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Abstract: We measure double differential cross sections (DDCS) of electrons emitted from CH4

molecules in collisions with 250 keV protons. The projectile ions are obtained from a 400 kV electron
cyclotron resonance-based ion accelerator (ECRIA). We study the energy and angular distributions
of the electron DDCS. The observed double and single differential and the total cross section are
compared with the state-of-the-art continuum distorted wave eikonal initial state (CDW-EIS) model
predictions. Two different approaches are used considering the different target descriptions: complete
neglect of differential overlap (CNDO) and molecular orbital (MO) approximations. The MO model
uses two different scaling parameters (d = 0.7 and 1.0). In the energy distribution of the DDCS, the
carbon KLL Auger line is also observed at 240 eV. The single differential cross section (SDCS) and
total cross section (TCS) are derived. Both the MO-based CDW-EIS models are in good agreement
with the experimental results; however, the CNDO approach overestimates the data.
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1. Introduction

The ionization of atoms and molecules under charged particle impact is an important
aspect in the study of various features of ion–atom or ion–molecule collisions in general.
Methane, (CH4) a simple tetrahedral hydrocarbon molecule with four equivalent C-H
bonds is present in earth as well as in the interstellar medium (ISM) [1,2]. The collisions
with methane also play an important role as a reference for the collisional aspects involving
PAHs and DNA-bases [3,4]. Some studies have been reported on electron emission from
methane using electrons, protons and different charged particles [5–12].

Apart from the ionization study, electron capture from methane molecules has also
been investigated by several groups [13–16]. Studies are present in the literature on the frag-
mentation of methane [17–24]. However, systematic studies of the ionization of methane
using protons and detailed comparisons of the experimental data with different theoretical
approaches are very rare.

In this work, scattered electron emissions from CH4 were studied for a range of electron
energies and different scattering angles in collisions with 250 keV protons. A comparison
with the CDW-EIS model calculations using the complete neglect of differential overlap
(CNDO) and molecular orbital (MO)-based target wave functions [25–30] is presented,
which was missing in most of the earlier studies. Details of the theoretical calculations
are described elsewhere [27–30]. The present experimental data is also compared with the
DDCS data previously measured for the same beam energy [8].

However, detailed analysis and comparisons with the newly developed extensions of
CDW-EIS model were absent there. Therefore, the present study of the DDCS as a function
of the electron energy and scattering angle, the SDCS as well as the TCS is important for
the validity check of the theoretical predictions for such multi-electron systems like CH4 in
collisions with such low-energy projectile beams.
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2. Experimental Technique

Details of the experimental techniques are described elsewhere [3,31]. In brief, an
ECRIA (electron cyclotron resonance-based ion accelerator) was used to obtain the proton
beams. Initially, hydrogen plasma was created in the plasma chamber, with the help of
14.5 GHz microwaves. The plasma is contained in the plasma chamber with the help
of axial and radial magnetic fields generated by the permanent magnets. An extraction
voltage of 30 keV is applied after the plasma chamber to extract the proton ions produced
in the plasma chamber.

The ECR platform was raised to 220 kV to obtain a 250 keV H+ ion beam, and the ions
are further accelerated by the accelerating columns followed by an electrostatic quadrupole
triplet lens to focus the ion beam with X–Y deflectors to control the beam direction. A
switching magnet directs the beam to the desired beam line. Another quadrupole triplet
lens is used after the switching magnet for further focusing of the beam in the scattering
chamber. Two sets of four jaw slits kept apart are used to cut the beam size and make an
approximately parallel beam.

The well-collimated beam is passed through a two mm aperture with a length of
30 mm, and finally ions are made to go through a 16 mm long collimator of 4 mm diameter,
which opens up at the entrance of the scattering chamber with a diameter of 6 mm to
control the well-collimated beam without any further scattering. Low-energy electrons can
be deflected even by a small magnetic field. To reduce the earth’s magnetic field, we use µ
metal shielding inside the chamber to increase the collection efficiency of the low-energy
electrons. The projectiles interact with methane gas in a flooded chamber at a static pressure
of 0.08 mT.

The ejected electrons are energy analyzed using a hemispherical energy analyzer and
are detected by a channel electron multiplier (CEM). A pre-acceleration voltage of 6 V
is applied to the entrance and exit slits of the analyzer to reduce the loss of low-energy
electrons. The dependence of the yield of electrons on the pre-acceleration voltage was
studied, and we found that, at and above 6 V, the cross section is practically saturated. The
front of the CEM was biased to +100 V in order to detect the lower energy electrons with
higher efficiency. The efficiency of the detector was found to be 85% (over the energy range
studied) after putting the voltage in the front of the CEM.

The data were collected for the energy range of 1–360 eV and at scattering angles
between 20° and 160°. The signal from CEM (∼100 mV) is amplified by a ‘ORTEC 474’
timing filter amplifier (TFA) for the amplification of the signal to a value of ∼1 V. A constant
fraction discriminator (CFD) was used to reduce the noise from the main signal by setting
a threshold. At the last stage, a level translator switches the negative CFD signal to the
positive one, and finally the data is stored in a computer with the help of the ‘Labview’
software through the National Instruments (NI) modules. The total error in the data is
∼17% considering the statistical fluctuations, errors in pressure variation, solid angle path
length, detector efficiency and energy resolution of the analyzer.

3. Results and Discussions
3.1. Energy and Angular Distributions

In Figure 1a–f, we display the DDCS for six different angles: 20°, 30°, 60°, 90°, 120°
and 160°, respectively. The present as well as existing data sets are shown in Tables 1–4.
The measured data is compared with the different CDW-EIS approaches, such as CNDO,
MO (d = 0.7) and MO (d = 1.0) models. The CNDO model considers the molecular orbital
as a sum of the constituent atomic orbitals. In the MO approach, single center character of
the molecule was considered using two different inter-nuclear distance scaling parameters
d = 0.7 and 1.0. More detailed descriptions of the models are given elsewhere (see Section 2
in [27]).

The large cross section at a low-energy region of the spectra arises from the soft colli-
sion process where the projectile ion interacts with the electrons at a large impact parameter.
The two-center effect and the binary-encounter process contribute to the intermediate
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energy region. The carbon KLL Auger peak is observed at 240 eV for backward angles.
The DDCS data shows that, below 10 eV, the CDW-EIS(MO) results with a scaling factor of
d = 0.7 as well as the CNDO model better match the measured data. The MO model with
d = 1 underestimates the data at low-energy regions for all angles; however, above 10 eV, it
matches with the MO model with d = 0.7 and works better than the CNDO calculations for
the total energy range.

1 10 100

10-20

10-19

10-18

10-17

 DDCS

 CNDO

 MO (1.0)

 MO (d=0.7)

20°
(a)

1 10 100

10-20

10-19

10-18

30° (b)

1 10 100
10-22

10-21

10-20

10-19

10-18

60° (d)

1 10 100
10-24

10-23

10-22

10-21

10-20

10-19

10-18

120° (f)

1 10 100
10-23

10-22

10-21

10-20

10-19

10-18

90° (e)

1 10 100

10-23

10-22

10-21

10-20

10-19

10-18

160° (h)

D
D

C
S 

(c
m

2
eV

-1
Sr

-1
)

Energy (eV)

(c)

(d) (e) (f)

Figure 1. Energy distributions of DDCS (red circles) along with different theoretical calculations for
several scattering angles. The solid, dashed and dotted lines are CDW−EIS (MO) (d = 1), CDW−EIS
(MO) (d = 0.7) and CDW−EIS (CNDO), respectively.

The angular distributions of the DDCS (Figure 2) are represented for different electron
energies. At lower energy, the distribution was found to be almost isotropic. However,
with an increase in energy, the forward–backward asymmetry increases. This asymmetry
arises when the velocity of the ejecting electron increases such that the difference with
the velocity of the projectile decreases, and the cross section for forward angles begins to
increase with respect to the cross section at backward angles.

Therefore, the angular distribution of electron DDCS falls sharply with the angle.
The forward–backward difference is large compared to MeV energy collisions. For the
lower velocity of the projectile, the interaction time with the target molecule is longer. Due
to this reason, the projectile ions can drag the secondary scattered electrons towards the
forward direction along with the projectile itself. Due to this post collisional effect, the
forward–backward asymmetry is larger in the case of a low-velocity projectile than it is for
a projectile with higher velocity.

The results agree with the previously published data [8]. However, a closer look reveals
differences in the forward angles. The CDW-EIS (MO) model (d = 1) works better in most of
the cases. The CDW-EIS (CNDO) differs most from the data at low energies. A hump-like
structure, mostly due to binary collision, is seen for high electron energies (>50 eV), as
shown in Figure 2d,e at around 60°, which was also predicted by the calculations.
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Table 1. DDCS data in collisions with 250 keV H+ in units of 10−18 cm2eV−1sr−1 (uncertainty ∼ 17%).

Energy (eV) 20° 30° 45° 60° 75° 90° 105° 120° 135° 150° 160°

1 4.33 3.16 3.19 3.07 3.04 2.88 2.26 2.03 1.92 1.76 1.55
3 5.47 4.29 3.82 4.01 3.71 3.46 2.53 2.19 2.02 1.73 1.67
7 2.98 2.66 2.28 1.95 1.78 1.39 1.07 0.859 0.684 0.601 0.559
11 1.85 1.63 1.45 1.26 1.07 0.876 0.573 0.382 0.330 0.272 0.254
15 1.26 1.11 0.979 0.863 0.729 0.499 0.309 0.232 0.148 0.135 0.136
21 0.775 0.682 0.645 0.539 0.432 0.286 0.162 0.113 0.073 0.069 0.061
31 0.445 0.408 0.366 0.341 0.241 0.176 0.059 0.049 0.036 0.031 0.027
40 0.282 0.272 0.238 0.221 0.166 0.096 0.036 0.026 0.019 0.018 0.017
50 0.209 0.199 0.188 0.163 0.114 0.061 0.021 0.015 0.011 0.011 9.86 × 10−3

60 0.161 0.141 0.142 0.138 0.087 0.038 0.013 0.011 7.62 × 10−3 7.48 × 10−3 7.20 × 10−3

70 0.125 0.112 0.114 0.106 0.065 0.023 9.15 × 10−3 7.52 × 10−3 5.53 × 10−3 5.76 × 10−3 4.87 × 10−3

80 0.105 0.090 0.109 0.091 0.049 0.018 6.68 × 10−3 5.47 × 10−3 3.85 × 10−3 3.76 × 10−3 3.40 × 10−3

100 0.075 0.059 0.073 0.061 0.020 8.16 × 10−3 3.79 × 10−3 3.15 × 10−3 2.06 × 10−3 2.15 × 10−3 1.91 × 10−3

120 0.055 0.046 0.059 0.044 0.011 4.48 × 10−3 2.07 × 10−3 1.96 × 10−3 1.41 × 10−3 1.21 × 10−3 1.13 × 10−3

140 0.040 0.036 0.051 0.031 6.13 × 10−3 2.70 × 10−3 1.25 × 10−3 1.19 × 10−3 8.24 × 10−4 8.11 × 10−4 7.11 × 10−4

160 0.030 0.031 0.039 0.023 3.31 × 10−3 1.48 × 10−3 9.01 × 10−4 8.76 × 10−4 4.81 × 10−4 5.26 × 10−4 4.39 × 10−4

180 0.023 0.026 0.032 0.018 1.19 × 10−3 9.38 × 10−4 6.48 × 10−4 5.68 × 10−4 3.66 × 10−4 4.08 × 10−4 3.40 × 10−4

200 0.019 0.021 0.028 0.013 1.51 × 10−3 7.53 × 10−4 4.91 × 10−4 4.14 × 10−4 3.33 × 10−4 3.27 × 10−4 2.76 × 10−4

Table 2. DDCS data taken from the experiment of Lynch et al. [8] (scanned from Figure 6) in units of
10−18 cm2eV−1sr−1.

Energy (eV) 15° 20° 30° 40° 50° 60° 70° 80° 90° 110° 125°

10 2.38 1.97 1.50 1.31 1.11 1.03 0.966 0.873 0.662 0.540 0.440
20 0.873 0.934 0.844 0.662 0.662 0.578 0.522 0.440 0.324 0.175 0.116
50 0.309 0.298 0.277 0.277 0.240 0.223 0.192 0.115 0.069 0.024 0.019

100 0.138 0.103 0.092 0.103 0.103 0.086 0.051 0.021 7.65 × 10−3 3.54 × 10−3 3.06 × 10−3

200 0.028 0.030 0.033 0.039 0.029 0.014 3.67 × 10−3 1.31 × 10−3 7.07 × 10−4 4.71 × 10−4 4.07 × 10−4

Table 3. Energy and angular distributions of SDCS in units of 10−18 cm2eV−1 and 10−18 cm2sr−1,
respectively (uncertainty ∼17%).

Energy (eV) SDCS (dσ/dE) Angle (Degree) SDCS (dσ/dΩ)

1 33.04 20 71.22
3 39.35 30 64.38
7 18.47 45 59.05
11 10.93 60 51.06
15 6.97 75 40.27
21 4.16 90 30.64
31 2.35 105 20.46
40 1.50 120 16.73
50 1.07 135 13.88
60 0.806 150 11.99
70 0.610 160 11.38
80 0.512

100 0.315
120 0.228
140 0.171
160 0.129
180 0.101
200 0.082

Table 4. Measured total cross section (TCS) of methane along with the values obtained from theoretical
predictions in 10−16 cm2 (uncertainty ∼17%). (* Interpolated value from [5]).

Projectile TCSExp TCSLynch TCSRudd TCSCNDO TCSMO(d=1) TCSMO(d=0.7)

250 keV H+ 4.27 3.10 4.92 ∗ 5.81 3.92 5.37
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Figure 2. Angular distributions of the present DDCS (red circles) along with the models and the data
available in the literature (black open circles) [8]. The solid, dashed and dotted lines are CDW−EIS
(MO) (d = 1), CDW−EIS (MO) (d = 0.7) and CDW−EIS (CNDO), respectively.

3.2. Single Differential Cross Section (SDCS) and Total Cross Section (TCS)

The energy (E) distribution of the SDCS (dσ/dE) shown in Figure 3a was obtained by
integrating the DDCS over the emission angles. Through integrating the DDCS over the
total energy region, the angular distribution of SDCS (dσ/dΩ) was derived and is shown
in Figure 3b. Among all three calculations, the MO (d = 0.7) model matches better with
the experimental results at the forward angles. The CNDO model overestimates the data,
and MO (d = 1) diverges from the measured data at lower energy below 10 eV although it
matches better with the measured value for backward angles. For the angular distribution
of SDCS, a peak-like structure is predicted in the three model calculations around 60°,
which is not visible in the experimental data, although such a structure was visible in the
DDCS angular distributions.

The total ionization cross section was derived by integrating the DDCS over the energy
range of 1–360 eV and the emission angles over 0–180°. The present data is compared
with the existing data sets [5,8]. We used the TCS from Lynch et al. [8]. The present
results (TCS = 427 Mb) were found to be closer to the CDW-EIS (Mo, d = 1) prediction, i.e.,
392 Mb, whereas, those from Lynch et al., i.e., 310 Mb [8], showed large deviations from the
theoretical models.

However, the linearly interpolated value of TCS obtained from the measurements
of Rudd et al. [5] showed deviations from the present data and from Ref. [8] and, thus,
deviates the most from the value calculated by the MO (d = 1.0) model. The present
measurement is relatively closer to the CDW-EIS (Mo, d = 1) model. The CDW-EIS(MO,
d = 0.7) also works well but the TCS calculated with the CNDO model overestimates the
data most. We believe that the presently measured data are an improvement over those
published earlier [5,8]



Atoms 2023, 11, 49 6 of 8

1

d
σ
/d
Ω
(c
m

2
sr

-1
)

d
σ
/d
E
(c
m

2
eV

-1
)

(a) (b)

0 50 100 150
0.0

2.0x10-17

4.0x10-17

6.0x10-17

8.0x10-17

1.0x10-16

1.2x10-16

 Data

 CNDO

 MO (d=1)

 MO (d=0.7)

Angle (Degree)

1 10 100
10-20

10-19

10-18

10-17

 Data

 CNDO

 MO (d=1)

 MO (d=0.7)

Energy (eV)

Figure 3. a and b represent the energy and angular distribution of SDCS, respectively, along with the
theoretical models.

4. Conclusions

We have made detailed measurements of the electron DDCS for 250 keV protons col-
liding with the CH4 molecule. The energy distributions as well as the angular distributions
of the low-energy electrons were measured. The angular distributions were also compared
with the existing data [8] in a few cases. The carbon KLL Auger electron peak was observed
at 240 eV for the backward angles. The present data have better agreement with the differ-
ent CDW-EIS model calculations, which were developed using a MO description of the
target molecule.

The SDCS and TCS were deduced from the DDCS data and compared with the
theoretical models. We found that the CDW-EIS (MO) model, with scaling parameter d = 1.0,
was in better agreement with the DDCS, SDCS and TCS when compared to the CDW-EIS
(CNDO) approach. We also found that the present TCS data provided better matching
with the above model (MO with d = 1.0) compared to both the earlier measurements. The
present study helps to validate the CDW-EIS model in dealing with a many-electron system,
such as methane, at relatively low-energy (keV) collisions.
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