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Abstract: Time and frequency (T&F) measurement with unprecedented accuracy is the backbone for
several sophisticated technologies, commensurate with the evolution of human civilisation in the
20th century in terms of communication, positioning, navigation, and precision timing. This necessity
drove researchers in the early 1950s to build atomic clocks that have now evolved to a state-of-the-art
level, operating at optical wavelengths as optical atomic clocks, which use cold and trapped samples
of atomic/ionic species and various other sophisticated diagnostic test techniques. Such ultrahigh-
precision accurate clocks have made it possible to probe fundamental aspects of science through
incredibly sensitive measurements. On the other hand, they meet the T&F synchronisation standards
for classical and emerging quantum technologies at the desired level of accuracy. Considering the
impact of optical atomic clocks in the second quantum revolution (quantum 2.0), they have been
identified as an indispensable critical technology in worldwide quantum missions, including in
India. This article reviews the present international scenario regarding optical atomic clocks and their
related technologies and draws a roadmap for their indigenisation over the next decade.

Keywords: atomic clock; optical clock; ion trap; optical lattice; precision measurement; fundamental
science; quantum technology; quantum metrology; quantum communication

1. Introduction

Atomic clocks [1–5] are among the most incredible machines developed in the last
century, following the prescriptions suggested by Isidor Isaac Rabi and his student Norman
Foster Ramsey [6,7], which gradually brought timekeeping to an unprecedented level of
accuracy by incorporating several other state-of-the-art technologies within them. With
the advent of lasers, precision spectroscopy of atoms became commonplace. It was only a
matter of time until research groups worldwide developed laser-based optical manipulation,
cooling, trapping, and other novel techniques to improve the measurement accuracy of
isolated quantum systems. Of particular interest, atomic clocks were aided by laser–atom
interaction techniques, which improved their accuracy by several orders of magnitude. The
microwave (MW) caesium atomic clock, which uses the doubly split hyperfine ground state
as the oscillator frequency, was the first to utilise laser cooling and trapping techniques
to improve measurement sensitivity. The Allan deviation characterises the fundamental
fractional frequency instability of an atomic clock as

σ =
∆ν

ν0

√
T

N × τ
(1)

where Q (=ν0/∆ν) depicts the quality factor for the clock transition at a frequency νo and
with a natural linewidth ∆ν [8]. Here, N is the number of experimenting atoms/ions, τ
is the integration/averaging time, and T is the cycle time for a single measurement. It is
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evident that if one were to choose a clock transition at the optical wavelengths (νo~1015 Hz),
the sheer gain in the quality factor would reduce σ, given all the other parameters are
unchanged. Highly forbidden optical transitions having ultranarrow natural linewidths
(sub-Hz ∆ν) are obvious choices for optical clocks that are nontrivial to excite. Therefore,
extremely narrow linewidth lasers are required to build accurate clocks using them. In 2001,
the first optical atomic clock based on singly charged ions was demonstrated at NIST,
USA [9]; it was followed by one based on neutral atoms, demonstrated at the University of
Tokyo, Japan, in 2005 [10]. With current fractional accuracies reaching a few parts in ~10−19,
the superiority of state-of-the-art optical atomic clocks over the best MW clocks is clearly
demonstrated, as the latter has about three orders of magnitude lower fractional uncertainty.
Thus, undoubtedly, optical clocks serve as a better frequency standard than the current MW-
based international standard (SI) definition of the second, which is likely to be redefined by
its optical counterpart in the near future [11–14]. Table 1 compares the performance of the
world’s best MW and optical clocks based on the caesium fountain, and a single trapped
27Al+ and neutral 171Yb atoms in an optical lattice, respectively, developed by NIST in the
USA and mention their potential applications. The results clearly show that the future relies
on optical clocks in all aspects—performance, applications, and portability—compared
with MW clocks. As a matter of fact, optical clocks would require about three orders of
magnitude less averaging time than MW clocks to achieve a certain fractional frequency
uncertainty, which translates to an efficient timekeeping mechanism due to a faster rate
of time and frequency (T&F) data transmission. For example, caesium fountains require
approximately 20 days for establishing their intercomparison at 10−16 levels of accuracy
via MW communication techniques such as the common view global navigation satellite
system (CVGNSS) or two-way satellite time and frequency transfer (TWSTFT). In the case
of optical clocks, this same level of accuracy can be reached in ~1000 s, and specialised
optical communication techniques such as two-way fiber optic time transfer (TWFOTT)
enable the intercomparison of remote systems. Thus, not only are the clock transitions
probed at the optical wavelengths, but the optical clock technology was boosted by the
invention of the optical frequency comb [14–21] and the development of extremely narrow
linewidth lasers (<1 Hz) [22–27] stabilised to very high-finesse (> 200,000) optical resonators
(Fabry–Pérot cavities), which were built upon improvements in several key areas such as
optical coatings, silicon-based photonics, micro/nanofabrication, and cryogenic systems.

Table 1. Typical parameters and performance metrics of microwave-based caesium (Cs) fountain
and optical atomic clocks using a single trapped aluminium ion (27Al+) and neutral ytterbium atoms
(171Yb) in an optical lattice.

Performance Metric [Unit]
Microwave Optical

133Cs Fountain [28] Trapped 27Al+ [29] 171Yb Optical Lattice [30]

νo [GHz] 9.192631770 1,121,138.58639 518,672.072664

∆ν [Hz] 0.1 8 × 10−3 7 × 10−3

Q [×1015] 91.92 × 10−6 140.142 74.096

Systematic uncertainty
[×10−19] 1100 9.4 14

σ at 1s [×10−16] 1700 12 1.5

Applications and functionality Present SI standard,
T&F metrology

Ultrahigh-accuracy T&F metrology,
quantum metrology, fundamental science, miniaturisation for

compact/transportable clock

As shown in Figure 1 there are two most common types of optical atomic clocks: the
type using a single atomic ion and the type using an ensemble of neutral atoms. With
improvements in trapping, cooling, and readout techniques, it has become possible to
manipulate atoms and/or ions at a single quantum level in a well-controlled environment.
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In the case of ions, one uses a radiofrequency (RF) trap, namely the Paul trap [31], to confine
a single ion of interest, laser cool it to the lowest motional state of the trap, and then probe
its clock transition. Due to the long confinement time τ (which could be as long as months)
of the trapped ion, repeated spectroscopic measurements on the single ion for a given
clock transition are performed to reach the desired level of accuracy [32,33]. In contrast,
neutral atoms are initially laser-cooled, collected in a magneto-optical trap, and localised
in a magic wavelength optical lattice, and subsequently, their clock transitions are probed
in a repeated manner to yield their frequency [34–37]. There are other ongoing efforts
to realise optical clocks, such as using an array of optical tweezers to trap neutral atoms
individually and performing spectroscopy on these isolated quantum systems to derive
the clock’s frequency [38–41]. For charged particles, multi-ion clocks using a specially
engineered complex chip ion trap [42,43] and using highly charged ions [44–46] are under
development. These new approaches are far from realising the fractional uncertainties that
are routinely observed in current-day state-of-the-art optical clocks using single trapped
ions and atoms in an optical lattice. So far, there have been regular competition between the
optical lattice and single-ion optical clocks; among them, 27Al+ reached the best fractional
accuracy of 9 × 10−19.
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Figure 1. Optical atomic clocks: (a) single ion trapped in an end-cap-type Paul trap and (b) neutral
atoms confined in optical lattices. Enlarged view shows a single ion trapped by an oscillating
quadrupole potential and an ensemble of atoms localised in a pancake-shaped 1D optical lattice.

The most prominent application of optical atomic clocks is time and frequency metrol-
ogy with unprecedented accuracy. Around the world, there are designated federally funded
laboratories, such as National Measurement Institutes (NMIs), and a few pioneering labs
that use optical clocks for the accurate realisation of the second, even though these clocks
are secondary standards at present and expected to be the primary standards. Ultrahigh-
accuracy T&F measurements have several applications that profoundly impact current-day
society, from day-to-day life to the strategic sectors. The most important of these applica-
tions pertain to satellite-based navigation, communication, surveillance, space missions,
e-commerce, digital archiving, meteorology, automatization in transport, stock markets,
smart power grids, industry 4.0, the Internet of Things (IoT), and more. With the advent of
sophistication in these technologies, particularly the technologies based on quantum (q)
phenomena, e.g., q-communication, q-computer, q-internet, and so on, the requisite levels
of time, frequency, and phase synchronisations and time stamping among the distributed
devices are becoming more and more stringent. These can be met only by optical atomic
clocks and all-optical T&F transfer mechanisms that inevitably enhance the MW signals’
accuracy as well, by high-fidelity optical-to-MW conversion [14] through optical frequency
comb technology. Within the country of India, the most immediate applications for such
optically generated highly accurate ultrastable MW references will be helpful in the T&F
synchronisation of setups, e.g., the national primary timescale at the National Physical
Laboratory (NPL) in New Delhi-, IRNSS Network Timing (IRNWT) centres in Bangalore
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and Lucknow; synchronising land and space-based distributed defence systems, e.g., for
secure and glitch-free operations of Doppler radar systems; wireless communication; nav-
igation in hostile terrain or underwater where GPS signals may not be available; phase
synchronisation of very-long-baseline interferometry (VLBI); an array of radio antennas,
e.g., GMRT and Ooty radio telescopes; time synchronising among worldwide gravitational
wave (GW) detectors; and many more applications. These shall substantially benefit from
the ultralow-noise, ultrastable, and narrow-linewidth MW sources derived from optical
frequency standards [26] and disseminated through phase-stabilised optical fibers [47,48].
In addition to their functions of timekeeping and synchronisation, optical clocks serve
as a powerful tool for probing fundamental physics and studying q-metrology and q-
information processing. These nationally and internationally distributed optical clocks
need to be operated in a real-time network mode [49]. A small number of developed
countries have come together with their optical clocks and already demonstrated some
landmark ultrasensitive measurements such as searching for the constancy of fundamental
constants [50–53] and fundamental symmetries [54,55]. Among the various other experi-
mental approaches, the networked optical clock is the most accurate one and plays crucial
roles in extending our present knowledge in science, e.g., the extension of the standard
model, testing the general theory of relativity, and so on. The present sensitivity of the
optical clocks can distinguish between the influence of Earth’s gravity at <1 cm height
difference to the clock transition frequency, which is thus used for accurate long-distance
levelling [30], q-geodesy [56], and oil and mineral explorations [57]. Other than these
applications, the broader scope of using space-based optical clocks includes the detection of
GW [58], cosmic microwave background radiation (CMBR), dark energy (DE), and/or dark
matter (DM) [59,60], and the testing of CPT symmetry [54] which are still in the proposal
stage but shall evolve in the coming years. Due to the broad applicability and scope of
optical clocks in science and technology, together with their strategic applications, the
underlying research in this field has gained immense momentum in the last two decades.
Developed nations such as the USA, the UK, France, and Germany, and a few developing
countries such as China, South Korea, Thailand, and India are putting their best efforts in
this direction.

This article describes the present international status of optical atomic clocks, their
enormous scope for studying fundamental aspects of sciences, their ability to meet the un-
avoidable requisites of sophisticated classical and quantum technologies, and their ability
to ensure timekeeping at an unprecedented level of accuracy. We also describe the present
national scenario towards the indigenous development of optical atomic clocks and high-
light the goals and scope of establishing real-time networking among them. Furthermore,
we propose a concrete short- and long-term roadmap that Indian researchers who are either
pursuing or planning to start research in this technology-intensive field are encouraged to
follow to cope with the global standards.

2. International Status

The single trapped ion has the benefit of longer interrogation times and negligible
collisional broadening of the clock transition. The latter is suppressed due to the absence of
intra-ionic collisions and results only from collisions with residual gas molecules drastically
reduced in an ultrahigh-vacuum (UHV) environment. In addition, perturbations due to
the stray fields can be minimised at the trap centre, and/or can be accurately estimated.
In general, ion micromotion due to the trap driving RF is an unavoidable perturbation
that results in ion heating, second-order Doppler shifts, and scalar Stark shifts. However,
the proper choice of the ion trap operating parameters—based on novel designing, careful
material selection, precision engineering, electric field compensation and efficient cooling
of the ion ensure its localisation near the RF-null and the minimisation of micromotion-
induced systematics. Other dominant systematic shifts in the clock transitions arise due to
the black-body radiation (BBR) of the ambient environment, the quadrupole moment of the
states, and Zeeman shifts, which may be minimised by their accurate determination and
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by accounting for them in the measurement. The atomic ions 27Al+, 40Ca+, 88Sr+, 115In+,
171Yb+, and 199Hg+ are the most popular choices so far, whereas 137,138Ba+, 175Lu+, 205Tl+,
and 223–229Ra+ are also being studied by some groups. The choice of the ionic species
depends on the high Q-factor of their respective clock transitions and exploring scientific
motives enhanced by their unique atomic properties [61]. The hyperfine-induced 3s2 1S0
|F = 5/2 > -3s3p 3P0 |F = 5/2 > transition in 27Al+ (the aluminium ion) at 267 nm with
∆ν = 8 mH has reached the world-best accuracy of 9.4 × 10−19 as demonstrated by NIST,
USA [29]. For this ion, simple laser cooling is not viable due to the unavailability of lasers
at the required wavelength, and to overcome this, it is sympathetically cooled using either
precooled 9Be+ or 25Mg+ ion reservoirs. In addition, for the same reason, rather than using
direct fluorescence detection, the 27Al+ ion uses quantum logic spectroscopy [29]. Among
the others, the most popular species is 171Yb+, which accommodates two quadrupole (E2)
clock transitions and one octupole (E3) clock transition at the wavelengths of 411 nm,
435 nm, and 467 nm, respectively. Its highly forbidden E3 transition with ∆ν < 1 nH is the
narrowest known and most suitable optical transition for building a trapped-ion frequency
standard. So far, accurate results on ytterbium-ion clocks have been demonstrated by PTB,
Germany, and NPL, UK, and they have reached ∆ν/νo = 3 × 10−18 [62]. The calcium-ion
clock has the potential to serve as an accurate clock since its unique magic rf operated trap
mutually cancels the micromotion-induced scalar Stark shift and the second-order Doppler
shift, which was first demonstrated in Sr+ at NRC, Canada and recently applied in a liquid-
nitrogen-cooled ion trap by WIPM, China for Ca+ [63]. Without detailing each species
individually [61], the worldwide efforts on the trapped-ion optical clocks are captured in
Table 2; they are pioneered by NIST, USA; PTB Germany; NPL, UK; and NRC, Canada, and
several other developing countries are actively engaged in developing optical clocks.
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Table 2. A list of species demonstrated as optical frequency standards worldwide is shown with their reported fractional accuracy and frequency standards.

Species Clock Transition Wavelength in
Vacuum [nm]

Measured Clock
Frequency [Hz]

Fractional
Uncertainty

[×10−17]

Short-Term
Stability

(
√

τ/s)−1/2

Same-Species
Comparison

Performed (Yes/No)

Accuracy of the
Same-Species
Comparison

Lab, Country [Ref.]

Singly charged atomic ions in a Paul trap
27Al+ 1S0-3P0 267.4 1121015393207857.4(7) 0.094 1.2 × 10−15 No * NIST, USA [29]

40Ca+ 2S1/2-2D5/2 729.3
411042129776393.2(1.0)
411042129776393.0(1.6)

240
390

2.9 × 10−13

4.0 × 10−13
No
No

SYRTE, France [64]

NIM, China [65]

411042129776398.4(1.2) 300 2.4 × 10−14 No NICT, Japan [66]

411042129776401.7 (1.1) 7.7 2.3 × 10−14 (20 ms) Yes Not reported WIPM, China [67]
88Sr+ 2S1/2-2D5/2 674 444779044095486.71(24) 3 2.2 × 10−14 Yes 4× 10−17 NPL, UK [68]

444779044095485.5(9) 1.2 3.0 × 10−15 (1 s) Yes Not reported NRC, Canada [69]
444779044095485.271(59) 1 3.3 × 10−15 No PTB, Germany [70]

115In+ 1S0-3P0 236.5 1267402452900967(63)
1267402452901040.1(1.1)

5000
85

−
1.7 × 10−13

No
No

MPIQ, Germany [71]
NICT, Japan [72]

138Ba+ 2S1/2-2D5/2 1762.2 170126432449333.00 33 1.5 × 10−15 (1000 s) No NUS, Singapore [73]

171Yb+ 2S1/2-2D3/2 435.5 688358979309307.82(36)
688358979309308.42(42) 5231.6 4.1 × 10−14

1.0 × 10−14
No
Yes 1.3(1.2) × 10−15

PTB, Germany [74]
NPL, UK [75]

171Yb+ 2S1/2-2F7/2 466.9 642121496772645.150(1)
642121496772644.91(37) 0.2757.9 1.0 × 10−15

-
No
No

PTB, Germany [74]
NPL, UK [52]

176Lu+ 1S0-3D1 847.7 3536399159522(60) - 1.2 × 10−15 Yes 3.7 × 10−18 NUS, Singapore [76]
199Hg+ 2S1/2-2D5/2 281.6 1064721609899145.30(69) 69 7 × 10−15 (1 s) No NIST, USA [77]

Neutral atoms in an optical lattice
24Mg 1S0-3P1 457.7 655659923839730(48) 7000 2.0 × 10−13 No PTB, Germany [78]
24Mg 1S0-3P0 458.0 655 058 646 681 864.1(5.3) 700 1.5 × 10−15 No LUH, Germany [79]

40Ca 1S0-3P1 657.5 455986240494144(5.3)
455986240494135.8(3.4)

1200
750

3.0 × 10−15

2 × 10−16
No
No

PTB, Germany [80]
NIST, USA [81]
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Table 2. Cont.

Species Clock Transition Wavelength in
Vacuum [nm]

Measured Clock
Frequency [Hz]

Fractional
Uncertainty

[×10−17]

Short-Term
Stability

(
√

τ/s)−1/2

Same-Species
Comparison

Performed (Yes/No)

Accuracy of the
Same-Species
Comparison

Lab, Country [Ref.]

Neutral atoms in an optical lattice
87Sr 1S0-3P0 698.4 429228004229873.65(37) 0.20 4.8 × 10−17 - JILA, USA [82]

429228004229873.10(0.17) 31 3.0 × 10−15 Yes 2.8 × 10−16 SYRTE, France [83]

429228004229873.00(07) 1.5 5.0 × 10−17 (120
days)

No PTB, Germany [84]

429228004229873.082(76) 18 7.0 × 10−15 No NICT, Japan [85]
429228004229872.0(1.6) 370 2.4 × 10−13 (8 s) No NMIJ, Japan [86]
429228004229873.4(4) 0.72 1.8 × 10−16 Yes 2.0 × 10−18 RIKEN, Japan [87]

88Sr 1S0-3P0 698.4 429228066418009(32) 7000 - SYRTE, France [88]

171Yb 1S0-3P0 578.4 518295836590865.2(0.7)
518295836590863.54(26)

0.2
50

1.5 × 10−16

1.0 × 10−14 (1 s)
Yes
No 5× 10−19 NIST, USA [30]

NMIJ, Japan [89]
518295836590863.75(14) 1.7 3.2 × 10−15 No KRISS, S. Korea [90]
518295836590863.61(13) 2.8 2.7 × 10−15 (1 s) No INRIM, Italy [91]

199Hg 1S0-3P0 265.6 1128575290808155.1(6.7)
1128575290808155.4(1.1) 5707.2 1.2 × 10−15 (1s)

3.0 × 10−15
No
No

SYRTE, France [92]
RIKEN, Japan [93]

169Tm 2F7/2-2F5/2 1140 262 954 938 269 213(30) <0.5 <10−14 No LPI, Russia [94]

Additional initiatives from other countries for developing optical clocks are as follows: The Russian National Metrology Institute (VNIIFTRI) is developing a strontium lattice clock and
the Korea Research Institute of Standards and Science (KRISS) is developing an ytterbium lattice clock; The National Institute of Metrology Thailand (NIMT) and Mahidol University are
jointly developing an ytterbium-ion clock; The University of Western Australia is developing an ytterbium lattice clock; Turkey’s National Metrology Institute (TÜBİTAK) is collaborating
with VNIIFTRI to develop a strontium lattice clock; In India, the National Physical Laboratory, New Delhi and the Inter University Centre for Astronomy and Astrophysics, Pune are
developing ytterbium-ion clocks, the Indian Institute of Science Education and Research, Pune is developing a strontium lattice clock, and the Indian Institute of Technology Tirupati is
developing a calcium-ion clock.
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The lattice clocks [95] typically use around 100 to 10,000 atoms, thus providing a
higher signal-to-noise ratio (S/N) than a single ion. However, decoherence caused by
off-resonant scattering of photons from the lattice laser leads to the degradation of the
S/N and potentially shifts the clock frequency by line pulling. While the large number of
atoms N reduces the quantum projection noise by a factor of 1/

√
N, on the other hand,

intra-atomic cold collisions (s-wave-dominated elastic collisions) due to their large densities
result in a shift in the clock frequency. Further, collision with the thermal background
gas limits the confinement time of the atoms within the lattice. This restricts τ to be ~1 s,
which is disadvantageous compared with the single-ion clocks. Although the optical
lattice is created using lasers at the magic wavelength, it still induces light shifts to the
clock frequency through various processes. Hidetoshi Katori first proposed the magic
wavelength optical lattice clock in 2003 [96]. Therefore, RIKEN, the University of Tokyo,
NMIJ, and NICT in Japan have always been pioneers in this technology. Other than this
additional systematics, a BBR shift is always present due to the ambient temperature of the
trapping environment.

Neutral 87,88Sr, 171Yb, and 199Hg atoms are the most popular species for building lattice
clocks, whereas some groups have also worked with 24Mg and 40Ca atoms. Degenerate
fermionic 87Sr atoms, using a hyperfine-induced 5s2 1S0 |F = 1/2 > −5s5p 3P0 |F = 1/2 >
transition at 698 nm and having single-site occupancy in a 3D optical lattice, have recorded
the best fractional accuracy, 2.5 × 10−19, at NIST, USA [97]. This experiment probes the
clock transition using the world’s narrowest linewidth (∆ν = 26 mHz) laser at the central
frequency of 429 THz. The ytterbium-atom optical lattice clocks were reported with a
fractional frequency of 1.4 × 10−18 again by NIST, USA [30]. The Boulder Atomic Clock
Network (BACON) collaboration between two neighbouring institutes, i.e., NIST and
JILA, which are 3.6 km apart from each other in Boulder in the USA, is the custodian
of the world’s best trapped-ion and lattice-based optical clocks using 27Al+, 87Sr, and
171Yb, respectively [29,30,97]. Recently, the BACON collaboration established the most
stable optical fiber network between them and reported the measured mutual frequency
ratios of these three optical clocks with a fractional accuracy of < 8 × 10−18 [98]. This
level of sophistication enabled them to pursue high-precision measurements for exploring
fundamental science and the most accurate timekeeping. Several other laboratories around
the world, as given in Table 2, have also developed state-of-the-art optical lattice clocks,
and many other countries, including India, are working towards developing such optical
atomic clocks (see Table 2 footnote).

The status of the optical clock’s accuracy over the last two decades based on single
trapped ions and neutral atoms in optical lattices is shown in Figure 2. The clock’s accuracy
has shown significant improvement by five orders of magnitude since the beginning, reach-
ing a few parts in 1018 level of accuracy. The scope of such ultraprecise clocks is no longer
limited to lab-level experiments; advanced countries are rapidly adopting long-distance and
even intercontinental networking among optical clocks. A highly sophisticated two-way
fiber optic time transfer (TWFOTT) technique that uses phase-stabilised optical fibers to
transport photons, conserving their phases over very long distances, is used for direct inter-
comparison of the geographically distributed optical clocks with extremely high precision
compared with the MW or normal optical communication techniques. Some such exam-
ples of TWFOTT networks belong to (i) the European Association of National Metrology
Institutes (EURAMET) among participating EU agencies, (ii) NIST↔ Univ. of Boulder
in the USA, (iii) INRIM↔ LENS in Italy, (iv) LPL↔ Reims in France, (v) MPQ↔ PTB in
Germany, (vi) Vrije Univ. ↔ Univ. Groningen in Netherlands, (vii) NICT↔ Univ. Tokyo
in Japan, (viii) Univ. Malta↔ Univ. Sicily in Italy (submarine link), and (ix) an urban fiber
link in China (through the desert). Here, the symbol↔ stands for bidirectional coupling to
establish the TWFOTT. The Robust Optical Clocks for International Timescale (ROCIT) in
Europe is an established network for time and frequency metrology with unprecedented
accuracy, whereas TWFOTT links enable the countries mentioned above to intercompare
their optical clocks in a selective manner at the highest level of accuracy, even up to 10−19.
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Such a facility leads to the pursuance of high-end fundamental science research, such as
possible extensions of the standard model (SM) by probing the temporal constancy of
the dimensionless fundamental constants and searching for violations of fundamental
symmetries, testing the general theory of relativity, mapping time-dependent geodetic
changes, the establishment of data for vertical height measurement systems and enabling
accurate levelling, searching for underground resources, and many more applications.
On the other hand, these highly stabilised optical links can also be used to apply quan-
tum technologies such as quantum communication, quantum internet, testing quantum
hypotheses, etc. Beyond interlaboratory intercomparison of ultrahigh-accuracy optical
clocks, many applications require transporting the “reference” photons to a remote location;
these applications include carrying out chronometric levelling-based geodesy, searching for
oil/natural gas, VLBI, optical frequency calibration, space applications, and many more.
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Figure 2. Worldwide status of optical clocks with their reported accuracies based on a single trapped
ion (magenta) and neutral atoms in optical lattices (blue) over the last two decades. Accuracies of
microwave caesium fountain clocks (black) are also depicted here for comparison. The reported
accuracy of the only developed Indian caesium fountain at NPL, New Delhi (NPLI-CsF1) is indicated
by the dot surrounded by a circle (black), and is about an order of magnitude lower in accuracy than
the world’s best fountain clock [99]. The solid lines indicate the MW (grey) and optical (green) clocks’
data to indicate the improvement rates in their accuracy.

Figure 3 highlights the performance of some commonly used commercial atomic
clocks. Starting with the development of Cs and Rb beam/vapour clocks during the 1960s
and hydrogen maser during the 1980s, portable atomic clocks received a significant boost
from the NIST-DARPA program in the USA in 2005 with the development of the chip-
scale atomic clock (CSAC). Commercial CSACs were launched in 2011, soon followed
by the Rb-based miniature atomic clock (MAC). Around 2015 the first commercial cold
atom-based portable optical atomic clock was launched by a French spin-off from the
Institut d’Optique d’Aquitaine. During the same period, a wide range of “out-of-the-
lab” applications motivated miniaturisation of the associated technologies to develop
a mobile/transportable compact optical clock to replace the current RF standards. A
transportable Sr lattice clock is already operational at PTB in Germany [100], whereas
several other laboratories are developing such portable clock systems using different
species; some such examples include Al-ion clocks in Germany [101], Sr lattice clocks in
Italy [102], Germany [103], Japan [104], and the UK [105,106], Yb-ion clocks in France [107],
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Ca-ion clocks in China [108], Hg-ion clocks in the USA [109], and Yb-atom clocks in the
USA [110]. A detailed review of the present status of transportable optical clocks and
projected goals can be found elsewhere [111]. Some of the manufacturers of these in-house
developed transportable clocks are now partnering with industries and other agencies
to make them commercially available, which is mostly part of their national quantum
missions since an accurate clock is one of the indispensable prerequisites for the working
of multiple quantum-enabled technologies. For example, Germany’s opticlock is one
such effort that will be packaged within two standard 19-inch racks and is expected to be
available soon [112]. Some other similar efforts are the iqClock from the European quantum
flagship program [113], SLATE from the UK Quantum Technology Hub [114], and similar
efforts from the USA.
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only to distinguish the different types.

In summary, the international efforts on optical atomic clock technology focus on
(i) the development of trapped-ion and optical lattice clocks with unprecedented accuracy,
(ii) establishing national and global phase-stabilised optical fiber networks for connecting
geographically distributed clocks, and (iii) the miniaturisation of the optical clocks in order
to develop portable and compact systems for civilian and strategic applications.

3. National Scenario and Scope

In 2013, attempts at the indigenisation of optical atomic clocks were first initiated in
India by NPL Delhi based on Yb-ion clocks, and in 2015, IISER-Pune started an ultracold
Sr experiment with one of the aims being to develop a lattice clock using this experiment.
IUCAA Pune and IIT Tirupati have recently started developing two new optical atomic
clock experiments based on Yb and Ca ions, respectively. As described in the previous
section, optical clocks have attracted immense interest over the last two decades for being
identified as indispensable prerequisites for various quantum technologies, the forthcoming
redefinition of the second, and timekeeping with unprecedented accuracy resources for
ultrahigh-precision experiments for fundamental scientific tests. Thus, optical clocks
(sometimes called quantum clocks) are part of the various quantum missions worldwide,
including in India. Indian efforts to develop this critical technology shall certainly boost
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the various national quantum missions (especially the NM-QTA and the NM-ICPS) and
related initiatives. This section gives a brief overview of all the ongoing efforts to develop
optical clocks in India and draws a concrete roadmap to reaching global standards.

The ytterbium-ion clock is very promising for T&F metrology and exploring fundamen-
tal sciences due to the following reasons: (i) the International Committee for Weights and
Measures (CIPM) has endorsed its highly forbidden 6s 2S1/2 |F = 0, mF = 0 > –4f136s2 2F7/2
|F = 3, mF = 0 > E3-transition at a 466.9 nm (≈642 THz) wavelength as one of the sec-
ondary frequency standards and it will be a potential candidate for future redefinition
of the SI second, (ii) it has three first-order Zeeman insensitive clock transitions at the
optical wavelengths, (iii) the required lasers for photoionisation, laser cooling, and excit-
ing the clock transitions are available commercially off-the-shelf, (iv) the trapped Yb ion
chemically reacts with residual H2 and produces hydride which again photodissociates
to Yb+ which is retrapped in the presence of its near UV cooling laser at the wavelength
369.5 nm, (v) its 4f136s2 2F7/2 state has the highest-known (theoretically calculated) sensitiv-
ity for measuring the possible breaking of fundamental symmetries and time-dependent
changes in fundamental constants, and (vi) the Yb-ion clock is a unique platform as the
intercomparison of its E3 and 6s 2S1/2 |F = 0 > –4f145d 2D3/2 |F = 2 > E2-transitions offers
a measurement of the temporal constancy of the fine-structure constant (α) in a single
system. For these reasons, IUCAA Pune has started building an Yb-ion clock at its recently
developed Precision & Quantum Measurement laboratory (PQM-lab is led by Subhadeep
De: https://pqmlab.iucaa.in/, accessed on 5 April 2023), whose focus will be precision
measurements to test hypotheses in science and contribute to the possible extensions of the
standard model, and studying various aspects of quantum metrology in order to support
quantum initiatives in the country. In contrast, NPL New Delhi is keen to develop an
Yb-ion optical clock which, in the future, can be used as a reference standard for T&F
(led by Subhasis Panja: https://www.nplindia.org/index.php/science-technology/indian-
standard-time-metrology-division/time-and-frequency-metrology-section/, accessed on
5 April 2023). In order to pursue the Yb-ion experiment, NPL has already developed
a handful of instruments, e.g., a first-generation end-cap-type Paul trap including its
drivers [115–119], an oven to produce a nearly collimated Yb atomic beam [120], a novel
technique for frequency-stabilising all the required lasers at different wavelengths using a
single reference, a wide range of high-end electronics [121–125], a sophisticated imaging
system to resolve particles at a submicron resolution [126], and others. IUCAA has started
developing some state-of-the-art technologies, such as a precision ion trap (in collaboration
with the team of Sadiq Rangwala at RRI, Bangalore), an ultrastable reference Fabry–Pérot
cavity to produce a sub-Hz linewidth clock laser at the stability of a few parts in 1017 in 1 s
(in collaboration with the team of Sandip Haldar at IIT Goa), and phase stabilisation of the
optical fiber to implement TWFOTT. The latter examples are requisites for ion- and atom-
based optical clocks, and their other interdisciplinary applications, upon the indigenisation
of these key technologies, shall make India self-reliant in this field.

The calcium ion is advantageous as a species to build an accurate compact (portable)
optical clock due to the availability of compact laser systems at the required wavelengths.
Recently, it has captured significant attention due to its unique magic radiofrequency (RF)
trap operation and subsequent demonstration as an accurate optical clock [63]. Keeping
these developments in perspective, the Precision Measurement Laboratory established at
IIT Tirupati (led by Arijit Sharma: https://sites.google.com/view/arijitsharma, accessed
on 5 April 2023) has started developing a compact optical clock using 40Ca+ and is currently
engaged in developing various subsystems to fulfil its objectives. The ultimate goal of
this initiative is to deliver a 19-inch rack-mounted robust turnkey optical clock system
for mobile, remote, and industrial applications. Such a mobile clock shall allow Indian
researchers to pursue quantum geodetic measurements and other high-accuracy timestamp-
ing applications such as those required by financial and stock markets and network service
providers. In the long term, this compact system can further be modified to a portable
space-qualified clock adequate for a payload, which shall uplift India’s space mission in

https://pqmlab.iucaa.in/
https://www.nplindia.org/index.php/science-technology/indian-standard-time-metrology-division/time-and-frequency-metrology-section/
https://www.nplindia.org/index.php/science-technology/indian-standard-time-metrology-division/time-and-frequency-metrology-section/
https://sites.google.com/view/arijitsharma
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the future. Apart from the above program, Sharma’s group is also leading the development
of portable all-optical atomic clocks based on Rb (rubidium) vapour cells.

Strontium-atom optical lattice clock development is being pursued by the Atomic
Physics and Quantum Optical Lab at IISER Pune (led by Umakant D. Rapol: http://www.
iiserpune.ac.in/~umakant.rapol/, accessed on 5 April 2023). This experiment developed
several subsystems associated with the experimental setup and demonstrated the slowing
of a Sr atomic beam coming out of a hot atomic oven [127] and the capture of the atoms into
a magneto-optical trap [128]. The choice of developing a Sr atomic clock was motivated
by fundamental science exploration by intercomparing it with the Yb-ion clock at the
neighbouring institute, IUCAA Pune [129]. The Sr-atom and Yb-ion clocks are among
the most lucrative combinations to probe α-variation, as the E3-clock transition of 171Yb+

has the highest sensitivity to α, whereas the hyperfine-induced clock transition of 88Sr is
barely sensitive to it. For this reason, IUCAA and IISER Pune have put forward a proposal
to establish a phase-stabilised optical fiber link between these two institutes, which are
about 4 km apart from each other [129], to execute their scientific objectives. The joint
effort between these two Pune-based institutes is a pilot project before the nationwide
deployment of phase-stabilised fiber optic links, which is needed for ultrahigh-accuracy
intercomparison via TWFOTT; T&F dissemination to specialised users such as ISRO, the
armed forces, and so on; and various other sensitive and strategic applications in the
optical domain.

The present national scenario towards the indigenisation of optical clocks and related
technologies clearly shows significant voids in the areas of (i) lab-based optical clocks,
(ii) optical clock networks, and (iii) portable optical clock developments, relative to their
advancements in pioneering countries such as the USA, EU countries, Canada, Japan, and
China (Table 1). Considering their enormous potential in quantum-enabled technologies
and due to their broad strategic scope and applicability, with a possibility of sanctioning
export control on some, if not all, of these critical technologies, India must champion
the efforts for their indigenisation. Keeping this vision in perspective, in Figure 4, we
provide a realistic 10-year roadmap, divided into three major work packages (WPs), so that
India can become competitive at the international level. Over the next decade, we need to
mainly focus on (i) developing ready-to-use “lab-based” optical clocks; (ii) establishing a
pan-India optical clock network that connects NPL, IISER Pune, IUCAA, and IIT Tirupati,
and possibly extend to ISRO and other timekeeping labs via TWFOTT; and (iii) developing
ready-to-use compact out-of-the-lab optical clocks (mobile/transportable optical clocks).
Detailed subsets under these three WPs and year-wise work plans associated with each
of the WPs are given in Figure 3. The timescale associated with each stage was calculated
based on development time starting from scratch, and the typical lead time needed to make
the raw materials available despite various constraints in the country. Collaboration among
the participating institutes and industry associations is necessary for the successful accom-
plishment of these works, and could even boost the projected timeline. The formation of a
national consortium focussed on the development of optical clocks and related technology
would be helpful for the execution and dissemination of the technology and the knowledge
behind it in the future.

http://www.iiserpune.ac.in/~umakant.rapol/
http://www.iiserpune.ac.in/~umakant.rapol/
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4. Conclusions

Ultraprecise optical atomic clocks (sometimes referred to as quantum clocks) are
identified as being among the indispensable pillars of the second quantum revolution
(also known as quantum 2.0). Several countries have aptly recognised the importance
of optical atomic clocks, and they have mandated developing such ultraprecise optical
atomic clocks to establish and maintain their global leadership in time and frequency
metrology and quantum technologies. A quantum clock is generally a part of the quantum
sensing and quantum metrology aspects of the diverse quantum missions charted out by
different nations. In India, the government has initiated the National Mission on Quantum
Technology Applications (NM-QTA) for developing practical and useful applications of
quantum technologies. Therefore, we need to focus on developing optical atomic clocks
to make our own quantum missions successful. At present, NPL New Delhi, IISER Pune,
IUCAA Pune, and IIT Tirupati are engaged in experimental programs to develop next-
generation optical atomic clocks, and it is expected that more national initiatives shall
arise in the near future, mainly for the development of nuclear or highly charged ion-
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based clocks, which will receive their impetus based upon the availability of adequate
infrastructure and human resources within the country.

Optical clock initiatives by the aforementioned four Indian institutes have different
technical and science motivations, e.g., maintaining the country’s standard time, testing
hypotheses of fundamental science, providing precision timings to the end users, and
making valuable additions to quantum technologies by making India self-reliant. For
those reasons, we are planning for (i) the development of ready-to-use “lab-based” optical
clocks, (ii) the establishment of a pan-India optical clock network, and (iii) the building
of mobile/transportable compact optical clocks. A network of optical clocks spread at
various locations in the country, involving geographically distributed clocks with a phase-
stabilised quantum link among them, is one of the primary requisites for fundamental
science studies and testing quantum phenomena. Additionally, this phase-stabilised fiber
optic network shall serve as a central test bed for quantum key distribution protocols and
algorithms. In addition, the redefinition of the SI second based on optical transition(s) is
likely to be enforced in international timekeeping standards in the near future. Keeping
these developments and objectives in mind, there has been a global impetus to invest
heavily in the relevant technologies and develop optical clocks based on atoms and ions.

Furthermore, China, Thailand, South Korea, and Australia are actively pursuing the
development of optical atomic clock technology to maintain their global and regional
supremacy in state-of-the-art precision metrology. Hence, India must make strong efforts
to actively support, pursue, and sustain programs engaged in developing indigenous
optical atomic clocks and related technologies to realise its global reputation as a growing
leader in science and technology. To ensure that these national efforts progress in a suitable
timebound manner, a prescribed roadmap has been outlined in this article, which shall be
helpful for interorganisational collaboration, leading to the cross-fertilisation of ideas and
the sharing of critical technology in various related aspects.
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