
Citation: Hryhorchak, O.; Pastukhov,

V. Trapped Ideal Bose Gas with a Few

Heavy Impurities. Atoms 2023, 11, 77.

https://doi.org/10.3390/atoms

11050077

Academic Editors: Luis Aldemar

Peña Ardila and Cesar Cabrera

Received: 2 March 2023

Revised: 4 April 2023

Accepted: 26 April 2023

Published: 28 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atoms

Article

Trapped Ideal Bose Gas with a Few Heavy Impurities
Orest Hryhorchak and Volodymyr Pastukhov *

Ivan Vakarchuk Department for Theoretical Physics, Ivan Franko National University of Lviv,
79000 Lviv, Ukraine
* Correspondence: volodyapastukhov@gmail.com

Abstract: In this article, we formulate a general scheme for the calculation of the thermodynamic
properties of an ideal Bose gas with one or two immersed static impurities, when the bosonic particles
are trapped in a harmonic potential with either a quasi-1D or quasi-2D configuration. The binding
energy of a single impurity and the medium-induced Casimir-like forces between the two impurities
are numerically calculated for a wide range of temperatures and boson–impurity interaction strengths.
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1. Introduction

The recent activity in the research field of induced forces between particles immersed
in bosonic media is mostly stimulated by a rapid development of Bose polaron studies in
3D [1–29], in 1D [30–36] and in 2D [37–39] over the past decade. Particularly important to
the problem of induced forces between immersed atoms in a bosonic medium is the Bose
bipolaron [40–46]; the problem of two (typically mutually non-interacting) impurities in a
dilute Bose gas. In realistic systems, the boson–boson interaction does not allow the exact
solution of the problem even in the limit of a single impurity, and only the universal tail of
the induced potential at a large separation between immersed particles is accessible [47–53].
An exception is media formed by non-interacting particles, where all details of the (in
general N -body) effective interaction can be obtained for point-like impurities. For free
fermions, the latter leads to the famous Ruderman–Kittel–Kasuya–Yosida potential. Its
bosonic analogue together with the three-body inter-impurity potential were recently
studied [54] below the Bose–Einstein condensation (BEC) transition temperature in three
dimensions. Thanks to the simplicity of the bosonic ground state in the non-interacting limit,
the mean-field predictions [55–59] for the energy of this system with an arbitrary number
of point-like impurities coincide with the exact results. The present paper generalizes
these exact findings on the trapped ideal Bose gases with quasi-one-dimensional (quasi-1D)
and quasi-two-dimensional (quasi-2D) geometries. There are two known facts about such
low-dimensional systems: first, the BEC exists only in the ground state, and secondly,
the low-energy boson–impurity scattering amplitudes vanish in 1D and 2D. These all
lead to a very peculiar behaviour; bosons do not experience the presence of exterior static
particles at absolute zero, and the effect of impurities is only visible in the finite temperature
thermodynamics of the system.

2. Formulation

We consider a system of a macroscopic number N of non-interacting bosons of mass
m with a few N static (infinite-mass) impurities. The 3D system is assumed to be under
external harmonic confinement in one or two directions, and for simplicity, the boson–
impurity interaction is taken to be the zero-range s-wave Huang-Yang pseudo-potential
Φ(r) = gδ(r) ∂

∂r r. Here, g = 2πh̄2a/m with a is the s-wave scattering length. Because
there are no interactions between bosons, the ground state of the system can be the non-
thermodynamic one. This happens when the boson bind to the N impurities. Then, their
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wave-function is independent of the length in the quasi-1D and the area in the quasi-2D
cases of non-confined directions. Before we can proceed with the thermodynamic limit,
where the number of bosons and the volume of non-confined directions approach infinity
in such as manner that the number density is constant, it is very important to reveal all
bound states of a boson in the external ‘field’ of the impurities.

2.1. One-Body Problem

We consider the problem of a single trapped boson interacting with a few infinite-mass
impurity particles. The appropriate Hamiltonian is specified as follows

h = − h̄2

2m
∇2

r + V(r) + ∑
1≤α≤N

Φ(r− Rα), (1)

where V(r) = mω2

2 z2 for quasi-2D, and V(r) = mω2

2 (y2 + z2) for quasi-1D geometries,
with ω being the frequency of the harmonic trapping. The set {Rα} represents the three-
dimensional positions of impurities. An amazing fact about Hamiltonian (1) with pseudo-
potential Φ(r) is that it is exactly solvable for an arbitrary number of impurities. Further-
more, the proposed approach can be applied for any external potential V(r) (for instance,
the linear one [60]) with known eigenvalues εq, where q is the set of quantum numbers
and appropriately normalized wave-functions φq(r), i.e.,

− h̄2

2m
∇2

r φq(r) + V(r)φq(r) = εqφq(r), (2)

In those directions where the trapping potential is absent, we apply periodic boundary
conditions with large length-scale L. Here, we are only interested in the bound states of a
boson in the presence of N impurities, so let us define the auxiliary function

Fν(r, r′) = ∑
q

φq(r)φ∗q (r′)
εq − ν

, (3)

which is the Green function of the differential operator − h̄2

2m∇2
r + V(r)− ν. The general

solution of the bound-states problem can be readily constructed for an arbitrary number N
of impurities

ΨN (r) = ∑
1≤α≤N

AαFεN (r, Rα), (4)

where the {Rα}-dependent constants {Aα} are subject to the boundary conditions and
determined by a system of linear homogeneous equations{

1 + g
∂

∂r
rFεN (r + Rα, Rα)

}
r=0

Aα + ∑
β 6=α

FεN (Rα, Rβ)Aβ = 0. (5)

Note that the wave-function (4) is square-integrable even in free space. The non-trivial
solutions of this system of coupled equations correspond to the zeros of its determinant. In
general, these calculations must be performed numerically, but for N = 1 we have

1 + g
{

∂

∂r
rFε1(r + R1, R1)

}
r=0

= 0, (6)
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while for N = 2 we have[
1
g
+

{
∂

∂r
rFε2(r + R1, R1)

}
r=0

][
1
g
+

{
∂

∂r
rFε2(r + R2, R2)

}
r=0

]
−[Fε2(R1, R2)]

2 = 0, (7)

where we used the fact that Fε2(r, r′) is a symmetric function of its arguments for real
energies ε2. We see that ε1 and ε2, because of the partially broken continuous translation
symmetry, depend on R1 and R1, R2, respectively. Recall that without trapping, potential
ε1 is independent of position R1 of impurity, while ε2 is a function of distance |R1 − R2|.

2.2. Many-Body Consideration

The considered system allows for all the bosons to be in the same bound state. The total
energy of the system in these collapsed BEC states is simply given by NεN . In the following,
however, we mainly focus on configurations of impurities, where there are no bound states
in the single-boson spectrum and the ground state of the N +N particle system is very
similar to the one without impurities. Aiming at the finite-temperature description of
the Bose gas with immersed impurities, we apply the path-integral formulation with the
Euclidean action

S = ∑
q,n

{
iνn − εq + µ

}
ψ∗q,nψq,n − ∑

q,q′ ,n
gqq′ψ

∗
q,nψq′ ,n (8)

written down on a one-body basis φq(r). In (8), εq denotes the shifted one-particle energies
such that εq=0 = 0 in the lowest state q = 0; νn and µ stand for the Matsubara frequencies
(νn = 2πnT, where n = 0,±1,±2, . . . and T is the temperature of the system) and the bosonic
chemical potential, respectively. The latter fixes the density of the Bose gas. The couplings

gqq′ =
∫

drφ∗q (r) ∑
1≤α≤N

Φ(r− Rα)φq′(r), (9)

represent the matrix elements of the boson–impurities interaction. One way [61] of dealing
with (8) is to introduce auxiliary fields that split, by means of the Hubbard–Stratonovich
transformation, the last term of the action and then integrate out the bosonic fields ψq,n.
The remaining effective action of the auxiliary fields is Gaussian, so the integrations can
be performed analytically. Here, however, we provide a somewhat different approach by
calculating the thermal average 〈ψq,nψ∗q′ ,n〉 explicitly. With this correlator in hand, we can
obtain an equation that relates the chemical potential to the equilibrium number of bosons

N = lim
τ→+0

T ∑
q,n

eiνnτ〈ψq,nψ∗q,n〉, (10)

and taking into account the ‘equation of motion’ generated by (8), −〈ψ∗q′ ,nδS/δψ∗q,n〉 = δqq′{
εq − µ− iνn

}
〈ψq,nψ∗q′ ,n〉+ ∑

q′′
gqq′′〈ψq′′ ,nψ∗q′ ,n〉 = δqq′ , (11)

the internal energy of the system with N impurities reads

EN = µN + lim
τ→+0

T ∑
q,n

eiνnτ iνn〈ψq,nψ∗q,n〉. (12)

Being interested only in the diagonal element of correlator 〈ψq,nψ∗q′ ,n〉, we can adopt
the Dyson-like form

〈ψq,nψ∗q,n〉−1 = εq − µ− iνn + Tqq,n, (13)



Atoms 2023, 11, 77 4 of 11

found in Ref. [62]. Here, Tqq,n plays the role of the self energy, which is equal to the diagonal
matrix element of the reduced t-matrix determined by the following equation

Tqq′ ,n = gqq′ − ∑
q′′ 6=q

gqq′′Tq′′q′ ,n

εq′′ − µ− iνn
. (14)

Similarly to the translationally invariant system of bosons and impurities [54], the struc-
ture of the solution can be guessed by iterating Equation (14). By making use of the notation
Tqq′ ,n = ∑α,β φ∗q (Rα)Tαβφq′(Rβ) and plugging it in Equation (14), we obtain the linear equa-
tion for the matrix Tαβ[

1
g
+

{
∂

∂r
rFµ+iνn(r + Rα, Rα)

}
r=0

]
Tαβ + ∑

γ 6=α

Fµ+iνn(Rα, Rγ)Tγβ = δαβ. (15)

This finishes the formal part of our calculations in the many-body limit at temperatures
above the Bose–Einstein condensation (BEC) point.

There is no BEC at finite temperatures for the considered system in quasi-1D or
quasi-2D. Here, we do not assume any special thermodynamic limit, where the frequency
of the trapping potential approaches zero together with N → ∞. It is only assumed
that N/L2 = const in quasi-2D and N/L = const in quasi-1D. Note that the adopted
calculation scheme can be adjusted for any other external potentials, which can support the
BEC transition of the system at finite temperatures. In the BEC phase, which in our case
is rather interesting from the methodological point of view, one has to modify the above
consideration. Keeping in mind the restrictions on the configurations of impurities that do
not provide the boson–impurity bound states, we have to single out the Bose condensate
contributions to the action (8) ψq,n =

√
N0/Tδq,0δn,0 + ψq,n(1− δq,0) (and same for ψ∗q,n)

S =
N0

T
(µ− g00) + ∑

q 6=0,n

{
iνn − εq + µ

}
ψ∗q,nψq,n

−
√

N0

T ∑
q 6=0

{
gq0ψ∗q,0 + c.c.

}
− ∑

q,q′ 6=0,n
gqq′ψ

∗
q,nψq′ ,n (16)

where N0 represents the number of bosons in BEC. Indeed, the total number of particles
(10) now implies

N = N0 + lim
τ→+0

T ∑
q 6=0,n

eiνnτ〈ψq,nψ∗q,n〉, (17)

Similar to the way Equation (11) was obtained, we can write down for q, q′ 6= 0

{
εq − µ− iνn

}
〈ψq,nψ∗q′ ,n〉+

√
N0

T
δn,0gq0〈ψ∗q′ ,0〉+ ∑

q′′ 6=0
gqq′′〈ψq′′ ,nψ∗q′ ,n〉 = δqq′ , (18)

where the non-zero average 〈ψ∗q,0〉 appears due to presence of impurities. Physically,
the quantity 〈ψ∗q,0〉 accounts for the deformation of the lowest-energy single-boson wave
function in the external potential of point-like impurities. The average 〈ψ∗q,0〉 of the static
part of the bosonic fields can be calculated by using Equation (18), or equivalently derived
from −〈δS/δψq,0〉 = 0

{
εq − µ

}
〈ψ∗q,0〉+

√
N0

T
g0q + ∑

q′ 6=0
〈ψ∗q′ ,0〉gq′q = 0. (19)
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It is straightforward to find the solution of the above equation 〈ψ∗q,0〉 = −
√

N0/TT0q,0/
(εq − µ), and by minimizing the grand potential with respect to N0 we have

µ− g00 −
1
2

√
T

N0
∑
q 6=0

{
gq0〈ψ∗q,0〉+ c.c.

}
= 0. (20)

Combining with the average 〈ψ∗q,0〉, one obtains an equation for the chemical potential
below the BEC transition temperature

µ = g00 − ∑
q 6=0

T0q,0gq0

εq − µ
= T00,0. (21)

Note that µ = T00,0 can be obtained from the condition of having a pole in correlator
(13) at zero Matsubara frequency and q → 0. For our discussion, (N � N ) the chemical
potential can be ommited in T00,0. Remarkably, the formula for the internal energy of the
system in the BEC phase is very similar to Equation (12), except that the zero mode in the
sum over q has been omitted.

3. Results

It is natural to start the discussion of our results with the bound states of a single
boson in the presence of impurities. The energies of these bound states determine the
thermodynamic stability of the many-body system. A detailed analysis of the single-boson
bound states both in quasi-1D and quasi-2D geometries were previously performed in
Refs. [63,64], while here we mostly focus on the case with two impurities. The numerical so-
lutions to Equation (7) in the quasi-1D and quasi-2D cases are presented in Figures 1 and 2,
respectively.

0 2 40

1

2

3 q - 1 D
 a / l  = −1 . 0
 a / l  = 1 . 0ε 2

R / l - 1 0 - 5 0 5 1 00

1

2

3

4

R/l

a / l

q - 1 D
 ε 2  = 0 . 1
 ε 2  = 1 . 0
 ε 2  = 1 0 . 0

Figure 1. Left panel: Contour graph of the bound states (ε2 = |ε2|/h̄ω) energy of a single boson
with two static impurities in quasi-1D geometry as a function of impurity separation R and s-wave
scattering length (in units of the oscillator length l =

√
h̄/mω). Right panel: bound state energies as

a function of separation R at a/l = 1.0 (solid lines) and a/l = −1.0 (dashed line).

0 2 40

1

2

3

ε 2

R / l

q - 2 D
 a / l  = −1 . 0
 a / l  = 1 . 0

- 1 0 - 5 0 5 1 00

1

2

3

4

5

6 q - 2 D
 ε 2  = 0 . 1
 ε 2  = 1 . 0
 ε 2  = 1 0 . 0

R/l

a / l

Figure 2. Same as in Figure 1 but for the quasi-2D case.

In order to understand the form of the bound-state energy surface, we plotted the lines
of equal ε2 and R-dependence of ε2 at a fixed scattering length. Note that in both quasi-1D
and quasi-2D, both impurities are located at the minimum of the harmonic potentials (i.e.,
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on the x-axis in quasi-1D geometry and in the xy-plane in quasi-2D case) because otherwise
the bound states and energies are exponentially small compared to h̄ω. It is readily seen in
Figures 1 and 2 that the qualitative picture is the same for the two geometries. There are at
most two bound states for a > 0 and at most one for a < 0. If we increase the number of
impurities to N , there will be at most N branches of bound states for a > 0 and maximally
N − 1 branches of bound states for negative as. This distribution of branches is completely
analogous [54] to the translation invariant three-dimensional case. For both quasi-1D and
quasi-2D, the small-R behaviours of the binding energy of the a > 0 and a < 0 branches

are universal, Efimov-like, and approach ε2 = − h̄2W2(1)
2mR2 , with W(1) = 0.5671 . . . and a/l of

order unity.
In quasi-1D and quasi-2D cases at zero temperature, if all bosons are not in the bound

state they are insensitive to the presence of static impurities. This happens because the 1D
and 2D t-matrices vanish for a boson, colliding with an impurity at zero collision energy,
and only thermally stimulated bosons that scatter from impurities affect the energy of the
system at finite temperatures. Another way to provide a non-zero population of excited
states (and consequently, non-zero corrections to energy associated with the immersion of
impurities) is to turn on the interaction between bosons [51].

- 1 0 - 5 0 5 1 0
- 2

- 1

0

1

2

∆E
1(t=

1)

a / l

 q - 1 D
 q - 2 D

Figure 3. A single impurity contribution (in units of h̄ω) to the internal energy of quasi-1D and
quasi-2D Bose gases at finite temperature t = T/h̄ω = 1.

In Figure 3 we plotted a typical dependence of the correction to the internal energy,
i.e., E1 − E1|a=0, of an ideal Bose gas caused by a single impurity as a function of the s-wave
scattering length a in quasi-1D and quasi-2D geometries at temperature t = T/h̄ω = 1
and at fixed densities of quasi-1D and quasi-2D Bose gases of n1Dl = 1 and n2Dl2 = 1,
respectively. It should be noted that in the case of an ideal Bose gas, the only physical
region is a < 0, where there is no bound states formation. However, if we assume any weak
repulsion between bosons with the coupling gb, the collapse of the system will be prevented.
Indeed, the decrease of energy by Nε1 due to the bound state formation of N bosons will
be accompanied by its enormous increase by ∝ N2gb/(al2) in quasi-1D and ∝ N2gb/(a2l)
in quasi-2D, due to boson–boson interaction. Our calculations, therefore, can be extended
to impurities immersed in Bose gas with any weak repulsion that does not considerably
change the properties of Bose gas itself, but prevents the collapse on impurities. Although,
the general behaviour of the curves is qualitatively the same, the spatial dimensionality
affects the magnitude of the correction.

We have also analyzed the temperature dependence of the one-impurity correction
to the thermodynamics of an ideal Bose gas at the fixed scattering length of a = ±l in
quasi-1D and quasi-2D in Figures 4 and 5, respectively.
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0 1 0 2 0 3 0
- 0 . 4

- 0 . 2

0 . 0

0 . 2

∆E
1

t

q - 1 D
 a / l  = 1
 a / l  = −1

Figure 4. Temperature-dependence of the effect of a single impurity contribution on the internal
energy (in units of h̄ω) of a quasi-1D ideal Bose gas.

0 1 0 2 0 3 0- 1 . 0

- 0 . 5

0 . 0

0 . 5

1 . 0

∆E
1

t

q - 2 D
 a / l  = 1
 a / l  = −1

Figure 5. Same as in Figure 4, but for quasi-2D geometry.

Two important conclusions of these calculations are that the one-impurity correction
depends non-monotonically on the temperature, and the character of the curves is different
for attractive (a < 0) and repulsive (a < 0) boson–impurity interactions. We believe that the
non-monoticity is due to the presence of the trapping potential because such a behaviour
was not observed [54] in the 3D case, at least in the BEC region.

For the determination of the effective induced two-body potential between infinitely
heavy particles, we calculate the internal energy Equation (12) of the bosonic system with
two immersed impurities, set at a separation R one from another, and subtract the double
correction to the internal energy of the system caused by a single impurity. In other words,
we subtract the two-impurity energy with R→ ∞

Φeff(R) = E2 − E2|R→∞. (22)

The results of the numerical calculations of Φeff(R) for the quasi-1D and quasi-2D
cases are presented in Figures 6 and 7, respectively. Data are shown for two values of the
scattering length and three temperatures. The physical region for an ideal Bose gas is again
restricted to a < 0 and large R. However, any weak inter-boson repulsion extends this
region to arbitrary Rs and signs of a. Let us make two comments about the behaviour of
Φeff(R). First, it is seen that in both quasi-1D and quasi-2D, the character of the curves
is quantitatively similar for the same set of parameters, and visible discrepancies only
appear in the high-temperature region, as shown by comparing the y axes of the insets in
Figures 6 and 7. In order to visualize this pattern, we plotted Φeff(R = 0.1l) in Figure 8
at various temperatures. Secondly, as a function of temperature, the effective two-body
potential changes its sign from repulsive at low temperatures to attractive in the high-
temperature region.



Atoms 2023, 11, 77 8 of 11

0 . 0 0 . 50 . 0

0 . 5

1 . 0

0 . 0 0 . 5- 0 . 0 0 2

- 0 . 0 0 1

0 . 0 0 0

 a / l  =  1 ,  t  =  1 0
 a / l  =  − 1 ,  t  =  1 0

R / l

Φ
eff

(R)

q - 1 D
 a / l  = 1 ,  t  = 0 . 5
 a / l  = −1 ,  t  = 0 . 5
 a / l  = 1 ,  t  = 1
 a / l  = −1 ,  t  = 1

Figure 6. The effective medium-induced two-body potential (in units of h̄ω) as function of separation
R between two static impurities immersed in a quasi-1D ideal Bose gas. Curves are shown for
a/l = ±1 and t = T/h̄ω = 0.5, 1, and 10.

0 . 0 0 . 50 . 0

0 . 5

1 . 0

0 . 0 0 . 5- 0 . 0 3

- 0 . 0 2

- 0 . 0 1

0 . 0 0

Φ
eff

(R)

R / l

q - 2 D
 a / l  = 1 ,  t  = 0 . 5
 a / l  = −1 ,  t  = 0 . 5
 a / l  = 1 ,  t  = 1
 a / l  = −1 ,  t  = 1

 a / l  = 1 ,  t  = 1 0
 a / l  = −1 ,  t  = 1 0

Figure 7. Same as in Figure 6, but for the quasi-2D geometry.

0 2 4 6 8 1 0

0

2

4

t

Φ
eff

(0.
1l)

q - 1 D
 a / l  = 1
 a / l  = −1

q - 2 D
 a / l  = 1
 a / l  = −1

Figure 8. Temperature dependence of the effective impurity–impurity potential at R = 0.1l.

The obtained curves suggest the emergence of the thermally stimulated two-body
bound state of impurities with finite (but large) masses, but to find the solution to this
problem, one needs to go beyond the approximation of static impurities.

4. Summary

In conclusion, we have presented a detailed analysis of the effect of one and two static
impurities on the properties of the harmonically trapped ideal quasi-1D and quasi-2D
Bose gases. Within the assumption of a short-range boson–impurity interaction, the for-
mulated scheme allows us to calculate the thermodynamics of the system in any external
potential and with an arbitrary number of impurities. In particular, we have elucidated
the dependence of the energy of a single impurity immersed in the quasi-low-dimensional
trapped Bose gas on the temperature and interaction strength. The calculations of the
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medium-induced effective potential between two impurities in the system of free bosons
revealed an interesting behaviour: repulsion at low temperatures that changes to attraction
in the high-temperature limit. As a byproduct of this study, we have identified the bound
states of a single particle interacting through the Huang-Yang pseudopotential with two
static impurities separated by arbitrary distances in quasi-1D and quasi-2D geometries. Our
results should also be valid in the case of a non-zero interaction between bosons, but when
the system is extremely dilute [65].
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