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Abstract: We present the results obtained using a novel quantum approach to describe the interaction
of charged particles with the astrophysical type of plasmas, based on the dielectric plasma-wave-
packet model (PWPM) together with a full description of statistical effects on energy exchange
processes. We use this formulation to calculate the energy loss moments for protons, positrons, and
electrons traversing different stellar plasmas on a wide range of projectile velocities and plasma
densities and temperatures. We consider special quantum restrictions for the cases of positrons and
electrons, including relativistic corrections for high-velocity particles. We analyze and compare the
results for different cases of main interest, from dilute solar-corona plasma to cases of increasing
densities in the interior of the sun and in the dense regions of giant stars.
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1. Introduction

The interaction of subatomic particles with ionized matter at extreme conditions is a
subject of great interest for studies in very different areas, including current research on plasma
fusion and astrophysical media such as those in stellar interiors [1] or interstellar plasmas [2].

Cosmic rays are fluxes of subatomic particles with high energies that pervade the
whole space. They consist mostly of protons and other atomic nuclei produced in the
sun and in distant galactic sources, with energies from about 100 MeV to tens of GeV, or
velocities from about half to nearly the speed of light. In fact, the complete energy spectrum
extends to almost unimaginable high energies of still unknown origin (i.e., particles with
energies of up to around 1020 eV). Another relevant case is the solar corona, where ions with
energies from MeVs to GeVs, and electrons with energies from keVs to about 100 MeVs,
are observed.

The cases of astrophysical interest covered by this study span also very wide ranges of
plasma conditions, ranging from dilute coronal media in external regions [3,4], to central
stellar-core regions where densities may vary from 105 to 109 g/cm3, and temperatures rise
to values of the order of 108–109 K as the processes of C, O, Ne, and Si burning in massive
stars take place [5–8]. These processes are of outmost importance in the various stages of
stellar evolution and in the synthesis of new elements [7,8]. Regions rich in He, C, O, Si,
Ne, and other nuclei are predominant in different shells of massive stars in stages that take
place before the collapse to the supernova phase [9,10].

In addition, the cases of brown- or red-dwarf stars [11] are also within the general cov-
erage of the present approach, whereas white dwarfs would require a relativistic extension
of the description of plasma properties [12,13]1. Considering the ranges of typical electron
speeds in plasmas, the relativistic limits can be estimated at plasma temperatures of ~109 K
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and electron densities of ~1029 cm−3 (equivalent to mass densities of ~3 × 105 g/cm−3)
for carbon or silicon- rich stars.

With these conditions in mind, the study of interactions between subatomic particles
with plasmas at high densities and temperatures become of great interest for the under-
standing and modeling of energy transport in stellar interiors [1]. In particular, we refer
in this study to protons and light particles (electrons and positrons), which show very
different features and so are quite appropriate to make a comparative study.

Protons and electrons are the most basic particles participating in stellar processes,
starting from primordial hydrogen condensations, while positrons are generated in various
nuclear interactions mediated by the weak force (characterized by a continuous spectrum
of positron energies associated to neutrino emissions). Thus, for instance in “hot” stars
(those in the upper branch of the main sequence, with temperatures over 2× 107 K) , where
the CNO cycle dominates, the most relevant processes that produce energetic positrons (as
well as neutrinos, νe) are those of N and O decay, namely [7],

N13 → C13 + e+ + νe (1)

O15 → N15 + e+ + νe (2)

producing positrons with energies that go from very low to MeVs, whereas in “cold” stars
(located in the lower side of the main sequence, such as the Sun), the p-p cycle dominates
and the main positron sources are

p + p→ d + e+ + νe (3)

and other similar processes involving heavier nuclei.
Therefore, the interest of the present study is to perform a detailed and comparative

study of the properties of the main quantities pertaining to the interaction of various
charged particles with plasmas in the range of interest for astrophysical applications to
stellar media. This includes the calculation of three interaction coefficients: stopping power,
energy straggling, and inelastic mean-free path.

Early studies using classical collision models to describe the energy loss of charged par-
ticles in plasmas were made by Gryzinski [14], Spitzer [15], and others [16,17]. Additionally,
studies using dielectric-function models for classical plasmas have also been made [18–20].
These models, however, cannot be applied in a consistent way to cases where quantum
aspects are important, as, for instance, in the cases of electrons or positrons. In the case of
ions, classical dielectric models may be used in calculations of stopping powers but require
the introduction of quantum cut-offs in the energy loss integrals to avoid divergencies [20].
Furthermore, calculations of other energy-loss moments, such as mean-free paths or energy
straggling, require a correct quantum-mechanical approach that escapes the possibilities of
classical models. A general theoretical approach that provides a consistent description of
the interaction between charged particles and plasma media was introduced in previous
works [21,22]. The method contains two basic blocks:

(i) A general statistical description of quantum excitations in a dispersive medium in
thermal equilibrium. This is achived by a more general formulation that takes into account
the existence of internal excitations in the plasma, described in terms of Bose functions,
which allows processes of energy gain and loss in the interaction of external particles with
the plasma [23,24].

(ii) A dielectric model for a free electron plasma (or free electron gas, FEG). In the
present study, we will make use of the so-called “wave packed model”, earlier proposed
by Kaneko for atomic systems [25–27], which was more recently adapted to the case of
Maxwellian plasmas with Gaussian distributions of electron speeds [22]. This new approach
is called the “plasma wave-packet model” (PWPM). The model is based on a full quantum
mechanical description of the energy-momentum exchange, which eliminates the need
of to introduce a quantum cut-off in the integrals to represent the maximum momentum
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transfer, as is required by the classical dielectric-function approach [20]; in the wave-packet
model, these properties are implicitly included in the dielectric function, which provides a
full quantum treatment of the interactions [21,22].

This work is organized as follows: in Sections 2 and 3, we summarize the theoretical
approach and the formulation required for the calculation of energy-loss moments of
the various particles. A brief description of the quantum dielectric function for high-
temperature plasmas is made in Section 4. In Section 5, we present sample applications
of the present approach to different stellar environments, and we discuss in detail the
differences found in the results for the various moments and for the three types of particles
included in this study. Section 6 contains a summary and the conclusions of this study.
Finally, we include three appendices: Appendix A contains a description of the relativistic
corrections required for the cases of high-energy particles; Appendix B contains an analysis
of the two different contributions to the energy loss moments; and Appendix C contains
useful approximations to describe the high and low-velocity limits.

2. General Formulation

A comprehensive quantum-mechanical formulation of the interactions between an
external particle with charge Ze and a plasma with temperature T, whose properties are
described in terms of its dielectric function ε(q, ω), can be made starting from the interaction
probability W(−→q , ω) given by [23,24]

W(−→q , ω) =
8π(Ze)2

h̄q2 N(ω)Im
[
−1

ε(q, ω)

]
(4)

W(−→q , ω) represents the inelastic scattering probability per unit time in an elemen-

tary interaction process with momentum transfer h̄−→q =
−→
p′ − −→p and energy transfer

h̄ω = Ep′ − Ep, where −→p and
−→
p′ are the momenta of the particle before and after the in-

teraction, and Ep and Ep′ are the corresponding energies. Here, in contrast to the case of
zero temperature, both positive and negative frequency values are possible. Processes with
ω < 0 correspond to energy loss processesby the particle (Ep′ < Ep), while those with ω > 0
correspond to gain processes. (Here, loss and gain processes are defined with respect to
the external particle, being complementary of corresponding gain and loss processes by
the plasma).

In this equation, the factor N(ω) is the Bose function

N(ω) =
1

eh̄ω/kBT − 1
(5)

where kB is Boltzmann’s constant. This factor represents the thermal distribution of exci-
tations in the plasma and plays the most important role in a full treatment of interaction
processes in systems in thermal equilibrium. It carries the information on the existence
of thermally activated excitations in the medium, and its presence is crucial to obtain a
correct statistical balance between processes of energy exchange (gain and loss processes)
between the external particle and the plasma [23,24]. This makes an important difference
with respect to previous classical formulations of energy loss effects and will be particularly
important in treating the interaction of light particles (like positrons or electrons) with
classical or quantum plasmas, as well in calculating energy-loss moments of heavy particles.

The term Im[−1/ε(k, ω)] in Equation (4), called the energy loss function (ELF), carries
the information on the screening and absorption properties of the plasma (equivalent to
the oscillator strength distribution in the treatment of atomic excitations [28]).

Following this approach, we calculate the mean values of the n-order moments of the
energy loss h̄ω given by

dE(n)

dt
=
∫ d3q

(2πh̄)3 (h̄ω)nW(−→q , ω) (6)
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And we define the energy-loss moments Q(n) (ELM) as

Q(n) =
1
v

dE(n)

dt
=

(Ze)2

h̄vπ2

∫ d3q
q2 (h̄ω)nN(ω)Im

[
−1

ε(q, ω)

]
(7)

To perform the integrations appropriately, we consider the relation between the energy
and momentum transfers h̄ω and h̄−→q , namely

h̄ω = Ep′ − Ep =
1

2mp

[(−→p + h̄−→q
)2 − p2

]
(8)

which yields

ω = −→q .−→v +
h̄q2

2mp
(9)

where mp is the mass of the incident particle and−→v = −→p /mp its velocity before the interaction.
Following this, the expression for the energy-loss moments Q(n) is written as

Q(n) =
2

h̄π

(
Ze
v

)2 ∫ ∞

0

dq
q

∫ ωmax(q,v)

ωmin(q,v)
(h̄ω)nN(ω)Im

[
−1

ε(q, ω)

]
dω (10)

with

ωmin(q, v) = −qv + αq2 (11)

and

ωmax(q, v) = qv + αq2 (12)

where α = h̄/2mp , and mp is the projectile mass.
The physical meanings of these energy-loss moments, for the cases n = 0, 1, and 2,

are as follows:
(a) Inverse mean free path:

1
λ
= Q(0) =

2
h̄π

(
Ze
v

)2 ∫ ∞

0

dq
q

∫ ωmax(q,v)

ωmin(q,v)
N(ω)Im

[
−1

ε(q, ω)

]
dω (13)

(b) Stopping power:

S = −Q(1) = − 2
π

(
Ze
v

)2 ∫ ∞

0

dq
q

∫ ωmax(q,v)

ωmin(q,v)
ωN(ω)Im

[
−1

ε(q, ω)

]
dω (14)

(c) Energy straggling:

Ω2 = Q(2) =
2h̄
π

(
Ze
v

)2 ∫ ∞

0

dq
q

∫ ωmax(q,v)

ωmin(q,v)
ω2N(ω)Im

[
−1

ε(q, ω)

]
dω (15)

The minus sign in the stopping power expression agrees with the usual definition
S = −dE/dx.

Equations (13)–(15) apply straightforwardly to protons and positrons (or other charged
particles different from electrons). In the case of electrons, additional restrictions arising
from particle identity must be applied; these restrictions will be described below.

In the present formulation, these integrals are calculated with the PWPM procedure
mentioned in the Introduction and described in [22]. A fundamental difference between this
formulation and the more usual dielectric approach is that the PWPM is a full size quantum
formulation that takes into account all the statistical features of the interactions, including
gain and loss processes, as well as the quantum restrictions on the possible energy transfers
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for incident positrons and electrons. As noted before, in the standard representation of
the energy loss process, only positive frequencies are considered [18,20,29–31], whereas
in the PWPM method the range of frequencies spans the whole range of negative and
positive frequency values (from −∞ to +∞), where the range of negative (positive) ω
values represents energy loss (gain) processes by the incident particles.

A detailed explanation of the regions of integration in the q − ω plane was given
in Ref. [22] (cf., in particular, Figure 2 of this reference for a detailed illustration of the
integration regions). In the next section, we briefly describe this formulation.

3. PWPM: Individual and Collective Excitations

The integrations specified above cover an open area in the q−ω plane, with q > 0. The
response of plasma electrons to the projectile perturbation includes two types of excitations
within this area: collective and individual (or binary collisional excitations) [29–32]. The
latter represents the most important part of the energy loss for large momentum transfers q,
while the collective type of excitation dominates the energy absorption for low-q values [33].
In the case of solids or highly degenerate systems, the collective excitations assume the
characteristics of quasi-particles (plasmons) with quantized energy values ~h̄ωp, with ωp
being the plasma frequency. Further differences between these two types of excitations
are the following: the region of low q and ω values is characterized by strong screening
effects and is fairly well described by classical dielectric models; by contrast, for large
values of q and ω, the screening weakens and at the same time the quantum properties
become most relevant. The main locus of the binary excitations concentrates around the
line ωp ∼ h̄q2/2m; this is the so-called Bethe-ridge and corresponds to hard excitations, with
relatively large energy transfers, which may be assimilated to close collisions [28].

It is important to notice that these features of quantum nature are not contained in the
classical dielectric-function models [34,35], and for this reason the integrals of the energy-
loss moments present divergent behavior when q goes to infinity. This problem is usually
circumvented by introducing a cut-off value in the q integrals in a heuristic way [20]. In the
present approach, the quantum properties are fully incorporated [32], and this provides
regular behavior of the integrals, free of divergencies, so that authomatical convergence is
obtained without the need to introduce ad hoc limits.

For the sake of generality, the previous formulas were written in general units; in the
following, with m and e being the electron mass and charge, the system of atomic units will
be used (i.e., h̄ = e = m = 1) unless explicitly stated.

3.1. Individual Excitations

As demonstrated in [22], the energy loss of a particle with charge Z in a plasma with
temperature T can be expressed in a unified way in the form

Q(n)
ind =

2
π

Z2

v2

[∫ qmax
qc

F(n)
loss(q) gx(q)

dq
q +

∫ ∞
qc

F(n)
gain(q) gx(q)

dq
q

]
(16)

where the subscript ind indicates that only the individual type of excitations are included
here. The two terms in Equation (16) represent the energy gain (ω > 0) and energy loss
(ω < 0) contributions explained in detail in Ref. [22]. The factor gx(q) is required in the
case of incident electrons because it incorporates the exchange symmetry as a part of the
identity effect in the electron–electron interaction. An analytical approximation for this
term was obtained by Ochkur for high velocities [36,37]2 and has been largely used in
inelastic electron scattering in various media since then [38–40]. Detailed studies made by
Hippler [41] and Shinotsuka et al. [42] show that the Ochkur factor considerably improves
electron impact ionization and stopping power calculations. Here, we write the Ochkur
expression in terms of a relative velocity v′ = (v2 + v2

T)
1/2 where vT = (3kBT)1/2; thus, we

have [36]2:

gx(q) = 1 + (q/v′)4 − (q/v′)2 (17)
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This factor applies only to the case of electron impact, while gx(q) = 1 for protons
and positrons.

The F-functions in Equation (16) are given by

F(n)
loss(q) =

∫ 0

ωmin

ωnN(ω) G(1)(ω) Im
[
−1

ε(q, ω)

]
dω (18)

and

F(n)
gain(q) =

∫ ωmax

ω̃min

ωnN(ω) G(2)(ω) Im
[
−1

ε(q, ω)

]
dω (19)

where ε(q, ω) is the temperature-dependent dielectric function for an electron plasma in
thermal equilibrium, whose properties will be described in the next section.

The functions G(1)(ω) and G(2)(ω) in Equations (18) and (19) introduce the quantum
restrictions in the electron–electron interactions; this has two aspects: (i) the Pauli exclu-
sion principle and (ii) additional considerations for the energy transfer between identical
particles. The first restriction states that the incident electron cannot fall into an occupied
state in the plasma. The second one is more particular: it is based on the criterion that,
after an electron–electron interaction, the electron that ends up with the largest energy
should be considered as the new “primary electron” [43]. This sets a limit to the maximum
possible energy transfer. For instance, if E1 and E2 are the energies of the incident and
target electrons then the maximum energy loss would be (E1− E2)/2 (corresponding to the
case where both electron have equal energies after the interaction). This value of maximum
energy transfer is complementary to the one prescribed by Equation (12), which is common
to electrons and positrons. The application of this criterion requires an average over the
thermal distribution of energies E2.

These restrictions apply only to incident electrons and are described in detail in Ref. [22].
For other types of particles, those restrictions disappear, i.e., G(1)(ω) = G(2)(ω) = 1.

The limits of integration in Equations (18) and (19) are given by Equations (11) and (12).
Additionally, in Equation (19) we have introduced a lower limit ω̃min given by

ω̃min(q, v) =
{

0,
ωmin(q, v),

q < qmax
q > qmax

(20)

It is clear that for heavy projectiles, qmax ∼ ∞ and ω̃min = 0. Further and detailed
information about the different values for the extremes of the q and ω integrals may be
found in Ref. [22].

3.2. Collective Excitations

The energy loss due to collective excitations of the FEG was approximated as follows:
first, we isolate the contribution of the plasma resonance to the ELF [44] as

Im
[
−1

ε(q, ω)

]
=

π

D(q)
[
δ(ω−ωq)− δ(ω + ωq)

]
(21)

with

D(q) =
∣∣∣∣∂ε1(q, ω)

∂ω

∣∣∣∣
ω=ωq

(22)

where ε1 denotes the real part of ε (ε = ε1 + iε2) and ωq represents the frequency values
along the resonance line.

Introducing Equation (21) in the energy loss integrals of Equation (10), we obtain

Q(n)
pl = 2

Z2

v2 [(−1)n+1
∫ qc

q(1)min

dq
q
(ωq)n

D(q)
N(−ωq) +

∫ qc

q(2)min

dq
q
(ωq)n

D(q)
N(ωq)]

(23)
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where qmin has two values (for the positive and negative energy zones) according to the
explanations given in Ref. [22].

4. Dielectric Function

A general expression for the dielectric function for the case of plasmas in thermal
equilibrium, which contains the quantum-mechanical properties of the plasma electrons, is
given by [32]

ε(q, ω) = 1 +
e2

π2q2

∫
d3q′

f (−→q +
−→
q′ )− f (

−→
q′ )

h̄ω + iδ− (E−→q +
−→
q′
− E−→

q′
)

(24)

where E−→q = h̄2q2/2m and f (−→q ) is the Fermi–Dirac distribution function for plasmas of an
arbitrary degree of degeneracy,

f (−→q ) = {1 + exp[β(Eq − µ)]}−1 (25)

where β = 1/kBT, Eq = h̄2q2/2m, and µ are the chemical potentials of the plasma with
electron density n and temperature T. The chemical potential may be calculated with the
Fermi–Dirac integral of order 1/2 using Equation (6) of Ref. [32].

In the limit of high temperatures (kBT >> EF, with EF being the Fermi energy of
the FEG), where the restrictions imposed by the Pauli principle may be neglected, the
imaginary part of ε, denoted ε2(q, ω), takes the Gaussian form [32]

ε2(q, ω) ∼=
πχ2

0
8z3 θ eη

[
e−D(u−z)2 − e−D(u+z)2

]
(26)

where u = ω/qvF, z = q/2kF, χ2
0 = e2/πh̄vF, and the factor eη is approximated in this

limit by

eη ∼=
4

3
√

π

1
θ3/2 (27)

In these expressions, θ = kBT/EF and D = 1/θ, where kF is the wave vector associated
with the Fermi energy EF.

The variables u and z are those of the Lindhard theory for a degenerate electron
gas [29,30]. Using the more appropriate variables u′ =

√
Du = u/θ1/2 and z′ =

√
Dz =

z/θ1/2 now for the case kBT >> EF, we may write:

ε2(q, ω) =
πχ2

8
1

z′3
[
e−(u

′−z′)2 − e−(u
′−z′)2

]
(28)

where the parameter χ2 is given by [21]

χ2 =
4

3
√

π

χ2
0

θ2 =
4

3
√

π

1
πkFa0

1
θ2 (29)

The real part of the dielectric function may be obtained from ε2(q, ω) using the
Kramers-Kronig relations; this yields [21]

ε1(q, ω) = 1 +
χ2

8
1

z′3
[
W(u′ + z′)− ZWu′ − z′)

]
(30)

A detailed analysis of the dielectric formulation for the case of Gaussian velocity
distributions was made by Kaneko [25–27] and more recently adapted to the case of
Maxwellian plasmas in Ref. [22]. A useful expression for the function W(x) obtained from
these formulations is the following:

W(x) = 2
√

πx
∫ 1

0
e(t

2−1)x2
dt (31)

Related integral forms and further useful approximations for the dielectric function of
quantum plasmas are given in Ref. [32].
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The key quantity for the calculation of the energy-loss moments is the energy-loss
function (ELF), defined by Im[−1/ε(q, ω)] = ε2(q, ω)/[ε1(q, ω)2 + ε2(q, ω)2].

As demonstrated before [21,22], the present formulation is able to describe the prop-
erties of plasmas on a very wide range of densities and temperatures. This approach
yields the correct behavior for high temperatures, such that kBT >> EF, where the use of
Gaussian distributions for the electron speeds is quite appropriate. Moreover, an extension
of this model to cover the complete range of temperatures, including low (kBT << EF) and
high (kBT >> EF) limits, as well as the transition range where kBT ∼ EF, can be made by
considering an effective temperature Te f f obtained by a quadratic interpolation between
kBT and EF in the form [21]

kBTe f f =
√
(kBT)2 + λE2

F (32)

where λ is a fitting parameter. The parameter θ in Equations (15) and (16) is now redefined
as θ = kBTe f f /EF. After a comprehensive set of comparisons [21], we found that the value
λ = 0.4 allows for a very satisfactory representation, on the whole range of temperatures,
of the exact results obtained in Ref. [32].

The previous description summarizes the PWPM formulation that will be applied in
this work.

5. Calculations for Different Stellar Environments
5.1. Solar Cases
5.1.1. Solar Corona

The solar corona is a complex and not yet well understood dynamical region, com-
posed basically of hydrogen and helium, and small amounts of other elements such as Fe,
Si, C, N, and O [45]. Elements such as Fe are relevant to estimate plasma temperatures and
densities by spectroscopic analysis. However, since the presence of heavy elements in the
solar corona is too small, the contribution of inner shells [46,47] of those elements may be
neglected in the present study. The typical values of electron densities and temperatures
for the corona region are in the range of 108 electrons per cm3 (rs = 2.53× 105) and ~106 K
respectively [45,48,49].

Because of these special conditions, we find it appropriate to start our set of calculations
with this system. Hence, in Figure 1 we show the results for the energy loss moments of the
different projectiles traversing a plasma region characterized by typical values of density
and temperature in the solar corona. The thin red lines in this figure are the analytical
approximations for low and high velocities contained in Appendix C. The calculated values
show excellent agreement with both approximations.

However, the low density and the high temperature produce significant differences
with respect to cold solid-state target densities [21] as well as with values for the solar
interior to be shown in the next figure. These differences consist of a decrease in the
stopping values, by many orders of magnitude, and a shift of the stopping maximum to
higher velocities. The very-low-density values produce also a pronounced decrease in the
straggling for all velocities, and a large increase in the mean-free path values.

On the other hand, positrons and electrons demonstrate distinct behaviors. First,
we notice the decrease in the stopping power and the straggling values from protons
to positrons and electrons; this decreasing behavior is due to quantum restrictions for
electrons, and to differences in the maximum energy transfer, which is smaller for light
particles than for protons of equal velocities. At high v, the stopping values for protons and
light projectiles seem to converge to the same result due to the fact that only a factor inside
the logarithmic Bethe limit (see Appendix C) is responsible for the difference. The results
for the straggling also show several interesting and new features. The straggling values at
high energies show distinct behavior from those of the stopping: this is a consequence of
the greater influence of close collisions in the straggling. More precisely, at high velocities
the energy straggling is dominated by close collisions (i.e., greater values of momentum
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transfers q), and therefore the recoil effect on the value of ωmin, given by Equation (11),
which is important for light particles, produces a reduction in the maximum momentum
transfer in the range of negative frequencies (energy loss terms).
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Figure 1. Energy loss moments of protons, positrons, and electrons traversing a solar corona elec-
tronic plasma.

Secondly, we notice the anomalous behavior for the cases of electrons and positrons,
observed at low velocities, consisting of negative values of the energy loss, and a divergent
type of behavior for the straggling. It may be shown that a similar divergency occurs for
the inverse-mean-free path (IMFP), although this is not appreciated here because this figure
shows the MFP. (The divergent behavior of the IMFP is shown and analyzed in Appendix B).
Also, similar effects for protons cannot be observed in this figure because they occur at
much smaller velocities. These effects have been analyzed in detail in a previous work [22]
and are a direct consequence of the contributions of gain and loss processes, resulting from
quantum statistical properties contained in the Bose distribution of thermal excitations.

The effects of thermal fluctuations in the energy exchanges associated with those pro-
cesses become of increasing importance in the range of sub-thermal energies (E < (3/2)kBT),
where the particles can receive energy from the plasma, leading, on average, to negative
energy losses [22]. In this region, the image of well-defined particle trajectories is lost, as is
the ideal concept of stopping power of light particles with small velocities moving along
straight trajectories (the image here is that of a slow particle receiving “kicks” coming from
all directions, and so losing the information of the original direction of motion, resulting in
a kind of brownian motion). In this case, a more appropriate magnitude to characterize the
slowing down process is the mean energy loss/gain per unit time, dE/dt = vdE/dx. It may
be shown that in the limit v = 0, this quantity, dE/dt, has a well-defined negative-limit
value for the rate of energy loss of electrons and positrons. Similarly, finite but positive
values at v = 0 can be obtained for the average collision time τ = Λ/v and for the energy
straggling per unit time vΩ2 =

〈
∆E2〉/∆t. (This means that the divergent behaviors of

these quantities, observed in this and the following figures, are of the form 1/v).
The differences in the mean free path for protons and light particles are very small.

The physical interpretation is that the restrictions are relevant for higher energy transfers,
which usually correspond to close collisions. Hence, these restrictions produce significant
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differences in the straggling, which is dominated by close collisions, but not in the mean
free path, which is dominated by distant collisions.

Finally, as the range of velocities considered here runs up to 20 a.u. no relativistic
effects are involved.

5.1.2. Solar Interior

We consider now the conditions in the region of the Sun’s core, characterized by
temperatures and densities of about 16× 106 K and 160 g/cm3, respectively and consisting
of nearly 75% of hydrogen and 25% of helium. At those temperatures, all the atoms are
considered fully ionized. This yields a total electron density of 8.4× 1025 cm−3 (rs = 0.268).

Figure 2 shows the results for the different projectiles traversing a plasma characterized
by those values of density and temperature. A more extended range of relativistic velocities
is considered here, and a pronounced relativistic rise in the straggling is found. A brief
description of the relativistic corrections included in these calculations is given in the
Appendix A. The low-velocity and high-velocity limits are in excellent agreement with
the corresponding theoretical approximations (described in Appendix C) shown by the
red lines.
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Figure 2. Energy loss moments of protons, positrons, and electrons traversing a solar interior
electronic plasma.

Significant differences in the magnitude of the energy loss moments are appreciated
when compared with the solar corona case. These differences are due to the great changes
in densities and temperatures between both solar regions. Thus, for example, the results
for the solar interior show a notorious increase in the stopping power values and a shift
to larger velocities in the position of the stopping maximum. Here, two competing effects
may be noticed: the increase in the density yields a significant increase in the maximum,
while the increase in the temperature produces the opposite effect, i.e., a decrease in that
maximum. In the competition between these effects, the first one is more relevant due to
the fact that the density increases by several orders of magnitude; thus, the stopping power
increases drastically compared with the values for the solar corona.

Finally, for this particular case, we find that the relativistic effects produce only small
increments of the stopping values, negligible effects in the mean-free path for all particles,
and very large effects in the straggling, particularly for protons. The explanation for these
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differences stems from consideration of the contributions of close and distant collisions and
from the additional influence of the so-called density effect in the energy loss of relativistic
particles [50]. The treatment of these effects is described in Appendix A.

5.2. Giant Stars

Giant stars are important paradigms for studies of nuclear astrophysics and synthesis
of elements. As early studies indicate, after the primordial hydrogen fuel is consumed, the
star undergoes a series of fusion reactions of increasingly heavier elements [7–10]. At this
stage, the core contracts by overwhelming gravitational forces, heating both the core and
the surrounding material. The core then becomes hot enough to ignite new fusion reactions,
starting with helium burning to form carbon, then burning carbon to form neon, oxygen,
and silicon. Each of these reactions leads to an additional release of energy. One last cycle
of fusion combines silicon nuclei to form iron. Considering, for example, the stages in the
life of a 25Msun star, the times estimated for these processes range from about 500,000 years
for He burning down to only 1 day for the final Si burning [9].

In the following, we show the results for different projectiles passing through different
parts of the onion structure of a giant star, which take form once the series of fusion
processes begins [10]. Going from outside to inside, we focus on the mantle composed of
an He region, and a more internal O region, which comprises an external C sector and an
internal Ne sector.

5.2.1. He Region

The intermediate He region of a giant star may be similar in density to the values
already calculated for the solar interior; however, temperatures are much higher.

Figure 3 shows the results for typical values of density (2× 102 g/cm3) and tempera-
ture (2× 108 K) in this region. The shift in the stopping curves already shown when passing
from the external solar region to the solar interior is further observed here, together with
a softening of the curve shapes as a result of the higher temperatures corresponding to
this case. Some irregularity in the electron mean-free path for velocities below 60 a.u. is
observed here, in the same region where the corresponding straggling curves also show a
notorious change in shapes, and it may be shown that both effects have a common origin:
the particular restrictions that apply to electrons. This behavior is analyzed and explained
in Appendix B. The reason why this effect on the electron mean-free path was not observed
in the previous figures is because the quantum restrictions for electrons become more
relevant for higher temperatures.

Other interesting features found here are the magnitude of the relativistic effects
observed in the straggling curves. These effects are in accord with those already found
in Figure 2 and can be explained by the same reasons already mentioned; they are also
described in Appendix A.

5.2.2. C + O Region

The composition of the following region of a giant star is dominated by completely
ionized C and O atoms. The plasma electron density is estimated in the range of 103 g/cm3,
while temperatures range from 3 to 4 × 108 K.

Figure 4 shows the results for typical values of density (3× 103 g/cm3) and tempera-
ture (4 × 108 K) in this region.

Relativistic effects in the stopping curves are appreciated here due to the fact that
the shift of the maximum approaches the relativistic range so the values are magnified.
Also, large relativistic enhancements in the straggling curves are observed. The electron
mean-free path curve shows also a larger enhancement and extends to larger velocities. As
in the previous cases, no relativistic effects are observed in the mean-free path as a result of
the density effect, and for the reasons explained in Appendix A.
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Figure 3. Energy loss moments of protons, positrons, and electrons traversing a giant star He region.
Curves as in Figure 2.
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Figure 4. Energy loss moments of protons, positrons, and electrons traversing a giant star O-C region.
Curves as in Figure 2.

5.2.3. Ne + O Region

The last case considered here, extending to still higher values of densities and tempera-
tures, is the external sector of the Ne + O region. In this region, electron densities estimated
by stellar structure models [10] are in the range of 104 to 106 g/cm3, and temperatures are
in the range of 108 to 109 K.

Figure 5 shows the results for a plasma with a density of 104 g/cm3 and a temperature
of 5× 108 K. We notice similar behavior to that found in the previous regions, so that most
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of the considerations made before also apply here. We notice an additional increase in all
the effects already discussed due to the larger density and temperature values.

Finally, and although this study is concentrated in the set of three particles considered
throughout this work, we wish to add here, only as an illustrative example, the case of
muons, which may be considered as an intermediate case between heavy and light pro-
jectiles due to its mass (mµ = 206.8 a.u.). With this purpose, we included in Figure 5 a
calculation of the stopping power for muons, shown by a grey line; the result is almost
indistinguishable from the proton lines (both for the relativistic and non-relativistic calcula-
tions), except only at the low-velocity extreme, where we observe an anticipated drop to
negative stopping values. Thus, and except for this minor effect, the energy-loss moments
for muons are almost identical to those of equal velocity protons.
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Figure 5. Energy loss moments of protons, positrons, and electrons traversing a giant star O-Ne
region. The grey line (only distiguishable at very low v) shows the result for muons. The rest of the
curves are as in Figure 2.

6. Summary and Conclusions

As stated in the Introduction, the interaction of energetic particles with stellar or
interstellar plasmas spans an extremely wide area of interest for astrophysical studies. In
this work, we have studied with detail those processes of interactions of charged subatomic
particles with very hot plasmas in different stellar environments.

As described in this work, the study of these processes requires a combination of
quantum and statistical aspects. Theoretical models that ignore some basic statistical
properties, such as the effects of loss and gain processes in the energy exchange, cannot give
correct results for the case of light particles as electrons and positrons, or for the straggling
or mean-free path of heavy particles.

In previous works, we have developed a consistent method to describe these inter-
actions within the framework of a quantum dielectric function approach together with a
full account of the thermal and statistical aspects of the interactions. As shown here, the
theoretical approach becomes particularly useful to describe processes occurring in various
stellar interiors.

In the limit of high energies, relativistic corrections must be applied. However, these
corrections attain different mathematical forms for each type of particle, and the corre-
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sponding expressions are rather disperse in the literature since they were derived from
different and more particular studies. Moreover, different corrections apply to close and
distant interactions. Therefore, and for reasons of consistency, we reviewed the results
obtained in those different sources for each of the particular cases and summarized the
results in Appendix A. By integrating the basic expressions, we obtained the corrections to
be applied for each particle and for each of the energy-loss moments.

One of the new and interesting questions is the difference between electrons and
positrons, due to the special quantum restrictions that must be considered for electrons.
This includes two types of restrictions arising from the identity between projectile and target
electrons: quantum exchange effects, and the particular restriction in the maximum value of
energy transfer in electron–electron collisions also arising from the particles’ identity. The
relevance of these restrictions and the effects on the energy exchange processes have been
explained in Appendix B. Another important difference between light particles (electrons
and positrons) and heavier ones (protons or other ions) is the recoil effect that imposes a
much stricter limit on the maximum energy transfer in the case of light particles.

All these effects have been considered here in a consistent basis emerging from a
general quantum statistical approach. The relevance of these effects, and the implications for
interaction processes in stellar media, have been shown in a set of typical cases, going from
dilute hot plasmas in the solar corona to progressively more dense media in stellar interiors.

The study includes the three relevant moments of the energy loss: the mean-free path,
stopping power, and energy straggling, and each of the particles shows its own signature
in the results.

As a general conclusion, we think the present work contributes to filling a gap in
the knowledge of particle–plasma interactions that take place in many astrophysical envi-
ronments and provides a consistent theoretical method, which is able to produce precise
evaluations of the effects of all those interaction processes.
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Appendix A. Relativistic Corrections

The parameter that characterizes the relativistic corrections to the energy loss of
particles in matter is the term (v/c)2. Hence, for particle speeds larger than about c/2 these
corrections become significant.

The treatment of these corrections is different for protons, electrons, and positrons. In
addition, the contributions from close and distant collisions are also quite different and
must be treated separately.

In order to apply these corrections, we made a thorough review of treatments made by
different authors, in particular those in Refs. [50–59]. The treatments, usually made for the
stopping power, were extended to the calculations of mean free paths and straggling. For
reasons of space and simplicity, we provide a brief summary of the different developments;
a more complete description will be published elsewhere.

Appendix A.1. Treatment of Close Collisions

The analysis of close collisions starts from considerations of scattering cross sections
of each type of incident particle with target electrons. For high energies of the incident
particles, in the relativistic range, the target electrons may be assumed to be at rest.
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The differential cross sections for protons, electrons, and positrons, given by the
Mott [54], Möller [55], and Bhabha [56] formulas, respectively, in terms of the energy
transfer W, are as follows:

dσ(Mott)

dW

∣∣∣∣∣
close

=
A

β2W2

[
1− β2

(
W

Wmax

)]
(A1)

where

A = 2πZ2r2
0mc2 =

2πZ2e4

mc2 (A2)

where r0 = e2/mc2 the classical electron radius, Wmax = 2mv2γ2 is the maximum energy
transfer for proton–electron collisions, γ = 1/

√
1− β2, and β = v/c,

dσ(Moller)

dW

∣∣∣∣∣
close

= χ(v)

[
1

W2 +
1

(W − T(v))2 +

(
γ− 1

γ

)2 1
T(v)2

−
(

2γ− 1
γ2

)
1

W (T(v)−W)

]
(A3)

and

dσ(Bhabha)

dW

∣∣∣∣∣
close

= χ(v)

[
1

W2 −
(

γ2 − 1
γ2

)
1

W T(v)
+

1
2

(
γ− 1

γ

)2 1
T(v)2

−
(

γ− 1
γ + 1

)
F1(v, W) +

(
γ− 1
γ + 1

)2
F2(v, W)

]
(A4)

where χ(v) = 2πe4/mv2, and T(v) = (γ − 1)mc2 is the kinetic energy of the incident
electron or positron.

The functions F1 and F2 are given by [53]

F1(v, w) =
1

T(v)2

[(
γ + 2

γ

)
T(v)
W
− 2
(

γ2 − 1
γ2

)
+

W
T(v)

(
γ− 1

γ

)2
]

(A5)

F2(v, w) =
1

T(v)2

[
1
2
+

1
γ
+

3
2γ2 −

(
γ− 1

γ

)2 W
T(v)

(
1− W

T(v)

)]
(A6)

Using these expressions, the stopping power due to close collisions is calculated as

S(v)|close = ne

∫ Wmax(v)

W1

W
dσ

dW

∣∣∣∣
close

dW (A7)

where ne is the electron density, W1 is an intermediate energy-transfer value, and Wmax
is the maximum energy transfer, given by Wmax = 2mv2γ2 for protons, Wmax = T(v)
for positrons, and Wmax = T(v)/2 for electrons (by the criterion of considering the new
“primary” electron, the one with the largest outgoing energy after the collision).

In a similar way, the straggling and the inverse mean-free path may be calculated for the
three types of particles replacing the factor W within the integral by W2 and 1, respectively.

Appendix A.2. Treatment of Distant Collisions

Following Ref. [52], the differential cross section for momentum transfer in distant
collisions may be written as

dσ

dQ

∣∣∣∣
dist

=
χ(v)
h̄ω

[
1
Q
− β2 Qmin(v)

Q

]
(A8)
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where ω is a typical excitation frequency of the system (plasma frequency in our case),
Q is a (quadratic) momentum transfer (Q =

∣∣q2
∣∣ in the Berestetski’s notation), and

Qmin(v) = ω2/(vγ)2.
As explained in [52,53], in the high-energy regime the differential cross section for

distant interactions has the same form for all these particles.
Therefore, the contribution to the stopping power from distant collisions, with

Qmin < Q < Q1, is calculated by

S(v)|dist = ne

∫ Q1

Qmin(v)
h̄ω

dσ

dQ

∣∣∣∣
dist

dQ (A9)

This integral can be calculated straightforwardly and yields

S(v)|dist = neχ(v)
[

ln
(

Q1

Qmin(v)

)
− β2

]
= 2neχ(v)

[
ln
( q1vγ

ω

)
− 1

2
β2
]

(A10)

or in terms of the intermediate energy transfer W1:

S(v)|dist = neχ(v)

[
ln

(
2W1

h̄2ω2
p

mv2γ2

)
− β2

]
(A11)

where we used the relation between the intermediate values of energy and momentum transfers

W1 =
h̄2

2m
Q1 =

h̄2

2m
q2

1 (A12)

This relation connects the intermediate values of the theories of Rohrlich and Carl-
son [53] and Berestetski et al. [52].

Appendix A.3. Density Effect

The results summarized before do not take into account the screening by plasma
electrons, which is an important effect at large distances. Accounting for this effect gives
rise to the so-called density effect in the energy loss.

The first theoretical description of this effect was made by Fermi [57], who obtained
the density correction by integrating the flux of the Poynting vector through a cylindrical
surface around the particle trajectory. The Fermi method was throroughly reviewed and
discussed in a very clear way by Jackson [50].

A quantum mechanical study of the density effect was later made by Fano [58] and
reviewed in detail by Ahlen [59]. The density correction is usually represented by a term
δ/2 that is subtracted from the logaritmic expression of the energy loss in the form [58,59]

S =
4πnZ2

1e4

mv2

[
ln
(

2mv2

I

)
+ ln(γ2)− β2 − δ

2

]
(A13)

where I is the mean excitation energy [43], which is set equal to ωp for a plasma [29,30],
and δ is given by

δ =
2

πω2
p

[∫ ∞

0
Im
[
−1

ε(ω)

]
ln

[
1 +

ω′2

ω2

]
ω dω− π

2
ω′2(1− β2)

]
(A14)

The frequency ω′ in this expression is given implicitly by the equation

β2ε(iω′) = 1 (A15)
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While the solution of these equations may be a complicated task for solid targets when
the details of the atomic structure are considered [60], it turns out that a rather simple
solution may be obtained for the case of a plasma using the Drude expression

ε(ω) = 1−
ω2

p

ω(ω + iδ)
(A16)

with δ a positive infinitesimal.
This expression, although very simple, is quite appropriate to represent the long-range

screening in a plasma [50].
Using this expression one obtains

ω′2 = ω2
p

β2

1− β2 (A17)

and integrating Equation (A14), we obtain

δ = ln
[

1
1− β2

]
− β2 = 2

(
ln γ− 1

2
β2
)

(A18)

Replacing this in Equation (A13), we finally obtain

S =
4πnZ2

1e4

mv2

[
ln
(

2mv2

I

)
+ ln γ− 1

2
β2
]

(A19)

By comparison with Equation (A13), we find that the significant effect of the density
correction is to remove one of the γ factors in the ln(γ2) term in Equation (A13).

This conclusion agrees with the analysis made by Jackson, who explains the origin of
the density effect in terms of a cancellation of the relativistic increase in the range of the
fields at large distances due to the screening of those fields by the plasma electrons. In this
way, the net result is the removal of the γ factor associated with long-range interactions. To
complete this analysis, we notice that the remaining ln(γ) term in Equation (A19) arises
from the treatment of close collisions (i.e., maximum energy transfer in those collisions).

As is clear from this analysis (and from the Jackson discussions), the density correction
in the relativistic range affects only the terms corresponding to distant interactions. For this
reason, it is important in the calculations of stopping powers and mean free paths, but not
for the energy straggling of relativistic particles, which is determined by close collisions.

Appendix B. Analisis of Gain and Loss Terms in the Energy Loss

The calculations illustrated in the various figures show some interesting differences
in the results for the different particles. We want to explain here what the origin of
these differences is.

For example, we refer here to the hump in the electron mean-free path observed in
Figures 3–5. To explain this effect, we show in Figure A1 both the MFP (scale on the right of
the figure) and inverse mean-free path (IMFP, scale on the left). Here, the line with squares
shows the contribution of energy loss terms; the line with triangles is the contribution of
energy gain terms, and the continuous line is the total IMFP.

The analysis of the IMFP gives a more direct insight because the contributions from
gain and loss processes are additive in this case. The IMFP curves show very clearly what
is the origin of this effect.

In the case of positrons, the contribution to the IMFP from loss and gain processes has
the same type of divergent behavior (a 1/v dependence), and so in this case the MFP has a
linear dependence on v for low velocities. On the other hand, the results for electrons show
quite distinct behavior; the curve corresponding to energy gain processes has the same type
of divergent behavior as for positrons, but the curve for loss processes has a maximum for
intermediate values of v. This is the particular phenomenon that we wish to explain here.
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Figure A1. Gain and loss contributions to the inverse mean free path (left axis) and total mean free
path (right axis) of (a) positrons and (b) electrons traversing a giant star He region.

The explanation stems from the quantum restrictions that apply to electrons, indicated
as (i) and (ii) in the text after Equation (19). A detailed study of the effects produced by
each of these restrictions indicates that the first one (exclusion principle) produces only a
negligible effect (this is not surprising since in the present cases, where kBT >> EF, the
occupation number of electron states is extremely low), so that the whole effect in the MFP
is produced by the second restriction, i.e., the criterion that the electron that emerges with
the largest energy after the interaction is to be considered as the new primary electron. We
may also observe here that the restriction due to recoil effects, given by Equations (11) and
(12), acts in the same way for electrons and positrons.

Hence, all the differences in the energy-loss moments for protons, positrons, and
electrons are produced by the electron identity and the recoil effects. The action of the Bose
factor serves to enhance these effects.

Appendix C. Low- and High-Energy Approximations

A well known analytical approximation for the stopping power of high-velocity
particles was obtained by Bethe; the expression in the non-relativistic regime is the following

Shigh−v =
4πnZ2e4

mv2 ln
(

α1mv2

h̄ωp

)
, (A20)

where Ze is the particle charge, and with α1 = 2 for protons, 1 for positrons, and
0.5
√

e/2 = 0.583 for electrons [43].
In the opposite limit, a low-velocity approximation that applies when kBT/EF >> 1

was obtained in Ref. [61], viz.

Slow−v
∼=

4
3
(2πm)1/2

(kBT)3/2 Z2e4nv
[

ln
(

kBT
h̄ωp

)
+

1
4

]
(A21)

These are the quantum-mechanical results. A similar expression, with the same forefac-
tor but different logarithm, was obtained much earlier by Spitzer [15] for classical plasmas.
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A still more general approximation that applies to plasmas with arbitrary degeneracy was
also obtained in Ref. [61].

The ranges of applicability of Equations (A20) and (A21) are given by v >> vth and
v << vth respectively, where vth =

√
kBT/m, and both are in excellent agreement with the

results shown in Figures 1–5.

Notes
1 Typical densities in white dwarfs are in the range of 104 − 107 g/cm3 while central densities may be as high as 108 g/cm3;

however, for densities beyond 106 g/cm3 a relativistic model of dielectric response is required, including response to transverse
fields not considered in this study. The relativistic corrections applied here refer to relativistic particles incident on non-relativistic
plasmas. See refs. [1,12].

2 The original derivation by Ochkur considers very high velocities and its function is written in terms of (q/v). However this
function has an anomalous behavior when v approaches 0; therefore we find it convenient to introduce a velocity v′, as a mean
velocity for interactions between incident and plasma electrons. See ref. [36].
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