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Abstract: The excitation cross-sections of the 3D and 4D states of atomic hydrogen at low incident
energies (from 0.90 to 5.00 Ry) were calculated using the variational polarized orbital method, which
is also called the hybrid theory. Up to 12 partial waves (L = 2 to 13) were used to obtain converged
cross-sections at high energies. The importance of the long-range forces near the threshold region
and the behavior of the cross-sections in that region are indicated. The S, P, and D cross-sections
are needed if the total excitation cross-sections are measured in addition to the elastic cross-sections.
These cross-sections are also useful if the cascade from the D to the P to the S states is considered in
the diagnostics of solar and astrophysical observations.
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1. Introduction

The variational polarized orbital method, also called the hybrid theory [1], is vari-
ationally correct and includes long-range and short-range correlations at the same time.
This method was used to calculate scattering phase shifts, the excitation of the 2S and 2P
states of a hydrogen atom at low incident electron energies, positron–hydrogen elastic
scattering, the annihilation and formation of positrons, the resonances In, He and Li ions
and the cross-sections of photo absorption and radiative attachments. This method, which
requires fewer terms in the wave function, was used to obtain accurate results. The phase
shifts obtained have lower bounds to the exact phase shifts. The results obtained using
this method compare well with those obtained using the R-matrix formulation and the
close-coupling approximation. The latter two approximations have been used extensively
and are known to provide accurate results. The same method was applied to the excitation
of the 3D and 4D states of atomic hydrogen. Cross-sections for the excitation of the 3D
state are given in Table 1, and the convergence of cross-sections with an increasing angular
momentum L is given in Table 2. Angular momenta of up to 12 (2 to 13) were used. It
can be seen that the convergence is slow for the last few energies. It is not possible to
calculate cross-sections for higher partial waves because of computer code limitations. We
show cross-sections at various incident energies in Figure 1, which shows that there is one
maximum and then the cross-sections decrease continuously. We use Rydberg units for
energy and the Bohr radius a0 for length; therefore, the cross-sections are in units of a2

0.

Table 1. Excitation 3D cross-sections (a2
0) at various incident energies E(Ry).

E σ E σ E σ

0.90 0.351 1.05 0.511 2.00 0.1456

0.91 0.447 1.20 0.392 2.50 0.0859

0.92 0.503 1.30 0.340 3.00 0.0608
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Table 1. Cont.

E σ E σ E σ

0.93 0.538 1.40 0.301 3.50 0.0484

0.94 0.558 1.45 0.288 4.00 0.0393

0.95 0.570 1.50 0.272 4.50 0.0320

1.00 0.558 1.70 0.145 5.00 0.0265
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Figure 1. (Color online) The excitation 3D cross-sections (a2
0) for the incident energies.

Table 2. The convergence of the cross-sections (a2
0) with the maximum L = Lm.

Lm/E 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

2 0.0413 0.0100 0.0044 0.0024 0.0015 0.0011 0.0008 0.0007

3 0.2123 0.0745 0.0211 0.0048 0.0030 0.0019 0.0014 0.0011

4 0.2422 0.0975 0.0350 0.0129 0.0071 0.0047 0.0031 0.0022

5 0.2582 0.1154 0.0487 0.0223 0.0140 0.0089 0.0060 0.0042

6 0.2658 0.1279 0.0605 0.0317 0.0211 0.0142 0.0098 0.0069

7 0.2693 0.1358 0.0694 0.0399 0.0279 0.0196 0.0141 0.0101

8 0.2706 0.1404 0.0757 0.0464 0.0338 0.0247 0.0183 0.0136

9 0.2712 0.1429 0.0799 0.0522 0.0385 0.0290 0.0219 0.0170

10 0.2714 0.1443 0.0826 0.0556 0.0422 0.0326 0.0252 0.0200

11 0.2715 0.1450 0.0842 0.0580 0.0450 0.0355 0.0280 0.0226

12 0.2715 0.1454 0.0853 0.0596 0.0470 0.0377 0.0302 0.0247

13 0.2715 0.1456 0.0859 0.0608 0.0484 0.0393 0.0320 0.0265
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The incident electron loses 0.8889 Ry of energy in exciting the 3D state and 0.9375 Ry

in exciting the 4D state. The angular momentum changes by 2 units. Therefore,
→
L t = 2 and

→
L i =

→
L t +

→
L f .

There are calculations by Gumble [2] and by Morrison and Rudge [3]. It is stated in [2]
that scattering amplitudes are correct to the first order. A comparison with the results given
in Table 3 of Ref. [2] indicates that the cross-sections obtained in Ref. [2] are comparable to
those obtained in the present calculations. However, they do not indicate convergence with
respect to the incident angular momentum, as has been indicated in Table 2 for the present
calculations.

Table 3. Excitation 4D cross-sections (a2
0) at various incident energies E(Ry).

E σ E σ E σ E σ

0.94 0.879 1.40 0.217 2.50 0.076 5.00 0.170

1.00 1.924 1.45 0.053 3.00 0.038

1.05 1.335 1.50 0.085 3.50 0.022

1.20 1.178 1.70 0.153 4.00 0.148

1.30 0.033 2.00 0.148 4.50 0.115

Similar calculations have been carried out for the excitation of the 4D state. The results
are shown in Table 3.

We see two peaks at incident energies of 1.00 and 1.70 Ry in the excitation cross-sections
of the 4D state; the cross-sections at these energies are 1.924 a2

0 and 0.153 a2
0. Gamble [2]

does not provide cross-sections for excitation to the 4D state of the atomic hydrogen. Morris
and Rudge [3] indicate cross-sections at very high energies in a figure, but it is very difficult
to obtain any meaning numbers for a comparison with the cross-sections obtained via the
present calculation.

A comparison of the excitation cross-sections to the 2S, 2P and 3D states shows that
for the 2P state, the cross-sections are highest, as is indicated in Table 4 for a few incident
energies. This is expected because 2P states represent dipole transitions.

Table 4. A comparison of cross-sections (a2
0) for the 2S, 2P and 3D states.

E 2S State 2P State 3D State

1.05 8.406(-2) 11.366 0.511

1.20 7.332(-2) 7.062 0.392

1.50 8.580(-2) 3.418 0.272

2.00 6.946(-2) 2.230 0.146

2. Calculations

The variational polarized orbital method was used to calculate cross-sections for the
excitation of the 3D and 4D states. The theory is given here for completeness, though it
was indicated in previous publications. This is a distorted wave calculation because the
two states 1S and 3D were treated separately, similar to the 1S and 4D states. The total
cross-section from a state “i“ to a state ”f ” is written as
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1 2 21 12
1 2 0 2 2

21

( )( ) cos( )( , ) ( ) s ppol St
u rrr r r

rr Z
χ θφ

π
→Φ = −    (5)

The angle 12θ  is the angle between 1r


 and 2r


. A smooth cutoff function, introduced 
by Shertzer and Temkin [5], is given below: 

2 4 3 2( ) 1 (( ) /3 4( ) /3 2( ) 2 1)Zr
ST r e Zr Zr Zr Zrχ −= − + + + +  (6)

The function 1 2s pu →  is given by 

2
1 2 2 2 2( ) ( )

2
Zr

s p
Zu r e r r−

→ = +  𝑟  (7)

The target function is given by 

2

3

0 2( ) ZrZr eφ
π

−=  (8)

The scattering function 1( )u r  is 

1
1 0 1

1

( )( ) ( ) ( )L
u ru r a L Y
r

= Ω
 (9)

The scattering function has a plane wave normalization given by 

( ) 4 (2 1)a L Lπ= +  (10)

The equation for 1( )u r  is obtained from the equation given below: 

=
k f

ki

∫
|Tf i|2d′Ω (1)

Here ki and k f are the initial and final electron momenta, and Tf i is the matrix element
for excitation from an initial state ψi to the final state ψ f . The matrix element is given by
the equation below:
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Tf i= −(
1

4π
) < ψ f |V|ψi > (2)

The potential V is given by the equation below:

V = −2Z
r1

+
2

r12
(3)

In the above expression, Z is the charge of the nucleus, r1 and r2 are the distances
of the incident electron and the target electron and r12 = |→r 1 −

→
r 2|. We assume that the

nucleus is of infinite mass, i.e., the recoil of the nucleus can be neglected in the derivation
of the equation of the scattering function u(r). The initial scattering state wave function is
given by the equation below:

ψi(
→
r 1,
→
r 2) =

1√
2
[u(
→
r 1)Φpol(

→
r 1,
→
r 2)± (1↔ 2)] (4)

Here, the plus sign refers to the singlet states, and the minus sign refers to the triplet
states. The polarized wave function due to the perturbation of the ground state by the
incident electron [4] is given by

Φpol(
→
r 1,
→
r 2) = φ0(

→
r 2)−

χSt(r1)

r2
1

u1s→2p(r2)

r2

cos(θ12)√
Zπ

(5)

The angle θ12 is the angle between
→
r 1 and

→
r 2. A smooth cutoff function, introduced

by Shertzer and Temkin [5], is given below:

χST(r) = 1− e−2Zr((Zr)4/3 + 4(Zr)3/3 + 2(Zr)2 + 2Zr + 1) (6)

The function u1s→2p is given by

u1s→2p(r2) = e−Zr(
Z
2

r2
2 + r2) r2 (7)

The target function is given by

φ0(r2) =

√
Z3

π
e−Zr2 (8)

The scattering function u(
→
r 1) is

u(
→
r 1) = a(L)

u(r1)

r1
YL0(Ω1) (9)

The scattering function has a plane wave normalization given by

a(L) =
√

4π(2L + 1) (10)

The equation for u(r1) is obtained from the equation given below:〈
YL0(Ω1)Φpol |H − E|Ψi

〉
= 0 (11)

The initial wave function is assumed to be exact, and the final state function has no
exchange or polarization of the excited target. The final state is given by:

ψi(
→
r 1,
→
r 2) = ei

→
k f ·
→
r 1 φ3D(r2)Y2µ(Ω2) (12)

We can write a similar equation for ϕ4D. The excited state functions are given by
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ϕ3d(r2) =
2

27

(√
2
5

)
(Z/3)1.5e−r2/3Y2µ(Ω) (13)

ϕ4d(r2)=
(Z)3.5

384(5)0.5 (r2)
4(6− Z

2
r2)e−Zr2/4Y2µ(Ω) (14)

In the above target states, µ = −2,−1, 0, 1, 2. The cross-section in units of a2
0 is given by

σ(a2
0) =

k f

ki

∫
|Ti f |2dΩk f

(15)

In Equation (12), the plane wave is given by

ei
→
k i ·
→
r 1 = ∑

lm
il jl(k f r1)Ylm(Ω1)Y∗lm(Ωk f

) (16)

Excitation cross-sections from 1S to 3D are given in Table 1 at various incident energies.
The cross-section is at a maximum at E = 0.95, where its value is 0.570.

The excitation cross-section is given by

σ = σ2+σ1 + σ0+σ−1+σ2 (17)

Numerically, it can be seen that σ2 = σ−2 and σ1 = σ−1 as expected because of invari-
ance under parity and because the forces involved are electromagnetic forces. In Figure 1,
we show the excitation cross-sections. They go to zero as E goes to zero, as is clear from
Equation (15).

Regarding long-range forces, Wigner [6] emphasized the importance of such forces in
a threshold region, and they were included in the present calculation. Sadeghpour et al. [7]
showed that in the threshold region, the cross-section is proportional to 1/ln(kf). The
calculated cross-sections for the 3D state can be fitted to −0.79214− 3.6714

ln(k f )
− 2.47116

(ln (k f )
2 . The

fit to the calculated points, shown in Figure 2, is very good.
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3. Conclusions

Calculations were carried out for the excitation of atomic hydrogen from the 1S state
to the 3D and 4D states via electron impact in a distorted-wave approximation in the energy
range from 0.90 to 5.00 Ry. The calculations were conducted using the distorted-wave
approximation via the variational polarized orbital method. In the distorted approximation,
the 1S and 3D channels and the 1S and 4D channels are assumed to be independent. Even
though the close-coupling and R-matrix approaches provide improved results, they are
harder to use and require too much computer time. Until now, there have been no such
calculations for the excitation of D states. At present, these are the only fairly accurate
results for excitation cross-sections for the 3D and 4D states. Elastic cross-sections are given
in [8]. It is desirable to use another version of Equation (12) in which exchange and target
polarization in the final state are included to indicate their importance in the final state.
This would make the calculations more difficult to carry out. For comparison purposes, we
only found the calculation by Gumble [2], which does not appear to be very accurate. Also,
there are no experimental results for a comparison with the present 3D and 4D excitation
cross-sections. Perhaps some experimentalists will be motivated to carry out experiments
to determine the 3D and 4D excitation cross-sections of hydrogen. We have previously
provided expressions given to calculate rate coefficients for 2S excitation cross-sections.
The same can be used to calculate rate coefficients for the 3D and 4D states. There is a
Born approximation [9] in terms of dipole and quadrupole polarizabilities to calculate
phase shifts for higher partial waves. No such approximation is available for excitation
cross-sections. Perhaps someone will be motivated to deduce such a formula.
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Data Availability Statement: All the required data are included in this publication.
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