# Positron Scattering from Pyrimidine

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. The Single-Centre Expansion Method and the Binary-Encounter-Bethe Model

#### 2.1. Elastic Cross-Sections

#### 2.2. Direct Ionisation Cross-Sections

## 3. Computational Details

## 4. Results

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Abbreviations

SCE | Single-Centre Expansion |

ECS | Elastic Cross-Sections |

DCS | Differential Cross-Sections |

TCS | Total Cross-Sections |

TICS | Total Ionisation Cross-Sections |

IE | Ionisation Energy |

BEB | Binary–Encounter–Bethe |

HF | Hartree–Fock |

DFT | Density Functional Theory |

IE | Ionisation Energy |

CC | Close-Coupling |

eV | Electron Volt |

au | Atomic Unit |

IAM | Independent Atom Approximation |

## References

- Cherry, S.R.; Sorenson, J.A.; Phelps, M.E. Physics in Nuclear Medicine, 4th ed.; Elsevier: Philadelphia, PA, USA, 2012. [Google Scholar]
- Jaini, S.; Dadachova, E. FDG for Therapy of Metabolically Active Tumors. Nucl. Med.
**2012**, 42, 185. [Google Scholar] [CrossRef] [PubMed] - Nikjoo, H.; Taleei, R.; Liamsuwan, T.; Liljequist, D.; Emfietzoglou, D. Perspectives in radiation biophysics: From radiation track structure simulation to mechanistic models of DNA damage and repair. Radiat. Phys. Chem.
**2016**, 128, 3–10. [Google Scholar] [CrossRef] - Tejedor Gomez, G.G.; Fuss, M.C. Radiation Damage in Biomolecular Systems; Springer: Berlin, Germany, 2012. [Google Scholar]
- Surko, C.M.; Gianturco, F.A. (Eds.) New Directions in Antimatter Chemistry and Physics; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Wahl, R.L.; Buchanan, J.W. Principles and Practice of Positron Emission Tomography; Lippincott, Williams and Wilkins: Philadelphia, PA, USA, 2002. [Google Scholar]
- Bailey, D.; Townsend, W.; Valk, P.; Maisey, M. Positron Emission Tomography; Springer: London, UK, 2005. [Google Scholar]
- Müller, H.; Enghardt, W. In-beam PET at high-energy photon beams: A feasibility study. Phys. Med. Biol.
**2006**, 51, 1779. [Google Scholar] [CrossRef] [PubMed] - Pshenichnov, I.; Mishustin, I.; Greiner, W. Distributions of positron-emitting nuclei in proton and carbon-ion therapy studied with GEANT4. Phys. Med. Biol.
**2006**, 51, 6099. [Google Scholar] [CrossRef] - Moadel, R.M.; Weldon, R.H.; Katz, E.B.; Lu, P.; Mani, J.; Stahl, M.; Blaufox, M.D.; Pestell, R.G.; Charron, M.J.; Dadachova, E. Positherapy: Targeted Nuclear Therapy of Breast Cancer with 18F-2-Deoxy-2-Fluoro-D-Glucose. Can. Res.
**2005**, 65, 698–702. [Google Scholar] [CrossRef] - Dijkers, E.C.; Oude Munnink, T.H.; Kosterink, J.G.; Brouwers, A.H.; Jager, P.L.; de Jong, J.R.; van Dongen, G.A.; Schröder, C.P.; Lub-de Hooge, M.N.; de Vries, E.G. Biodistribution of
^{89}Zr-trastuzumab and PET Imaging of HER2-Positive Lesions in Patients with Metastatic Breast Cancer. Clin. Pharmacol. Ther.**2010**, 87, 586–592. [Google Scholar] [CrossRef] - Barbosa, S.A.; Pastega, D.F.; Bettegaa, H.F.M. Low-energy positron scattering by pyrimidine. J. Chem. Phys.
**2015**, 143, 244316. [Google Scholar] [CrossRef] - Boudaïffa, B.; Cloutier, P.; Hunting, D.; Huels, M.A.; Sanche, L. Resonant Formation of DNA Strand Breaks by Low-Energy (3 to 20 eV) Electrons. Science
**2000**, 287, 1658–1660. [Google Scholar] [CrossRef] - Sanche, L. Nanoscopic aspects of radiobiological damage: Fragmentation induced by secondary low-energy electrons, Mass Spectrom. Mass Spectr. Rev.
**2002**, 21, 349–369. [Google Scholar] [CrossRef] - Turi, L.; Rossly, P.J. Theoretical studies of spectroscopy and dynamics of hydrated electrons. Chem. Rev.
**2012**, 112, 5641–5674. [Google Scholar] [CrossRef][Green Version] - von Sonntag, C. Free-Radical-Induced DNA Damage and Its Repair; Springer: New York, NY, USA, 2005; pp. 357–482. [Google Scholar]
- Sanche, L. Beyond radical thinking. Nature
**2009**, 461, 358–359. [Google Scholar] [CrossRef] [PubMed] - De Sarkar, A.; Biswas, S.; Gupta, N. Positron excess from cosmic ray interactions in galactic molecular clouds. J. High Energy Astrophys.
**2021**, 29, 1–18. [Google Scholar] [CrossRef] - Guessoum, N. Positron astrophysics and areas of relation to low-energy positron physics. Euro. Phys. J. D
**2014**, 68, 137. [Google Scholar] [CrossRef] - Hulett, L.D., Jr.; Donohue, D.L.; Xu, J.; Lewis, T.A.; McLuckey, S.A.; Glish, G.L. Mass spectrometry studies of the ionization of organic molecules by low-energy positrons. Chem. Phys. Lett.
**1993**, 216, 236–240. [Google Scholar] [CrossRef] - Schultz, P.J.; Lynn, K.G. Interaction of positron beams with surfaces, thin films, and interfaces. Rev. Mod. Phys.
**1988**, 60, 701. [Google Scholar] [CrossRef] - Sarri, G.; Poder, K.; Cole, J.M.; Schumaker, W.; Di Piazza, A.; Reville, B.; Zepf, M.; Mangles, S.P.D.; Najmudin, Z.; Shukla, N.; et al. Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nat. Commun.
**2015**, 6, 6747. [Google Scholar] [CrossRef][Green Version] - Sanz, A.G.; Fuss, M.C.; Muñoz, A.; Blanco, F.; Limão-Vieira, P.; Brunger, M.J.; Buckman, S.J.; García, G. Modelling low energy electron and positron tracks for biomedical applications. Int. J. Radiat. Biol.
**2012**, 88, 71. [Google Scholar] [CrossRef][Green Version] - Blanco, F.; Roldán, A.M.; Krupa, K.; McEachran, R.P.; White, R.D.; Marjanović, S.; García, G. Scattering data for modelling positron tracks in gaseous and liquid water. J. Phys. B At. Mol. Opt. Phys.
**2016**, 49, 145001. [Google Scholar] [CrossRef] - Blanco, F.; Muñoz, A.; Almeida, D.; Silva, F.; Limão-Vieira, P.; Fuss, M.C.; Sanz, A.G.; García, G. Modelling low energy electron and positron tracks in biologically relevant media. Eur. Phys. J. D
**2013**, 67, 199. [Google Scholar] [CrossRef] - Zammit, M.C.; Fursa, D.V.; Savage, J.S.; Bray, I. Electron–and positron–molecule scattering: Development of the molecular convergent close-coupling method. J. Phys. B At. Mol. Opt. Phys.
**2017**, 50, 123001. [Google Scholar] [CrossRef] - Tennyson, J. Electron–molecule collision calculations using the R-matrix method. Phys. Rep.
**2010**, 491, 29–76. [Google Scholar] [CrossRef] - Stryer, L. Biochemistry; W. H. Freeman: New York, NY, USA, 1995. [Google Scholar]
- Sanz, A.G.; Fuss, M.C.; Blanco, F.; Mašin, Z.; Gorfinkiel, J.D.; McEachran, R.P.; Brunger, M.J.; García, G. Cross-section calculations for positron scattering from pyrimidine over an energy range from 0.1 to 10000 eV. Phys. Rev. A
**2013**, 88, 062704. [Google Scholar] [CrossRef][Green Version] - Sinha, N.; Sahoo, A.K.; Antony, B. Positron scattering from pyridine and pyrimidine. J. Phys. Chem. A
**2020**, 124, 5147–5156. [Google Scholar] [CrossRef] [PubMed] - Blanco, F.; Ellis-Gibbings, L.; García, G. Screening corrections for the interference contributions to the electron and positron scattering cross sections from polyatomic molecules. Chem. Phys. Lett.
**2016**, 645, 71–75. [Google Scholar] [CrossRef] - Blanco, F.; García, G. Interference effects in the electron and positron scattering from molecules at intermediate and high energies. Chem. Phys. Lett.
**2015**, 635, 321–327. [Google Scholar] [CrossRef] - Burke, P.G. R-Matrix Theory of Atomic Collisions; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Blanco, F.; García, G. Screening corrections for calculation of electron scattering from polyatomic molecules. Phys. Lett. A
**2003**, 317, 458–462. [Google Scholar] [CrossRef] - Blanco, F.; García, G. Screening corrections for calculation of electron scattering differential cross sections from polyatomic molecules. Phys. Lett. A
**2004**, 330, 230–237. [Google Scholar] [CrossRef] - Franz, J.; Gianturco, F.A. Low-energy positron scattering from gas-phase pyrimidine: A quantum treatment of the dynamics and a comparison with experiments. Phys. Rev. A
**2013**, 88, 042711. [Google Scholar] [CrossRef][Green Version] - Fabrikant, I.I. Long-range effects in electron scattering by polar molecules. J. Phys. B At. Mol. Opt. Phys.
**2016**, 49, 222005. [Google Scholar] [CrossRef] - Itikawa, Y. The Born closure approximation for the scattering amplitude of an electron-molecule collision. Theor. Chem. Acc.
**2000**, 105, 123. [Google Scholar] [CrossRef] - Bederson, B.; Kieffer, L.J. Total Electron—Atom Collision Cross Sections at Low Energies—A Critical Review. Rev. Mod. Phys.
**1971**, 43, 601. [Google Scholar] [CrossRef] - Gilbert, S.J.; Kurz, C.; Greaves, R.G.; Surko, C.M. Creation of a monoenergetic pulsed positron beam. Appl. Phys. Lett.
**1997**, 70, 1944. [Google Scholar] [CrossRef] - Sullivan, J.P.; Jones, A.; Caradonna, P.; Makochekanwa, C.; Buckman, S.J. A positron trap and beam apparatus for atomic and molecular scattering experiments. Rev. Sci. Instrum.
**2008**, 79, 113105. [Google Scholar] [CrossRef] - Sullivan, J.P.; Makochekanwa, C.; Jones, A.; Caradonna, P.; Slaughter, D.S.; Machacek, J.; McEachran, R.P.; Mueller, D.W.; Buckman, S.J. Forward angle scattering effects in the measurement of total cross sections for positron scattering. J. Phys. B At. Mol. Opt. Phys.
**2011**, 44, 035201. [Google Scholar] [CrossRef] - Zecca, A.; Chiari, L.; García, G.; Blanco, F.; Trainotti, E.; Brunger, M.J. Total cross sections for positron and electron scattering from pyrimidine. J. Phys. B At. Mol. Opt. Phys.
**2010**, 43, 215204. [Google Scholar] [CrossRef] - Palihawadana, P.; Boadle, R.; Chiari, L.; Anderson, E.K.; Machacek, J.R.; Brunger, M.J.; Buckman, S.J.; Sullivan, J.P. Positron scattering from pyrimidine. Phys. Rev. A
**2013**, 88, 01271. [Google Scholar] [CrossRef][Green Version] - Brunger, M.J.; Buckman, S.J.; Ratnavelu, K. Positron scattering from molecules: An experimental cross section compilation for positron transport studies and benchmarking theory. J. Phys. Chem. Ref. Data
**2017**, 46, 023102. [Google Scholar] [CrossRef] - Sahgal, V.; Bharadvaja, A.; Baluja, K.L. Positron-induced scattering of acetone from 0.1 eV to 5 keV. J. Phys. B At. Mol. Opt. Phys.
**2021**, 54, 075202. [Google Scholar] [CrossRef] - Sahgal, V.; Bharadvaja, A.; Baluja, K.L.; Arora, A.K.; Gupta, K.K. Positron-induced scattering from pentane isomers beyond ionization threshold. Eur. Phys. J. D
**2021**, 75, 259. [Google Scholar] - Arora, A.K.; Sahgal, V.; Bharadvaja, A.; Baluja, K.L. Positron-impact scattering off 1-1 C
_{2}H_{2}F_{2}from 0.1 eV to 4 keV. Phys. Rev. A**2021**, 104, 022816. [Google Scholar] [CrossRef] - Fedus, K.; Karwasz, G.P. Binary-encounter dipole Model for positron-impact direct ionization. Phys. Rev. A
**2019**, 100, 062702. [Google Scholar] [CrossRef] - Kim, Y.-K. Scaled Born cross sections for excitations of H
_{2}by electron impact. J. Chem. Phys.**2007**, 126, 064305. [Google Scholar] [CrossRef] [PubMed] - Gianturco, F.A.; Lucchese, R.R.; Sanna, N.; Talamo, A. A generalized single centre approach for treating electron scattering from polyatomic molecules. In Electron Collisions with Molecules, Clusters, and Surfaces; Springer: Boston, MA, USA, 1994; pp. 71–86. [Google Scholar]
- Gianturco, F.A.; Sanna, N. SCELIB: A parallel computational library of molecular properties in the single-center expansion approach. Comput. Phys. Commun.
**2000**, 128, 139. [Google Scholar] - Zhang, R.; Faure, A.; Tennyson, J. Electron and positron collisions with polar molecules: Studies with the benchmark water molecule. Phys. Scr.
**2009**, 80, 015301. [Google Scholar] [CrossRef][Green Version] - Faisal, F.H.M. Electron-molecule interactions. I. Single-centre wave functions and potentials. J. Phys. B At. Mol. Opt. Phys.
**1970**, 3, 636. [Google Scholar] [CrossRef] - Burke, P.G.; Sinfailam, A.L. Electron-molecule interactions. II. Scattering by closed-shell diatomic molecules. J. Phys. B At. Mol. Opt. Phys.
**1970**, 3, 641. [Google Scholar] [CrossRef] - Perdew, J.P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B
**1981**, 23, 5048. [Google Scholar] [CrossRef][Green Version] - Gianturco, F.A.; Jain, A. The theory of electron scattering from polyatomic molecules. Phys. Rep.
**1986**, 143, 347–425. [Google Scholar] [CrossRef] - Chang, E.S.; Fano, U. Theory of Electron-Molecule Collisions by Frame Transformations. Phys. Rev. A
**1972**, 6, 173. [Google Scholar] [CrossRef] - Bray, I.; Abdurakhmanov, I.B.; Bailey, J.J.; Bray, A.W.; Fursa, D.V.; Kadyrov, A.S.; Rawlins, C.M.; Savage, J.S.; Stelbovics, A.T.; Zammit, M.C. Convergent close-coupling approach to light and heavy projectile scattering on atomic and molecular hydrogen. J. Phys. B At. Mol. Opt. Phys.
**2017**, 50, 202001. [Google Scholar] [CrossRef] - Kadyrov, A.S.; Bray, I. Recent progress in the description of positron scattering from atoms using the convergent close-coupling theory. J. Phys. B At. Mol. Opt. Phys.
**2016**, 49, 222002. [Google Scholar] [CrossRef][Green Version] - Utamuratov, R.; Kadyrov, A.S.; Fursa, D.V.; Zammit, M.C.; Bray, I. Two-center close-coupling calculations of positron–molecular-hydrogen scattering. Phys. Rev. A
**2015**, 92, 032707. [Google Scholar] [CrossRef][Green Version] - Klar, H. Threshold ionisation of atoms by positrons. J. Phys. B At. Mol. Opt. Phys.
**1981**, 14, 4165–4170. [Google Scholar] [CrossRef] - Kim, Y.-K.; Rudd, M.E. Binary-encounter-dipole model for electron-impact ionization. Phys. Rev. A
**1994**, 50, 3954. [Google Scholar] [CrossRef][Green Version] - Johnson, R.D., III (Ed.) Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101, Release 21, August 2020. Available online: http://cccbdb.nist.gov/ (accessed on 20 December 2022).
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A., Jr.; Vreven, T.; Kudin, K.N.; Burant, J.C.; et al. GAUSSIAN 03; Gaussian, Inc.: Wallingford, UK, 2003. [Google Scholar]
- Sanna, N.; Baccarelli, I.; Morelli, G. SCELib3.0: The new revision of SCELib, the parallel computational library of molecular properties in the Single Center Approach. Comput. Phys. Commun.
**2009**, 180, 2544–2549. [Google Scholar] [CrossRef] - Sanna, N.; Gianturco, F.A. Differential cross sections for electron/positron scattering from polyatomic molecules. Comput. Phys. Commun.
**1998**, 114, 142–167. [Google Scholar] [CrossRef] - Jones, D.B.; Bellm, S.M.; Blanco, F.; Fuss, M.; García, G.; Limão-Vieira, P.; Brunger, M.J. Differential cross sections for the electron impact excitation of pyrimidine. J. Chem. Phys.
**2012**, 137, 074304. [Google Scholar] [CrossRef][Green Version] - Fischer, G.; Cai, Z.-L.; Reimers, J.R.; Wormell, P. Singlet and Triplet Valence Excited States of Pyrimidine. Phys. Chem. A
**2003**, 107. [Google Scholar] [CrossRef] - Bassi, M.; Bharadvaja, A.; Baluja, K.L. A study of electron scattering from 1-1 C
_{2}H_{2}F_{2}from 0.1 eV to 5 keV. Eur. Phys. D.**2019**, 74, 232. [Google Scholar] [CrossRef] - Luthra, M.; Garkoti, P.; Goswami, K.; Bharadvaja, A.; Baluja, K.L. Electron impact cross-sections of tetraethyl silicate. Plasma Sources Sci. Technol.
**2022**, 31, 095013. [Google Scholar] [CrossRef] - Kaur, S.; Bharadvaja, A.; Baluja, K.L. Electron interactions with AlF. Eur. Phys. J. D
**2022**, 76, 176. [Google Scholar] [CrossRef] - Meltzer, T.; Tennyson, J.; Mašin, Z.; Zammit, M.C.; Scarlett, L.H.; Fursa, D.V.; Bray, I. Benchmark calculations of electron impact electronic excitation of the hydrogen molecule. J. Phys. B At. Mol. Opt. Phys.
**2020**, 53, 145204. [Google Scholar] [CrossRef][Green Version] - Machacek, J.R.; McEachran, R.P. Partial wave analysis for folded differential cross sections. J. Phys. B At. Mol. Opt. Phys.
**2018**, 51, 065007. [Google Scholar] [CrossRef] - Dickinson, A.J. Differential cross sections for electron scattering by strongly polar molecules. J. Phys. B
**1977**, 10, 967. [Google Scholar] [CrossRef] - Bug, M.U.; Woon, Y.B.; Rabus, H.; Villagrasa, C.; Meylan, S.; Rosenfeld, A.B. An electron-impact cross section data set (10 eV–1 keV) of DNA constituents based on consistent experimental data: A requisite for Monte Carlo simulations. Radiat. Phys. Chem.
**2017**, 130, 459–479. [Google Scholar] [CrossRef] - Linert, I.; Dampc, M.; Mielewska, B.; Zubek, M. Cross sections for ionization and ionic fragmentation of pyrimidine molecules by electron collisions. Eur. Phys. J. D
**2012**, 66, 20. [Google Scholar] [CrossRef] - Champion, C.; Quinto, M.A.; Weck, P.F. Electron- and proton-induced ionization of pyrimidine. Eur. Phys. J. D
**2015**, 69, 127. [Google Scholar] [CrossRef] - Garkoti, P.; Luthra, M.; Goswami, K.; Bharadvaja, A.; Baluja, K.L. The Binary-Encounter-Bethe Model for Computation of Singly Differential Cross Sections Due to Electron-Impact Ionization. Atoms
**2022**, 10, 60. [Google Scholar] [CrossRef] - Charlton, M.; Humberston, J.W. Positron Physics; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Chiari, L.; Zecca, A.; Girardi, S.; Trainotti, E.; García, G.; Blanco, F.; McEachran, R.P.; Brunger, M.J. Positron scattering from O
_{2}. J. Phys. B At. Mol. Opt. Phys.**2012**, 45, 215206. [Google Scholar] [CrossRef] - Luthra, M.; Goswami, K.; Arora, A.K.; Bharadvaja, A.; Baluja, K.L. Mass Spectrometry-Based Approach to Compute Electron-Impact Partial Ionization Cross-Sections of Methane, Water and Nitromethane from Threshold to 5 keV. Atoms
**2022**, 10, 74. [Google Scholar] [CrossRef] - Goswami, K.; Luthra, M.; Bharadvaja, A.; Baluja, K.L. Partial Ionization Cross Sections of Tungsten Hexafluoride Due to Electron Impact. Atoms
**2022**, 10, 101. [Google Scholar] [CrossRef]

**Figure 1.**DCS at different energies: circles, folded DCS of Palihawadana et al. [44]; line curve, Born-corrected DCS (this work); dashed dotted curve, Born cross-sections; open squares with dotted dashed curve, Sanz et al. with dipole potential [29]; dashed curve, Sanz et al. with dipole and quadrupole potentials [29]; dashed curve with cross, DCS results without Born correction; double dotted dashed curve, unfolded DCS of Barbosa et al. [12]. Their folded DCS are shown as a double dotted dashed curve with plus symbol.

**Figure 2.**ECS: (

**a**) Born-uncorrected; (

**b**) Born-corrected. Experimental results are denoted by symbols and the theoretical results by line curves or line curves with symbols. The notation “R-matrix, SP” in (

**b**) stands for “static-polarisation model”. “CC” model means the ground state and excited states included in the total wave function [29,30,43,44,45].

**Figure 3.**BEB ionisation cross-sections. The comparison is made with inelastic cross-sections (excitation plus ionisation) reported by Palihawadana et al. [44] and ionisation cross-sections due to electron impact. Squares: direct measurements of inelastic cross-sections (excitation plus ionisation) by Palihawadana et al. [44] denoted as A; stars: inelastic cross-sections as a difference of grand total and Ps and elastic cross-sections from Palihawadana et al. [44] denoted as B; line curve: BEB for positron (this work); dashed curve, inelastic cross-sections (excitation plus ionisation) due to positron impact of Singh et al. [30]; dotted dashed curve, positron impact total inelastic cross-sections of Sanz et al. [29]; double dotted dashed curve, electron ionisation of Bug et al. [76].

**Figure 4.**TCS: line curve, this work (sum of ECS+Ps+BEB); dashed curves, this work (sum of ECS+BEB); dashed dotted curve, Sanz et al. [29]; dotted dashed curve, Singh et al. [30]; diamonds, uncorrected TCS of Zecca et al. [43]; circles, uncorrected results of Palihawadana et al. [44]; squares, recommended data of Brunger et al. [45]; triangles, forward-angle-corrected TCS of Palihawadana et al. [44].

**Table 1.**Experimental values of a few important target parameters of pyrimidine. The SCE value of the dipole moment is also shown.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Prashant, A.; Luthra, M.; Goswami, K.; Bharadvaja, A.; Baluja, K.L.
Positron Scattering from Pyrimidine. *Atoms* **2023**, *11*, 55.
https://doi.org/10.3390/atoms11030055

**AMA Style**

Prashant A, Luthra M, Goswami K, Bharadvaja A, Baluja KL.
Positron Scattering from Pyrimidine. *Atoms*. 2023; 11(3):55.
https://doi.org/10.3390/atoms11030055

**Chicago/Turabian Style**

Prashant, Abhishek, Meetu Luthra, Kanupriya Goswami, Anand Bharadvaja, and Kasturi Lal Baluja.
2023. "Positron Scattering from Pyrimidine" *Atoms* 11, no. 3: 55.
https://doi.org/10.3390/atoms11030055