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Abstract: We study the Rabi flopping of the population between the ground and excited 2p states of
the hydrogen atom, induced by intense short laser pulses of different shapes and of carrier frequency
ω = 0.375 a.u. which resonantly couples the two states, and manifestations of this dynamics in
the energy spectra of photoelectrons produced in the subsequent ionization of the atom from the
excited state. It is found that, for Gaussian, half-Gaussian and rectangular pulses, characterized by
the same pulse area, the final populations take the same values and the spectra consist of similar
patterns having the same number of peaks and approximately the same separation between the
prominent edge (Autler–Townes) peaks. The additional analysis in terms of dressed states showed
that the mechanism of formation of multiple-peak structures during the photoionization process
is the same regardless of the pulse shape. These facts disprove the hypothesis proposed in earlier
studies with Gaussian pulse, that the multiple-peak pattern appears due to dynamic interference of
the photoelectrons emitted with a time delay at the rising and falling sides of the pulse, since the
hypothesis is not applicable to either a half-Gaussian pulse that has no rising part or a rectangular
pulse whose intensity is constant.

Keywords: Rabi dynamics; laser pulse; photoionization; photoelectron energy spectrum; Autler–
Townes splitting; multiple-peak pattern; dressed states; dynamic interference

1. Introduction

If an atom, initially being in its ground state, interacts with an alternating field that res-
onantly couples this state to an excited state, the population will be periodically transferred
from one state to another. This effect was first described theoretically by Rabi, who applied
it for fermions in rotating magnetic fields [1]. In general, the flopping of the population can
be explained by the fact that the eigenstates of the Hamiltonian describing the bare atom
are no longer stationary states if the atom interacts with the field. Another consequence
of this fact is the splitting of the coupled atomic states into doublets of “dressed states”,
whose quasi-energies are separated by the value corresponding to the frequency of Rabi
flopping (see, e.g., Ref. [2]). This splitting can be observed in the photoabsorption and
photoionization spectra of atoms and molecules. Before the availability of coherent light
sources, it was first detected using radiation from the radio frequency domain. In the origi-
nal observation by Autler and Townes [3], a radio frequency source tuned to the separation
between two doublet microwave absorption lines of the OCS molecule was used.

Despite theoretical predictions to observe Rabi dynamics at short wavelengths [4,5]
and the availability of intense XUV light sources for more than a decade, direct observation
of Rabi dynamics at such short wavelengths has been reported only recently [6]. In the
actual experiment, applying intense XUV laser pulses from a free-electron laser with high
temporal and spatial coherence, one-photon Rabi oscillations are induced between the
ground state and an excited state in helium atoms (pump). Then, a second (probe) photon
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from the same pulse ionizes the atom from the excited state (resonant two-photon ioniza-
tion) or, at higher intensities, two photons can do it from the ground state (nonresonant
two-photon ionization). In both cases, the emitted photoelectrons coherently probe the
underlying dynamics and the measured signal reveals an Autler–Townes (AT) doublet.

In the above experiment, the AT doublets were built at the resonant two-photon
ionization for 1.5 completed Rabi cycles. However, theoretical analysis of the resonant mul-
tiphoton ionization for more than two completed Rabi cycles during the pulse predicts the
appearance of a multiple-peak pattern in the photoelectron energy spectrum (PES) [7–10].
The number of peaks appearing in the pattern is essentially determined by the pulse area [7].
The area theorem (see Ref. [11] and references therein) actually, relates this quantity to
the number of Rabi cycles during the pulse, but numerical calculations have shown that
this number, the number of peaks in the radial density of photoelectrons and the number
of peaks in the pattern coincide [9]. The coincidence between the first two numbers is
easily explained by the propagation of the emitted bunches of photoelectrons, which are
separated in time and, thus, separated in space, too. On the other hand, the explanation for
the multiple-peak pattern in the spectrum is still under consideration. There is a general
agreement that this pattern is a result of the superposition of the contributions of photoelec-
trons ejected via two dressed states during the pulse action. The situation is simplest in the
case of photoionization by a rectangular pulse, where the two contributions have the forms
of cardinal sine (sinc) functions of energy, shifted by the value of the corresponding Rabi
frequency, and the multiple-peak pattern is a result of their overlap [7] (see also Section 3.3).
Conversely, in the case of smooth pulses such as the Gaussian, it is not clear exactly what is
happening. The analysis performed within the stationary phase approximation suggested
that dynamic interference of the photoelectrons emitted with the same energy, but with a
time delay at the rising and falling sides of the pulse, essentially determines the multiple-
peak structure (modulations) in the PES [8,12,13]. However, this assumption has been
questioned by analyzing the conditions for dynamic interference [14,15], where it was
found that they are not always fulfilled, particularly in the case of photoionization from the
hydrogen ground state.

To shed more light on the above issue, in this paper we investigate manifestations
of Rabi dynamics in the photoelectron energy spectra calculated for resonant two-photon
ionization of the hydrogen atom by intense short laser pulses of three different forms—
Gaussian, half-Gaussian and rectangular ones. By choosing the carrier frequency of
0.375 a.u. that resonantly couples the hydrogen ground (1s) and excited 2p states, the pulse
induces one-photon Rabi oscillations between these states, and a second photon from
the same pulse subsequently ionizes the atom from the 2p state. The problem was pre-
viously studied by other authors, who also used different forms of the laser pulse (see
Refs. [4,5,7–9]), but conditions for the dynamic interference were not considered. The paper
is organized in the following way. In the next section, we briefly describe the computational
method for calculating the populations of atomic states and the photoelectron energy spec-
tra, based on the three-level model, and present results for resonant two-photon ionization
of hydrogen by intense short laser pulses. In Section 3 we analyze the Rabi dynamics and
the AT patterns in the spectra in terms of dressed states. A summary and conclusions are
given in Section 4.

2. Calculation of Populations of Atomic States and Photoelectron Energy Spectra

The populations of atomic states during the interaction of the atom with the laser
pulse, including their final values when the pulse has expired, and the photoelectron
energy spectra were obtained by solving the time-dependent Schrödinger equation (in
atomic units)

i
d
dt
|ψ(t)〉 = (H0 + zE(t))|ψ(t)〉. (1)

Here |ψ(t)〉 is the non-stationary atomic state at time t, H0 is the Hamiltonian of the
field-free (bare) atom, E(t) is the electric field component of the laser pulse and z is the
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projection of the electron–nucleus distance in the field direction. The term zE(t) describes
the atom-field interaction in the dipole approximation using the length gauge. We consider
a linearly polarized laser pulse, whose electric field component reads

E(t) = E0 g(t) cos ωt, (2)

where E0 is the peak value of the field strength, ω is the laser carrier frequency, and the
function g(t) determines the shape of the pulse envelope.

Below, we solve Equation (1), assuming that the atom is initially in its ground state,
i.e., |ψ(t0)〉 = |1s〉, where t0 is a time before the beginning of the interaction. Since the
atom interacting with the field (2) has axial symmetry, the z-projection of the electron
angular momentum lz is a constant of motion and the magnetic quantum number m is
a good quantum number for any field strength. Thus, the state |ψ(t)〉 is at any time t
characterized by the value m = 0, which characterizes the ground state of the bare atom.
Unless otherwise stated, atomic units (a.u.) are used throughout the paper.

2.1. The Three-Level Model

In the case of photoionization which goes via resonant or near-resonant excitation
of an intermediate state, which here is 2p, the other excited states are nonessential and at
weak fields the process can be adequately described within the three-level model. A com-
putational method for solving Equation (1) within this model is presented in our recent
paper [16], and in more detail in Ref. [8]. Here, we give only the basic expressions and the
final set of relevant equations.

The atomic state at time t within the three-level model reads

|ψ(t)〉 = C1s(t)|1s〉+ C2p(t)e−iωt|2p〉+ e−2iωt
∫
[Cεs(t)|εs〉+ Cεd(t)|εd〉]dε, (3)

where C1s(t), C2p(t) and Cεl(t) are the time-dependent amplitudes for the population
of the ground state |1s〉, intermediate state |2p〉 and continuum states |εl〉 (l = 0, 2),
respectively. The variables ε and l label the kinetic energy and orbital momentum of
produced photoelectrons. The states |2p〉 and |εl〉 have been multiplied with the phase
factors e−iωt and e−2iωt in order to simplify the set of equations for the amplitudes.

If we set the ground state energy E1 to zero, by inserting Equation (3) in the Schrödinger
Equation (1) and applying the rotating wave approximation [2] and the local approxima-
tion [8,17], we obtain the set of equations for the amplitudes

iĊ1s =
1
2

Ω∗0 g(t)C2p(t),

iĊ2p =
1
2

Ω0 g(t)C1s(t) +
[

E2 −
i
2

Γg2(t)−ω

]
C2p(t), (4)

i ˙̃Cε =
1
2
E0 g(t)C2p(t) + (ε− ε0)C̃ε(t),

where Ω0 = DE0 is the frequency of Rabi flopping between the populations of states 1s
and 2p at the peak value of laser intensity, Γ = 2π|dε0E0/2|2 is the ionization rate of the
intermediate (near-)resonant state 2p and C̃ε(t) = Cεs(t)/dεs ≡ Cεd(t)/dεd is the scaled
amplitude for the population of continuum states. Here, D = 〈2p|z|1s〉 and dεl = 〈εl|z|2p〉
are the dipole transition matrix elements for the excitation of the 2p state and for its
subsequent ionization, respectively, and |dε|2 = |dεs|2 + |dεd|2. For a given carrier fre-
quency of the laser pulse ω, the expected energy of photoelectrons is ε0 = 2ω− Ip, where
Ip = 0.5 a.u. = 13.606 eV is the ionization potential of the hydrogen atom. Note that, by tak-
ing E1 = 0, the energies of the 2p and final continuum states are E2 = 0.375 a.u. =



Atoms 2023, 11, 20 4 of 11

10.204 eV and Ip + ε, respectively. Finally, let us state that the formal solution of the third of
Equation (4) is

C̃ε(t) = −
i
2
E0

∫ t

−∞
e−i(ε−ε0)(t−t′)g(t′)C2p(t′)dt′. (5)

The quantities |C1s(t)|2 and |C2p(t)|2 can be interpreted, respectively, as the popula-
tions of atomic states |1s〉 and |2p〉 after the interaction of the atom with the laser field
until time t. Thus, the populations of these states, after time tex when we assume that
the laser pulse has expired, are |C1s(tex)|2 and |C2p(tex)|2. Analogously, the quantities
|Cεl(t)|2 and |Cεl(tex)|2 represent the probability densities of finding the atomic electron
in the continuum state |εl〉 (here l = 0, 2) after the interaction of the atom with the laser
field until time t and after the pulse has expired, respectively. Since the photoelectron yield
at a given energy ε is proportional to the total probability density of finding the electron
in continuum states corresponding to this energy, the PES is adequately represented by
the distribution

w(ε) = |Cεs(tex)|2 + |Cεd(tex)|2 = |dε|2|C̃ε(tex)|2. (6)

The values of the dipole matrix elements for transitions from the 1s to the 2p state
and from the 2p state to continuum states are determined applying expressions given in
Appendix A in Ref. [16]. The matrix element for the transition 1s→ 2p is D = 0.7449 a.u.,
while the values of |dε|2 are shown in Figure 2 in the same reference. The resonant excita-
tion of the 2p state and the subsequent ionization occurs if the laser carrier frequency is
ω = 0.375 a.u., which coincides with the transition frequency between the 1s and 2p states
(in the weak field limit). The photon energy corresponding to this frequency is 10.204 eV,
and the expected kinetic energy of the ejected electrons is ε0 = 0.25 a.u. = 6.803 eV. In this
case, one has |dε0 |2 = 0.1663 a.u. [16]. We will see later that the approximate results ob-
tained using the three-level model, in which the exact values for |dε|2 are replaced by the
value of |dε0 |2, as used in previous studies [8], are sufficient for a qualitative analysis
of spectra.

2.2. Results

The populations of atomic states and the photoelectron energy spectra of the hydrogen
atom exposed to the laser pulse of carrier frequency ω = 0.375 a.u. have been calculated
using the described method for three pulse shapes: (a) the Gaussian shape

g(t) = e−t2/τ2
(7)

with τ = 30 fs, (b) the half-Gaussian shape

g(t) =

{
0 for t < 0,

e−t2/τ′2 for t > 0,
(8)

with τ′ = 2τ = 60 fs, and (c) the rectangular shape

g(t) =
{

1 for |t| < τ′′,
0 for |t| > τ′′,

(9)

with τ′′ = τ
√

π/2 = 26.5868 fs. The parameters τ, τ′ and τ′′ are chosen so that for a given
value of E0 all three pulses have the same value of the pulse area [7]

θ = Ω0

∫ +∞

−∞
g(t)dt, (10)

which here is θ =
√

π Ω0τ =
√

π Ω0τ′/2 = 2 Ω0τ′′. For times when the pulses (7)–(9)
expire, we take tex = 3τ, t′ex = 3τ′ and t′′ex = τ′′, respectively. Let us state at this point that,
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referring to the area theorem [7,11], the number of Rabi cycles completed during the pulse
is N = θ/(2π).

Figure 1 shows the evolution of the populations of states 1s and 2p, calculated for
pulses of the above three shapes and peak intensity I0 = 1 TW/cm2 (I0 = E2

0 /(8πα),
α = 1/137) for which the pulse area is θ = 8.741 and N ≈ 1.4. One can see that, although
the evolution is different, in accordance with the area theorem [11] the final populations for
all three pulses (after they have expired) take the same values.
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Figure 1. (Color online) The evolution of populations of the ground state (1s) and the excited 2p
state during the process of resonant two-photon ionization of hydrogen by: (a) Gaussian laser
pulse (7) with τ = 30 fs, (b) half-Gaussian pulse (8) with τ′ = 60 fs and (c) rectangular pulse (9) with
τ′′ = 26.5868 fs, all of carrier frequency ω = 0.375 a.u. = 10.203 eV, which is resonant for transition
1s→ 2p and peak intensity of 1 TW/cm2. The dashed lines represent the envelopes of the laser pulses.
The parameters τ, τ′ and τ′′ are chosen so that all three pulses have the same value of the pulse area
θ = 8.741, for which the populations perform approximately 1.4 Rabi cycles.

Figure 2 shows the final populations of the states 1s and 2p as functions of I0 in the
domain of 109–1013 W/cm2. Again, in agreement with the area theorem, for each peak
intensity the final populations of atomic states for the considered three pulses have the same
values. Due to this fact, the blue and red lines in Figure 2 represent the populations of the
ground and excited states, respectively, obtained for all three pulse shapes. The vertical dashed
lines indicate the peak intensities at which an integer number of Rabi cycles during the pulse is
completed: I0(N) = 0.517, 2.067, 4.650, 8.267, 12.917 TW/cm2 for N = 1, 2, 3, 4, 5, respectively.
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Figure 2. (Color online) Final populations of the ground state (1s) and the excited 2p state of hydrogen
at the end of the process of its resonant two-photon ionization, as functions of the laser peak intensity.
The results obtained using the Gaussian, half-Gaussian and rectangular pulses (Equations (7)–(9)) of
carrier frequency ω = 0.375 a.u. with τ = 30 fs, τ′ = 60 fs and τ′′ = 26.5868 fs practically coincide
and they are represented by common lines. The vertical dashed lines indicate the peak intensities at
which an integer number of Rabi cycles during the pulse is completed.

Figure 3 shows the photoelectron energy spectra determined by solving the set of
Equation (4) and applying Equation (6) with exact |dε|2 values (solid red lines) and with
|dε|2 ≈ |dε0 |2 (dashed lines) for: (a) Gaussian pulse (7), (b) half-Gaussian pulse (8) and
(c) rectangular pulse (9), with the peak intensities I0(N), N = 1, . . . , 5. Note that the spectra
obtained using the approximate value |dε0 |2 are symmetric, but this is not the case when
the exact values for |dε|2 are used. The observed asymmetry, which is more pronounced
at higher laser field intensities, has recently been studied in several publications [9,16,18].
For each value of I0, the PES consist of a pattern exhibiting the AT splitting. The separation
between the most prominent edge peaks (AT doublet) increases with the square root of I0,
i.e., linearly with the peak value of electric field strength. In addition, for the laser peak
intensities when more than two Rabi cycles during the pulse are completed, our results
confirm the previously reported appearance of a multiple-peak pattern in the calculated
PES [7–10].
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Figure 3. (Color online) Photoelectron energy spectra calculated using the three-level model
(Equations (4)–(6)) with exact values of |dε |2 (solid orange lines) and with the approximation
|dε |2 ≈ |dε0 |2 (dashed lines) for: (a) Gaussian pulse (7), (b) half-Gaussian pulse (8) and (c) rectan-
gular pulse (9), all of carrier frequency ω = 0.375 a.u. and the peak intensities marked in Figure 2
by vertical dashed lines. Black dots mark the real parts of E±(0) + ε0, whose separation (≈Ω0)
estimates the splitting of the resonant peak.

Demekhin and Cederbaum [8] analyzed the multiple-peak patterns in the PES ob-
tained for the photoionization with the Gaussian pulse. They attributed the appearance
of modulations inside the AT doublets to the dynamic interference of two photoelectron
waves with the same kinetic energy emitted at two different times during the pulse—at
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the time when the pulse is growing and at the time when it decreases. Our calculations,
however, show that similar modulations also exist in the case of photoionization with the
half-Gaussian pulse, that has no growing part, as well as at the photoionization with the
rectangular pulse, whose intensity is constant. Thus, we conclude that the dynamic inter-
ference cannot be the principal reason for the modulations in the calculated spectra. This
conclusion is supported by the analysis of the conditions for dynamic interference [14,15],
where it was found that they are not fulfilled in the case of resonant photoionization via
the 2p state (see Figure 3c in Ref. [14]).

3. Analysis of the AT Patterns in Terms of Dressed States
3.1. Dynamics of the Ground and Intermediate States

As the amplitude C̃ε(t) does not appear in the first two of Equation (4), the dynamics of
the 1s and 2p states within the three-level model is formally decoupled from the dynamics
of continuum states. The equations for these two states can be written in the matrix form

i
d
dt

(
C1s(t)

C2p(t)

)
=

(
0 1

2 Ω∗0 g(t)
1
2 Ω0 g(t) − i

2 Γg2(t)

)(
C1s(t)

C2p(t)

)
. (11)

This matrix equation represents the time-dependent Schrödinger equation that describes
the resonantly coupled dynamics of the 1s and 2p states in the basis of the same states in
the interaction picture [19]. Using Dirac’s formalism, this equation reads

i
d
dt
|ψb(t)〉 = H|ψb(t)〉, (12)

where |ψb(t)〉 = eiH0t [C1s(t)|1s〉+ C2p(t)e−iωt|2p〉] = C1s(t)|1s〉+ C2p(t)|2p〉 is the bound
part of the state (3) in the interaction picture andH is the interaction Hamiltonian, whose
representations in the actual basis are

|ψb(t)〉 →
(

C1s(t)

C2p(t)

)
, (13)

H →
(

0 1
2 Ω∗0 g(t)

1
2 Ω0 g(t) − i

2 Γg2(t)

)
. (14)

Since the interaction picture hides the time dependence related to the unperturbed
Hamiltonian H0, the amplitudes C1s(t), C2p(t) and the HamiltonianH are slowly varying
quantities. By diagonalizing this Hamiltonian, one obtains two slowly varying complex
eigenenergies (quasi-energies)

E±(t) = ±
1
2

√
Ω2

0 g2(t)− Γ2g4(t)/4− i
4

Γg2(t) ≈ ±1
2

Ω0 g(t)− i
4

Γg2(t), (15)

which correspond to dressed states

|±〉 ≈ 1√
2
(|1s〉 ± |2p〉). (16)

The approximate expressions are applicable if Ω0 � Γg(t), which is fulfilled if the pulses
are not of excessive intensity. Using inverse relations |1s〉 = (|+〉 + |−〉)/

√
2, |2p〉 =

(|+〉 − |−〉)/
√

2, the state |ψb(t)〉 can be written in the form

|ψb(t)〉 = C+(t)|+〉+ C−(t)|−〉, (17)

where
C±(t) =

1√
2
[C1s(t)± C2p(t)]. (18)
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Note that, due to the presence of an imaginary part in E±, the dressed states |±〉 are
decaying, i.e., they are two decoupled resonances. The real parts of the quasi-energies move
adiabatically apart as the pulse arrives, and towards each other as the pulse expires. More
precisely, according to Equation (15), their distance evolves as E+(t)− E−(t) ≈ Ω0 g(t).

3.2. Dynamics of Continuum States

By inserting Equation (17) into Equation (12) and applying the eigenvalue problem
H|±〉 = E±|±〉, one obtains equation iĊ± = E±(t)C±(t), which can be solved analytically.
Employing the initial conditions C±(−∞) = 1/

√
2, we find

C±(t) =
1√
2

e−i
∫ t
−∞ E±(t′)dt′ =

1√
2

e∓i Ω0J1(t)/2e−ΓJ2(t)/4, (19)

where Jn(t) =
∫ t
−∞ gn(t′)dt′.

From Equation (18), it follows that C2p(t) = [C+(t)− C−(t)]/
√

2, which by substitu-
tion in Equation (5) gives

C̃ε(t) = −
i

2
√

2
E0

∫ t

−∞
e−i(ε−ε0)(t−t′)g(t′) [C+(t′)− C−(t′)]dt′. (20)

Finally, using Equation (6), we obtain

w(ε) =
|dε|2E2

0
8

∣∣∣∣∫ +∞

−∞
ei(ε−ε0)tg(t) [C+(t)− C−(t)]dt

∣∣∣∣2
(21)

=

∣∣∣∣dεE0

4

∫ +∞

−∞
g(t) e−ΓJ2(t)/4

[
eiφ+(t) − eiφ−(t)

]
dt
∣∣∣∣2,

where φ±(t) = (ε− ε0)t∓Ω0J1(t)/2 are the phases of two oscillatory functions in the
integrand. This formula gives exactly the same results as Equations (4)–(6), some of them
shown in Figure 3, but it provides a deeper insight into the multiple peak structure of
the PES.

The AT splitting of the resonant peak in the PES can be roughly estimated from the
maximum distance between quasi-energies (15)

∆AT ≡ ε+ − ε− ∼ E+(0)− E−(0) ≈ Ω0 g0, (22)

where ε± are the positions of the AT doublet peaks in the PES and g0 ≡ g(0) is the
maximum value of the envelope g(t) (usually g0 = 1).

Figure 4 shows the time evolution of the photoelectron energy distribution, represented
by |C̃ε(t)|2 using Equation (20), during the photoionization process of the hydrogen atom
by: (a) Gaussian pulse (7), (b) half-Gaussian pulse (8) and (c) rectangular pulse (9), all of
them having the carrier frequency of 0.375 a.u. and the peak intensity of 12.917 TW/cm2,
which leads to five Rabi cycles completed at the end of the pulse (N = 5). In all three
cases, the number of Rabi cycles performed up to a given instant of time coincides with
the number of peaks in the energy distribution at that instant. Thus, the mechanism of
formation of a structure with multiple peaks is the same regardless of the shape of the
pulse and, therefore, it cannot be dynamic interference of two photoelectron waves emitted
during the rising and falling part of the pulse. The appearance of a multiple-peak pattern
in the case of rectangular pulse, where an analytical solution is possible, is analyzed in the
next subsection.
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Figure 4. (Color online) Time evolution of the photoelectron energy distribution (in arbitrary units)
during the photoionization process of the hydrogen atom by: (a) Gaussian pulse (7), (b) half-Gaussian
pulse (8) and (c) rectangular pulse (9) of carrier frequency ω = 0.375 a.u. and peak intensity of
12.917 TW/cm2 at which the atom completes five Rabi cycles during the pulse.

3.3. Analytical Solution for Rectangular Pulse

The limits of the integral in Equation (21) for the rectangular pulse (9) are reduced
to interval [−τ′′,+τ′′], in which Jn(t) = τ′′ + t and φ±(t) = (ε− ε0 ∓Ω0/2) t∓Ω0τ′′/2,
so that this integral can be solved analytically. Furthermore, since the ionization rate for
the laser peak intensities considered here (up to 13 TW/cm2) is small (Γ < 10−4 a.u.), it
can be neglected and the expression for energy distribution of photoelectrons to a good
approximation becomes

w(ε) =

∣∣∣∣dε0E0

2

(
e−iΩ0τ′′/2 sin δ+τ′′

δ+
− eiΩ0τ′′/2 sin δ−τ′′

δ−

)∣∣∣∣2, (23)

where δ±= ε−ε0 ∓Ω0/2. The positions of the two main peaks of this distribution are very
close to the positions of the main peaks of partial distributions

w±(ε) =
∣∣∣∣dε0E0

2

∣∣∣∣2( sin δ±τ′′

δ±

)2

, (24)

whose values are ε± = ε0±Ω0/2. Since the zeros of functions sin(δ±τ′′)/δ± are δ± = kπ/τ′′,
where k are integers, and in agreement with the area theorem τ′′ = Nπ/Ω0, where N
is the number of Rabi cycles during the pulse, the separation of two adjacent zeros is
∆ε = π/τ′′ = Ω0/N. Thus, in the interval (ε−, ε+), whose length here is ∆AT = Ω0,
there are exactly N − 1 zeros and N peaks (see Figure 5 for N = 5). The latter explains
the coincidence between the number of Rabi cycles during the pulse and the number of
peaks in the AT pattern in PES. Obviously, local peaks in distribution (23) also exist in partial
distributions (24), i.e., they are not a product of dynamic interference.

6.4 6.6 6.8 7.0 7.2

(b)

 Photoelectron energy (eV)

w
 (a

rb
. u

ni
ts)

6.4 6.6 6.8 7.0 7.2

w

w
± (a
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. u

ni
ts)

w

(a)

Figure 5. (Color online) (a) Partial distributions w±(ε) and (b) total distribution w(ε) given by
Equations (23) and (24), respectively, for the rectangular laser pulse with N = θ/(2π) = 5.
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4. Summary and Conclusions

In this paper, we studied the Rabi flopping of the population between the ground (1s)
and excited 2p states of the hydrogen atom, induced by intense short laser pulses of different
shapes and of carrier frequency ω = 0.375 a.u., which resonantly couples these states,
and manifestations of these dynamics in the energy spectra of photoelectrons produced
in the subsequent ionization of the atom from its periodically populated/depopulated
2p state. Manifestations of the Rabi dynamics in the spectra are the AT splitting and
multiple-peak structure of the AT pattern. The populations of states and spectra were
calculated for three different pulse shapes—Gaussian, half-Gaussian and rectangular ones,
whose pulse durations were tuned so that, for a given laser peak intensity, their pulse
areas have the same value. It was found that, for these pulses, in accordance with the
area theorem, the final populations (once the pulses have expired) are the same, and the
spectra have similar forms in that they consist of AT patterns with the same number of
peaks and with approximately the same separation between the prominent edge (AT) peaks.
These facts essentially disprove the assumption that the multiple-peak pattern appears
due to dynamic interference of the photoelectrons emitted with the same energy, but with
a time delay at the rising and falling sides of the pulse [8,12,13], for the simple reason
that a half-Gaussian pulse has no rising part, while the intensity of a rectangular pulse is
constant. This conclusion is in agreement with the analysis of the conditions for dynamic
interference [14,15], where it was found that they are not fulfilled in the case of resonant
photoionization via the 2p state.

The additional analysis in terms of dressed states provided deeper insight into the
structure of obtained spectra. This approach implies that the ionization occurs via dressed
states, which directly explains the appearance of AT doublets in the PES. Here, the formula
for the energy distribution of photoelectrons has the form of the time integral of the sum of
two terms with different phase factors corresponding to two dressed states. In the case of
rectangular pulse, this integral is analytically solvable and is reduced to the sum of two
contributions that have the forms of sinc functions of energy, shifted by the value of the
corresponding Rabi frequency. Then, the multiple-peak pattern is simply the result of their
overlapping, which explains the matching of the number of completed Rabi oscillations
with the number of peaks in the AT pattern. Analysis of the time evolution of the photoelec-
tron energy distribution during the photoionization process showed that the mechanism
of formation of multiple-peak structures is the same regardless of the pulse shape and is,
therefore, not related to dynamic interference.
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