCN nanosheets
remains almost identical in Cu/gCN, attributed to poor mixing of Cu nanoparticles with
gCN such that that the Cu2+ ion does not change the skeleton structure of pure gCN [38],
whereas the intensity of this peak is minimal in the case of Ag/gCN, confirming its excellent
intermixing with gCN nanosheets compared to other samples. This excellent intermixing
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of Ag with gCN is due to the Ag nanoparticles beinghighly stable compared to Cu and Au
nanoparticles, which becomeagglomerated, resulting in poor intermixing.
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4.2. UV/Vis Spectroscopy

The UV/vis spectra of pure gCN and group-11 metal (Cu, Ag and Au)-embedded
gCN are shown in Figures 5 and 6, respectively. The Tauc relation is used to investigate the
band gap (Eg):

αh
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The Tauc plots of all materials areshown in the insets of UV/vis spectra (Figures 4
and 5). By extrapolating the tangent of (αhυ)2 on the hυ axis, the band gap is calculated for
all the materials. For pure gCN, the calculated band gap was 2.72 eV, which matches well
with the literature [39]. For Cu/gCN, Ag/gCN and Au/gCN, the bandgap decreases to
2.63, 1.39 and 1.71 eV, respectively. This decrease in bandgap is due to the incorporation of
metallic nanoparticles in metal-free gCN. Since gCN is a metal-free semiconductor, it has
poor electrical conductivity, but with the addition of metal nanoparticles in it, the bandgap
decreases since the material changes from a semiconducting nature to a conducting nature.
Of all the materials, Ag/gCN has the lowest band gap, which confirms that of all three
metal nanoparticles, Ag nanoparticles have the best affinity with pure gCN, followed
by Au/gCN, whereas for Cu/gCN, there is the least change in bandgap value (2.63 eV)
compared to pure gCN (2.72 eV), which confirms its poor interaction with pure gCN.
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4.3. FTIR Spectroscopy

The FTIR spectra of pure and group-11 TM nanoparticle-embedded gCN is shown
in Figure 7. FTIR spectra are studied to analyze the molecular structure of gCN and
its nanocomposite. A wide adsorption band observed in a range of 3000–3400 cm−1 is
partially due to the terminal NH2 and NH groups of the gCN surface and partially due
to the OH group of surface-adsorbed water molecules [40,41]. The multiple peaks in the
range of 1200–1650 cm−1 are due to the stretching vibration modes of C=N and C-N in
the heterocyclic aromatic rings [42]. Moreover, the peak at 812 cm−1 is attributed to the
stretching vibration mode of the triazine monomer of gCN [43]. The FTIR spectra of Cu, Ag
and Au embedded gCN have similar peaks as that of pure gCN. Thus,the FTIR study shows
that the addition of group-11 metal nanoparticles does not alter the molecular structure of
pure gCN.
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4.4. FESEM and EDS

The surface morphology and elemental analysis of pure gCN and group-11 TM
nanoparticle-embedded gCN were studied using FESEM and EDS and elemental mapping.
FESEM image of pure gCN is shown in Figure 8a. It can be seen that pure gCN shows
a sheet-like structure witha coarse surface. EDS and elemental mapping show 39.77 and
69.23 wt% of C and N, respectively (Figure S3). For Cu/gCN (Figure 8b), the FESEM image
shows that the surface of gCN becomes rougher and coarser after Cu decoration. EDS and
elemental mapping show 36.72%, 56.92% and 6.36% of C, N and Cu in Cu/gCN (Figure S4).
For Ag/gCN (Figure 8c) and Au/gCN (Figure 8d), adding Ag and Au changes the surface
of pure gCN with more irregularity and roughness than Cu/gCN and pure gCN. The EDS
spectra confirm that 6.06 wt% of Ag and 4.15% of Au is added in Ag/gCN (Figure S5) and
Au/gCN (Figure S6), respectively. The maximum change in surface morphology can be
observed for Ag/gCN because the addition of Ag in gCN is an energetically favorable
process compared to Cu and Au addition.
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4.5. HRTEM

HRTEM analysis is also done on pure and group-11 TM nanoparticle-embedded gCN
to understand more about the morphology of all the samples. Figure 9 shows HRTEM
images of pure gCN and Cu-, Ag-, and Au-embedded gCN. For pure gCN, a smooth
morphology with voids can be observed. These voids are due to the acidic exfoliation
of bulk gCN into gCN nanosheets. Compared to Ag and Au embedded gCN, very few
Cu nanoparticles in Cu/gCN can be seen, which confirms the less intense peaks of the
XRD pattern of Cu/gCN (Figure 4). Agglomeration of Au nanoparticles can be observed
in Au/gCN, resulting in a greater size of Au nanoparticles on the gCN sheet, whereas a
uniform dispersion of Ag nanoparticles of size 7–10 nm on gCN nanosheets can be seen,
whichfurther proves the better addition of Ag in gCN than Cu and Au.
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4.6. Sensing

The VOC sensing study was performed in a 1 L sensing chamber made of stainless steel
connected to a source meter (Agilent B2902A) with two terminals. The static volumetric
method was used for all the measurements.

For calculating the volume of target VOC, the following formula was used:

C =
22.4 × ϕ × ρ × V1

M × V2
(2)

where
C is the concentration of analyte in ppm,
ϕ is the volume fraction of gas,
ρ is the density of the analyte in g/mL,
V1 is the volume of analyte in µL,
V2 is the volume of the sensing chamber in L, and
M is the molecular mass of the analyte in g/mol.
The sensor response was calculated using Equation (3) (for pure gCN) and Equation (4)

(for group-11 TM-embedded gCN) [44,45]:

Response(%) =
RVOC − RA

RVOC
(3)

and
Response(%) =

RA − RVOC
RA

(4)

where RVOC is the resistance of sensing material in the presence of VOC vapors, and RA is
the resistance of sensing material in the absence of VOC.

The sensing response of all the materials was assessedat room temperature with a
relative humidity of ~45%. The concentration range of acetone exposure was in the range of
20–100 ppm. For pure gCN, the response shows an upward trend. However, in comparison
to pure gCN, group-11 TM metal nanoparticle (Cu, Ag and Au)-embedded gCN exhibits a
response curve of the opposite pattern. This shows that pure gCN shows a p-type response
to ammonia, whereas Cu/gCN, Ag/gCN and Au/gCN show n-type behavior towards
acetone sensing.
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The acetone-sensing study was performed at room temperature using a stainlesssteel
chamber of 1 L volume with a two-terminal source meter. The static volumetric method
was used [46].

The response curves of pure gCN nanosheets are shown in Figure S1 (Supplementary
Data), and those of Cu/gCN, Ag/gCN and Au/gCN are shown in Figure 10a–c. For
20 ppm of acetone, the response of pristine gCN is 6%, which increases to 25%, 28% and
24% for Cu/gCN, Ag/gCN and Au/gCN, respectively. For 100 ppm of acetone, the
response of pure gCN is 35% only, which is enhancedto 66%, 79% and 65% for Cu/gCN,
Ag/gCN, and Au/gCN, respectively. Hence, we can see the response increase with the
addition of transition metal in gCN, with a maximum response for Ag/gCN, followed by
Cu/gCN and Au/gCN.
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The response/recovery time wasalso calculated for all the samples. Response time
is the time taken by the sensor to reach 90% of maximum value of its response in the
presence of analyte, whereas recovery time is the time taken by a sensor to recover 90%
of the maximum value of its response after the analyte is removed. The response time
for 20 ppm exposure of acetone was 103.00, 125.94, 42.05 and 71.82 s for pristine gCN,
Cu/gCN, Ag/gCN and Au/gCN, respectively. The recovery time was 94.21, 154.65, 37.09
and 65.75 s for pristine gCN, Cu/gCN, Ag/gCN and Au/gCN, respectively. Hence, the
response and recovery time were the shortest for Ag/gCN out of all the materials, which
further confirms that Ag-embedded gCN is the best material for acetone sensing among all
the materials under study.

The response variation based on acetone concentration is shown in Figure 10d. The
inset of Figure 10d shows a bar graph of response vs concentration of acetone. We can see
that the response increases with an increase in the acetone concentration (20 to 100 ppm).
Thus, all the materials show linear response with an increase in the concentration of acetone.

The selectivity and stability of Ag/gCN are also investigated (Figure 11a,b, respec-
tively). The selectivity was calculated using 20 ppm of methanol, propan-2-ol, toluene
and cyclohexane as analytes. It can be seen from Figure 11a that Ag/gCN is the most
sensitive for acetone (28%) of all five analytes. The response of Ag/gCN for 20 ppm
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of methanol, propane-2-ol, toluene, and cyclohexane is 20%, 13.60%, 10.54% and 5.89%,
respectively. The stability of Ag/gCN is calculated by performing the acetone sensing
under similar conditions for 20 ppm concentration for 10 days. It can be seen from the
stability curve (Figure 11b) that the response remains almost the same for 10 days. Hence,
Ag/gCN is a commendable material in terms of response, response/recovery time selectiv-
ity, and stability.
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4.7. Sensing Mechanism

Our study depicts that Ag/gCN is the best material for acetone-sensing compared
to pristine gCN, Cu/gCN and Au/gCN. Thus, the sensing mechanism of Ag/gCN is
discussed in this section.

The sensing mechanism of Ag/gCN is based on the interaction of acetone molecules
with Ag nanoparticles on the sensor surface [47,48] The conversion of Ag into AgO occurs
when acetone molecules interact with Ag nanoparticles. This interaction results in a
decrease in the work function of the acetone molecule over the surface of Ag/gCN. The
free electrons of acetone molecules thus drift towards the gCN surface and get impregnated
on the gCN lattice [49]. This will result in an increase in charge carrier concentration in
Ag/gCN, which leads to an increase in conductance and therefore a decrease in resistance
of Ag/gCN. This decrease in resistance is the reason behind the n-type behavior of Ag/gCN
towards acetone sensing. The resistance increases when the acetone molecule desorbs from
the surface of Ag/gCN, since the resistance of the sensor depends upon the concentration
of the analyte [49].

Ag/gCNalso acts as an n-type semiconducting sensor [50]. When it is exposed toair,
the adsorbed oxygen from the surrounding atmosphere becomesionized to O2

−, O−, and
O2− by accepting electrons from conduction band. This results in the formation of a thick
depletion layer and thus increases the width of the potential barrier. This will increase the
resistance of the sensor [51]. When Ag/gCN is exposed to acetone, which is reducing in
nature, the already-adsorbed oxygen species come in contact with it [52]. This interaction
results in the release of trapped electrons back to the conduction band, which will decrease
the resistance of the sensor. Thus, the redox reaction between the acetone and adsorbed
oxygen further enhances the sensing response.

Thus, we can say that in the present study, compared to pure gCN, Cu/gCN, and
Au/gCN, Ag/gCN has superior sensing properties towards acetone vapors at room temper-
ature (Table 1). For 20 ppm of acetone, the response of Ag/gCN six times that of pure gCN.
The response and recovery time also reduces to 2.4 and 2.5 times, respectively. Moreover,
Ag/gCN is highly selective compared to other materials, with good stability for 10 days.
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Table 1. Comparison of different gCN-based sensors with the present study.

Sr.No. Material Analyte Response (%) Operating Temperature (◦C) Reference

1. Exfoliated polymeric
carbon nitride Ethanol 2.31 20 ± 2◦ [53]

2. Pd/SnO2/g-C3N4 CO 5.55 125 [54]

3. In(III)-SnO2/g-CN Toluene 2.4 90 [55]

4. Pure gCN
Ag/gCN Ethanol 6.67

14.87 Room temperature [56]

5.
Cu/gCN
Ag/gCN
Au/gCN

Acetone
25
28
24

Room Temperature This work

5. Conclusions

In this study, pure and group-11 transition metals (Cu, Ag,and Au) were embedded
graphitic carbon nitride (gCN) by thermal polycondensation and chemical reduction for
sensing acetone. The experimental characterization confirmed the successful synthesis of
pure and transition metal-embedded gCN. The response for 20 ppm acetone was 6%, 25%,
28% and 24% for pure gCN, Cu/gCN, Ag/gCN and Au/gCN, respectively. The response
and recovery time wasalso the least for Ag/gCN, i.e., 42.05 and 37.09 s. Further, good
linearity was observed for response with the variation inconcentration of acetone for all the
materials. Finally, the stability and selectivity were also studied for Ag/gCN, which also
confirms the aptness of this material for acetone sensing. Thus, our study suggests that the
addition of group-11 transition metalstopristine gCN enhances its sensing properties.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/atoms11050078/s1. Figure S1: Sensing Response of pure gCN,
Figure S2: Detailed XRD spectra of Cu/gCN, Figure S3: EDS and mapping or pure gCN, Figure
S4: EDS and mapping or Cu/gCN, Figure S5: EDS and mapping or Ag/gCN, Figure S6: EDS and
mapping or Au/gCN.
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